
ZIP64 extension support study
Lukáš Hejl (lukas.hejl@prusa3d.cz)
Vojtěch Bubník (vojtech.bubnik@prusa3d.cz)

Introduction
The original ZIP format has three limitations, which are the maximum size of each
uncompressed file is 4 GiB (2^32 bytes), the total size of a ZIP file is 4GiB (offsets in Central
directory file header and in End of central directory record are only 32-bits), and the
maximum number of files/records is 65,535. The PKZIP specification
(https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT) since version 4.5 has
introduced the ZIP64 extension, which allows increasing all these limits. The current
PKWARE PKZIP specification version is 6.3.9. Which minimum PKZIP specification
should the core 3MF specification refer to? Anyways, we shall require a ZIP64
extension.

According to the PKZIP specification, the use of the ZIP64 extension should be indicated by
the PKZIP specification version 0x2D (4.5) or newer in the version needed to extract
(minimum) field of both the Local file header and the Central directory file header. Also,
for all file sizes and file offsets, which are overridden by the ZIP64 extension fields, their
original 32 bit counterparts have to be filled with 0xFFFFFFFF (32-bit) or 0xFFFF (16-bit).

According to the PKZIP specification, the ZIP64 extension can be used even when none of
the limits are exceeded.

Previous work
The report by Materialize from September 2018 pinpoints no ZIP64 support by Microsoft 3D
Builder and OpenXML Package editor for Visual Studio, however MS Word OPC library
supports ZIP64 just fine.
https://github.com/3MFConsortium/archived_documents/blob/master/MeetingMaterials_44/Zi
p64_Issues_Materialise.zip

zipdetails tool (https://github.com/pmqs/IO-Compress)
This tool reads the headers of a ZIP file and displays them in a human readable form. We
used it to compare ZIP headers. This tool can also perform some validity checks of the ZIP
headers. We recommend this tool to learn the details and quirks of the PKZIP specifications.
The tool is available in Linux distros, however we recommend to use the latest version from
github.

mailto:lukas.hejl@prusa3d.cz
mailto:vojtech.bubnik@prusa3d.cz
https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT
https://github.com/3MFConsortium/archived_documents/blob/master/MeetingMaterials_44/Zip64_Issues_Materialise.zip
https://github.com/3MFConsortium/archived_documents/blob/master/MeetingMaterials_44/Zip64_Issues_Materialise.zip
https://github.com/pmqs/IO-Compress

Tested applications
● 7Zip
● Ashampoo (similar to WinRAR or 7Zip)
● Cura (FDM slicer by Ultimaker)
● CraftWare (FDM slicer)
● DotNetZip
● File Roller (Ubuntu Archive Manager)
● ideaMaker (FDM slicer)
● Info-ZIP (default zip command on Ubuntu)
● Microsoft 3D Builder
● PeaZip (general purpose GUI compressor / decompressor, open source)
● PKZIP
● Simplify3D (FDM slicer)
● Windows Explorer
● WinRar
● WinZip
● PrusaSlicer (miniz library extended to support ZIP64 extension and streaming)

Common information
Most of the tested tools used the ZIP64 extension only on demand when one of the limits of
the standard ZIP format is exceeded, which helps to ensure better compatibility across tools.
The exception is the DotNetZip tool, where the ZIP64 extension can be enforced at the time
of saving even for smaller files.

Except for Microsoft 3D Builder, Microsoft STL repair, and CraftWare, all tools are able to
extract ZIP files with the ZIP64 extension without any problems, including the ZIP64
streaming extension.

All tools correctly fill in the version needed to extract (minimum) field in the Local file
header and Central directory file header with the value 0x2D (version 4.5), which is
required for the ZIP64 extension.

Also, all tools fill in the compressed size and the uncompressed size fields in the Local
file header with 0xFFFFFFFF when the ZIP64 extension is used, and the actual file sizes
and offsets are then provided by the ZIP64 extension Extra field.

File Roller, PeaZip, PKZip, 7Zip, WinZip, and Windows Explorer are conservative in usage of
the ZIP64 extension Extra fields, which are only used if their corresponding ZIP32 fields
would overflow. Thus for example if a file is larger than 4GiB but is compressed below 4GiB,
the ZIP64 extension is applied to an uncompressed size only, not to a compressed size. This
applies to both the Local header and the End of central directory record.

Ashampoo and DotNetZip always store all the ZIP64 extension fields for a ZIP64 archive
even if they are not needed.

The following ZIP64 Central directory file header shows an example, where the ZIP64
extension is only used for the uncompressed file size, not for a compressed file size.

Info-ZIP and WinRar create a ZIP64 End of central directory record even if all values fit
into the End of central directory record. In this case, they fill in their respective 32 bit fields
with real file lengths and offsets, thus ZIP64 End of central directory record is redundant,
as shown in the following table:

Info-ZIP
If zip tool is called with a streaming command similar to cat file.txt | zip file.zip -, then
because the input file size is not known in advance, the tool chooses a combination of ZIP64
extension and streaming. This means, Info-ZIP always uses a ZIP64 extension in a
streaming mode.

File Roller
It uses streaming to store all files and also takes advantage of knowing the size of all files in
advance. That means, the ZIP64 extension is only used when needed, streaming extension
is always used and the file sizes and offsets are stored both at the start of the Local file
header and after the file block using the streaming extension.

7Zip
7Zip considers ZIP64 files produced by DotNetZip corrupted, because DotNetZip emits all
possible ZIP64 extension fields into the Central directory file header, not just the
compressed and uncompressed size like most other compressors. We believe the DotNetZip
files conform to the PKZIP ZIP64 specification though.

Windows Explorer
It has a problem with modifying ZIP files (we tested deleting files from a ZIP archive, we
expect adding files will show the same issues) if the ZIP was stored with a ZIP64 extension
and the ZIP in its compressed form is larger than 4 GiB. If the compressed ZIP is smaller
than 4 GiB but contains uncompressed files larger than 4GiB, the Windows Explorer can
only modify ZIP files that do not use a ZIP64 End of central directory record. Or if they use
a ZIP64 End of central directory record, then the ZIP64 End of central directory record
must match the End of central directory record, which is the case of ZIP64 files produced
by Info-ZIP (Ubuntu Linux default command line zip tool) and WinRar. Most likely the
Microsoft Explorer just ignores the ZIP64 End of central directory record in that case.

Ashampoo
For most ZIP files that use the ZIP64 extension, if you try to remove one of the files inside
the ZIP archive with this tool, some other files are accidentally removed. When the ZIP64
extension is not used, this problem does not happen. Plus for Windows Explorer, it at least
does not corrupt the archive.

Ashampoo always stores the ZIP64 uncompressed and compressed sizes into the Central
directory file header even if they are not needed (their 32 bit counterparts are sufficient). In
addition, Ashampoo stores a ZIP64 field Offset of local header record, which no other tool
saves.

DotNetZip
For files smaller than 4GB, it stores an Extra Field entry with ID 0x9999 into the Local file
header, probably to preallocate space to overwrite this block with a ZIP64 extension block.

When using the ZIP64 extension, DotNetZip stores an unusually long Extra Field into the
Central directory file header: 28 bytes entry of the payload (32 bytes including size and ID
of the block) where it lists the usual uncompressed and compressed file size plus some
additional fields that no other compressors store. 7Zip marks this as a corrupt header,
although it is OK.

Microsoft 3D Builder, Microsoft STL repair, and CraftWare
Cannot load any 3MF file containing a ZIP64 extension.

Cura, ideaMaker, and Simplify3D
Can open 3MF files with ZIP64 extension without problems.

PrusaSlicer (miniz library extended to support ZIP64 extension and
streaming)
We can open ZIP files (3MF) from all the mentioned tools without any problems, including
ZIP64 extension or streaming extension.

In PrusaSlicer we use streaming because we do not know in advance the size of the model
XML file we are generating on line while storing into the ZIP archive. Because of that, we
also always used to use the ZIP64 extension. But as we found out, some tools have a
problem with the ZIP64 extension.

To improve compatibility between all tools, we modified the miniz library to allow the ZIP64
extension to be used in streaming mode only in case one of the file size limits is exceeded.
Our strategy is based on creating the ZIP file without the ZIP64 extension first, but
preallocating a custom block with an ID (0x9999) in the Extra field of the Local file header.
After finishing writing the compressed file block, if the ZIP64 extension is found to be
necessary, we seek back in the ZIP file and rewrite the preallocated custom block with the
ZIP64 extension block. In addition, we adjust the minimum required PKZIP version number
in the Local file header and we rewrite the 32 bit file sizes and offsets with FFFFs.

The following block shows the phony custom block we stored into the Local file header to be
optionally rewritten with a ZIP64 block.

The DotNetZip tool probably uses a similar method to preallocate a phony custom block, so
we are using the same ID 0x9999 of the custom block as DotNetZip does. We also verified
that none of the ZIP64 consumers complain about this custom block in the Local file header
in case it is not being overwritten by the ZIP64 block. Indeed, according to the PKZIP
specification, if the tool doesn't understand the ID Extra field, it should skip it.

UTF-8

Introduction
According to the PKZIP specification, the file names should be encoded using IBM Code
Page 437 (CP437) by default. CP437 only supports western languages, thus the ZIP
specification has been extended to store filenames using UTF-8 encoding.

Two different approaches to store filenames in UTF-8 encoding were introduced:

1) Set the 11th bit in the general purpose bit flag, which indicates that UTF-8
encoding will be used instead of CP437 for filenames and comments.

2) Store an UTF-8 encoded file name inside Info-ZIP Unicode Path Extra Field (ID
0x7075). In this case, the 11th bit in the general purpose bit flag is not set.
This method is backward compatible with old ZIP consumers that do not understand
the UTF-8 extension, as an alternate CP437 file name may be stored the old way
and a legacy ZIP consumer may ignore the UTF-8 file names stored in extra fields.

Tested applications
● 7Zip
● Ashampoo (similar to WinRAR or 7Zip)
● DotNetZip
● File Roller (Ubuntu Archive Manager)
● Info-ZIP (default zip command on Ubuntu)
● PeaZip (general purpose GUI compressor / decompressor, open source)
● PKZIP
● Windows Explorer
● WinRar
● WinZip

Saving file names with correct encoding
Saving file names with correct encoding turned out to be a major issue for many ZIP
producers. However, if the file names were correctly stored using UTF-8 encoding, most of
the tested ZIP consumers had no issue extracting the files, including the correctly encoded
file names.

Windows Explorer
Windows Explorer does not use UTF-8 for any filename, CP437 encoding is always used.
Windows Explorer even fails to convert characters representable in CP437 into CP437.
Maybe it just stores the file names using the local 8-bit Windows encoding?

7Zip and PeaZip
Both tools have the same exact problem with the encoding of input filenames. For example,
for the name 'ÇüéâäàåçêëèïîìÄÅ', they set the 11th bit in the general purpose bit flag and
save them correctly in UTF-8. However, they do not set the 11th bit for the name
'áéěíóýščřžňť', saving the file name as if it was encoded in CP437.

Ashampoo, DotNetZip, File Roller, and Info-ZIP
Ashampoo, DotNetZip (with forced UTF-8 saving), File Roller, and Info-ZIP all set the 11th bit
and correctly encode file names in UTF-8.

WinZip
WinZip correctly fills in the Info-ZIP Unicode Path Extra Field (ID 0x7075) for all names
instead of setting the 11th bit in the general purpose bit flag.

WinRAR
WinRar sets the 11th bit in the general purpose bit flag for some UTF-8 encoded filenames
and stores the UTF-8 file name in the headers, while for some other UTF-8 encoded file
name within the same ZIP file it emits an Info-ZIP Unicode Path Extra Field (ID 0x7075) to
store UTF-8 encoded filename. The rule by which WinRAR chooses between the two
options is unknown to us. None of the ZIP consumers had an issue with that strategy.

PKZIP
PKZIP does not set UTF-8 encoding for any file name, IBM Code Page 437 encoding is
always used, and characters that cannot be encoded using IBM Code Page 437 are
replaced with question marks.

Extracting files with names in the correct encoding
Only a sample of ZIP archives containing UTF-8 encoded filenames was used for the
following test. These ZIP files were produced by Ashampoo, WinRar, WinZip, File Roller, and
Info-ZIP. The ZIP files produced by other tools mostly had the zipped file names
unrecoverable due to incorrect file name encoding, so the ZIP produced by these other tools
were not used for the following tests.

● WinZip, WinRar, Windows Explorer, 7Zip, PeaZip, and File Roller extracts file names
correctly in all cases.

● The Ashampoo tool displays the file names incorrectly in GUI, but it extracts all file
names correctly.

● The DotNetZip tool fails to extract UTF-8 encoded file names correctly for all tested
ZIP files.

● The Info-Zip tool fails to extract UTF-8 encoded file names produced by the
Ashampoo tool, but Info-Zip extracts UTF-8 encoded file names from archives
produced by other tools just fine. We don’t know why Info-Zip fails on Ashampoo

archives, we don’t see significant differences between Ashampoo generated ZIPs
and ZIPs generated by other tools.

