

ECMA-376, 4th Edition

 Office Open XML File Formats — Open Packaging

Conventions

December 2012

 COPYRIGHT PROTECTED DOCUMENT

 © Ecma International 2012

patrick
Stamp

 Table of Contents

 iii

Table of Contents

Foreword ..vii

Introduction .. viii

1. Scope .. 1

2. Conformance ... 2

3. Normative References .. 3

4. Terms and Definitions .. 5

5. Notational Conventions ... 9

5.1 Document Conventions ... 9
5.2 Diagram Notes ... 9

6. Acronyms and Abbreviations .. 11

7. General Description ... 12

8. Overview ... 13

9. Package Model .. 14

9.1 Parts ... 14
9.1.1 Part Names .. 14
9.1.2 Content Types ... 17
9.1.3 Growth Hint ... 18
9.1.4 XML Usage ... 18

9.2 Part Addressing ... 19
9.2.1 Relative References ... 19

9.3 Relationships ... 20
9.3.1 Relationships Part.. 20
9.3.2 Relationship Markup ... 20
9.3.3 Representing Relationships ... 24
9.3.4 Support for Versioning and Extensibility ... 26

10. Physical Package .. 27

10.1 Physical Mapping Guidelines ... 27
10.1.1 Mapped Components .. 28
10.1.2 Mapping Content Types .. 28
10.1.3 Mapping Part Names to Physical Package Item Names .. 33
10.1.4 Interleaving ... 35

10.2 Mapping to a ZIP Archive .. 37
10.2.1 Mapping Part Data .. 37
10.2.2 ZIP Item Names ... 37
10.2.3 Mapping Part Names to ZIP Item Names .. 38
10.2.4 Mapping ZIP Item Names to Part Names .. 38
10.2.5 ZIP Package Limitations ... 38
10.2.6 Mapping Part Content Type .. 39
10.2.7 Mapping the Growth Hint ... 39

ECMA-376 Part 2

iv

10.2.8 Late Detection of ZIP Items Unfit for Streaming Consumption .. 40
10.2.9 ZIP Format Clarifications for Packages .. 40

11. Core Properties .. 41

11.1 Core Properties Part .. 42
11.2 Location of Core Properties Part ... 44
11.3 Support for Versioning and Extensibility ... 44
11.4 Schema Restrictions for Core Properties .. 44

12. Thumbnails .. 46

12.1 Thumbnail Parts... 46

13. Digital Signatures ... 47

13.1 Choosing Content to Sign .. 47
13.2 Digital Signature Parts ... 47

13.2.1 Digital Signature Origin Part .. 48
13.2.2 Digital Signature XML Signature Part .. 48
13.2.3 Digital Signature Certificate Part ... 49
13.2.4 Digital Signature Markup .. 49

13.3 Digital Signature Example .. 59
13.4 Generating Signatures ... 61
13.5 Validating Signatures ... 62

13.5.1 Signature Validation and Streaming Consumption ... 63
13.6 Support for Versioning and Extensibility ... 63

13.6.1 Using Relationship Types .. 63
13.6.2 Markup Compatibility Namespace for Package Digital Signatures ... 63

Annex A. (normative) Resolving Unicode Strings to Part Names .. 65

A.1 Creating an IRI from a Unicode String ... 65
A.2 Creating a URI from an IRI ... 65
A.3 Resolving a Relative Reference to a Part Name .. 66
A.4 String Conversion Examples .. 66

Annex B. (normative) Pack URI ... 67

B.1 Pack URI Scheme ... 67
B.2 Resolving a Pack URI to a Resource ... 69
B.3 Composing a Pack URI ... 69
B.4 Equivalence ... 70

Annex C. (normative) ZIP Appnote.txt Clarifications .. 71

C.1 Archive File Header Consistency ... 71
C.2 Data Descriptor Signature ... 71
C.3 Table Key ... 71

Annex D. (normative) Schemas - W3C XML Schema .. 82

D.1 Content Types Stream ... 82
D.2 Core Properties Part .. 83
D.3 Digital Signature XML Signature Markup .. 84
D.4 Relationships Part .. 85

Annex E. (informative) Schemas - RELAX NG ... 86

 Table of Contents

 v

E.1 Content Types Stream ... 86
E.2 Core Properties Part .. 87
E.3 Digital Signature XML Signature Markup .. 87
E.4 Relationships Part .. 88
E.5 Additional Resources ... 89

E.5.1 XML .. 89
E.5.2 XML Digital Signature Core.. 89

Annex F. (normative) Standard Namespaces and Content Types.. 90

Annex G. (informative) Physical Model Design Considerations .. 92

G.1 Access Styles .. 93
G.1.1 Direct Access Consumption ... 93
G.1.2 Streaming Consumption .. 93
G.1.3 Streaming Creation ... 93
G.1.4 Simultaneous Creation and Consumption .. 93

G.2 Layout Styles .. 93
G.2.1 Simple Ordering... 93
G.2.2 Interleaved Ordering ... 94

G.3 Communication Styles ... 94
G.3.1 Sequential Delivery ... 94
G.3.2 Random Access.. 94

Annex H. (informative) Guidelines for Meeting Conformance .. 95

H.1 Package Model .. 95
H.2 Physical Packages .. 103
H.3 ZIP Physical Mapping ... 108
H.4 Core Properties .. 112
H.5 Thumbnail .. 114
H.6 Digital Signatures ... 114
H.7 Pack URI ... 125

Annex I. (informative) Differences Between ECMA-376:2012 and ECMA-376:2006 127

I.1 XML Elements .. 127
I.2 XML Attributes... 127
I.3 XML Enumeration Values .. 127
I.4 XML Simple Types .. 127

Annex J. (informative) Index ... 128

 Foreword

 vii

Foreword

Changes from the 3rd edition were made to align this 4th edition Standard with ECMA-376:2012. Both this

4th edition and ISO/IEC 29500:2012 refer to the 1st edition. As such, this 4th edition does not cancel or replace the

1st edition. This 4th edition does, however, cancel and replace the 3rd edition.

Some important differences between ECMA-376:2012 and ECMA-376:2006 are given in Annex I.

ECMA-376 consists of the following parts:

 Part 1: Fundamentals and Markup Language Reference

 Part 2: Open Packaging Conventions

 Part 3: Markup Compatibility and Extensibility

 Part 4: Transitional Migration Features

Annexes A, B, C, D, and F form a normative part of this Part of ECMA-376. Annexes E, G, H, I, and J are for

information only.

This Part of ECMA-376 includes two annexes (Annex D and Annex E) that refer to data files provided in electronic

form.

The document representation formats defined by this Part are different from the formats defined in the

corresponding Part of ECMA-376:2006. Some of the differences are reflected in schema changes, as shown in

Annex I of this Part.

ECMA-376 Part 2

viii

Introduction

ECMA-376 specifies a family of XML schemas, collectively called Office Open XML, which define the XML

vocabularies for word-processing, spreadsheet, and presentation documents, as well as the packaging of

documents that conform to these schemas.

The goal is to enable the implementation of the Office Open XML formats by the widest set of tools and

platforms, fostering interoperability across office productivity applications and line-of-business systems, as well

as to support and strengthen document archival and preservation, all in a way that is fully compatible with the

existing corpus of Microsoft Office documents.

The following organizations have participated in the creation of ECMA-376 and their contributions are gratefully

acknowledged:

Apple, Barclays Capital, BP, The British Library, Essilor, Intel, Microsoft, NextPage, Novell, Statoil, Toshiba, and

the United States Library of Congress

1. Scope

 1

1. Scope

This Part of ECMA-376 specifies a set of conventions that are used by Office Open XML documents to define the

structure and functionality of a package in terms of a package model and a physical model.

The package model is a package abstraction that holds a collection of parts. The parts are composed, processed,

and persisted according to a set of rules. Parts can have relationships to other parts or external resources, and

the package as a whole can have relationships to parts it contains or to external resources. The package model

specifies how the parts of a package are named and related. Parts have content types and are uniquely

identified using the well-defined naming rules provided in this Part of ECMA-376.

The physical mapping defines the mapping of the components of the package model to the features of a specific

physical format, namely a ZIP archive.

This Part of ECMA-376 also describes certain features that might be supported in a package, including core

properties for package metadata, a thumbnail for graphical representation of a package, and digital signatures

of package contents.

Because this Part of ECMA-376 might evolve, packages are designed to accommodate extensions and to support

compatibility goals in a limited way. The versioning and extensibility mechanisms described in Part 3 support

compatibility between software systems based on different versions of this Part of ECMA-376 while allowing

package creators to make use of new or proprietary features.

This Part of ECMA-376 specifies requirements for documents, producers, and consumers. Conformance

requirements are identified throughout the text of this Part of ECMA-376. A formal conformance statement is

given in §2. An informative summary of requirements relevant to particular classes of developers is given in

Annex H.

ECMA-376 Part 2

2

2. Conformance

Each conformance requirement is given a unique ID comprised of a letter (M – MANDATORY; S – SHOULD; O –

OPTIONAL), an identifier for the topic to which it relates, and a unique ID within that topic. (Producers and

consumers might use these IDs to report error conditions.) Mandatory requirements are those stated with the

normative terms "shall," "shall not," or any of their normative equivalents. Should items are those stated with

the normative terms "should," "should not," or any of their normative equivalents. Optional requirements are

those stated with the normative terms "can," "cannot," "might," "might not," or any of their normative

equivalents.

[Example: Package implementers shall not map logical item name(s) mapped to the Content Types stream in a

ZIP archive to a part name. [M3.11] end example]

Each Part of this multi-part standard has its own conformance clause, as appropriate. The term conformance

class is used to disambiguate conformance within different Parts of this multi-part standard. This Part of ECMA-

376 has only one conformance class, OPC (that is, Open Packaging Conventions).

A document is of conformance class OPC if it obeys all syntactic constraints specified in this Part of ECMA-376.

OPC conformance is purely syntactic.

3. Normative References

 3

3. Normative References

The following referenced documents are indispensable for the application of this document. For dated

references, only the edition cited applies. For undated references, the latest edition of the referenced document

(including any amendments) applies.

American National Standards Institute, Coded Character Set — 7-bit American Standard Code for Information

Interchange, ANSI X3.4, 1986.

ISO 8601, Data elements and interchange formats — Information interchange — Representation of dates and

times.

ISO/IEC 9594-8 | ITU-T Rec. X.509, Information technology — Open Systems Interconnection — The Directory:

Public-key and attribute certificate frameworks.

ISO/IEC 10646, Information technology — Universal Coded Character Set (UCS).

ECMA-376-3, Information technology — Document description and processing languages — Office Open XML File

Formats, Part 3: Markup Compatibility and Extensibility.

Dublin Core Element Set v1.1. http://purl.org/dc/elements/1.1/

Dublin Core Terms Namespace. http://purl.org/dc/terms/

Extensible Markup Language (XML) 1.0 (Third Edition), W3C Recommendation, 04 February 2004.

Namespaces in XML 1.1, W3C Recommendation, 4 February 2004.

RFC 2616 Hypertext Transfer Protocol — HTTP/1.1, The Internet Society, Berners-Lee, T., R. Fielding, H. Frystyk, J.

Gettys, P. Leach, L. Masinter, and J. Mogul, 1999, http://www.ietf.org/rfc/rfc2616.txt.

RFC 3986 Uniform Resource Identifier (URI): Generic Syntax, The Internet Society, Berners-Lee, T., R. Fielding,

and L. Masinter, 2005, http://www.ietf.org/rfc/rfc3986.txt.

RFC 3987 Internationalized Resource Identifiers (IRIs), The Internet Society, Duerst, M. and M. Suignard, 2005,

http://www.ietf.org/rfc/rfc3987.txt.

RFC 4234 Augmented BNF for Syntax Specifications: ABNF, The Internet Society, Crocker, D., (editor), 2005,

http://www.ietf.org/rfc/rfc4234.txt.

The Unicode Consortium. The Unicode Standard, http://www.unicode.org/standard/standard.html.

W3C NOTE 19980827, Date and Time Formats, Wicksteed, Charles, and Misha Wolf, 1997,

http://www.w3.org/TR/1998/NOTE-datetime-19980827.

http://purl.org/dc/elements/1.1/
http://purl.org/dc/terms/
http://www.unicode.org/standard/standard.html

ECMA-376 Part 2

4

XML, Tim Bray, Jean Paoli, Eve Maler, C. M. Sperberg-McQueen, and François Yergeau (editors). Extensible

Markup Language (XML) 1.0, Fourth Edition. World Wide Web Consortium. 2006.

http://www.w3.org/TR/2006/REC-xml-20060816/. [Implementers should be aware that a further correction of

the normative reference to XML to refer to the 5th Edition will be necessary when the related Reference

Specifications to which this International Standard also makes normative reference and which also depend upon

XML, such as XSLT, XML Namespaces and XML Base, are all aligned with the 5th Edition.]

XML Namespaces, Tim Bray, Dave Hollander, Andrew Layman, and Richard Tobin (editors). Namespaces in

XML 1.0 (Third Edition), 8 December 2009. World Wide Web Consortium. http://www.w3.org/TR/2009/REC-xml-

names-20091208/

XML Base, W3C Recommendation, 27 June 2001.

XML Path Language (XPath), Version 1.0, W3C Recommendation, 16 November 1999.

XML Schema Part 1: Structures, W3C Recommendation, 28 October 2004.

XML Schema Part 2: Datatypes, W3C Recommendation, 28 October 2004.

XML-Signature Syntax and Processing, W3C Recommendation, 12 February 2002.

.ZIP File Format Specification from PKWARE, Inc., version 6.2.0 (2004), as specified in

http://www.pkware.com/documents/APPNOTE/APPNOTE_6.2.0.txt. [Note: The supported compression

algorithm is inferred from tables C-3 and C-4 in Annex C. end note]

http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/2009/REC-xml-names-20091208/
http://www.w3.org/TR/2009/REC-xml-names-20091208/
http://www.pkware.com/documents/APPNOTE/APPNOTE_6.2.0.txt

4. Terms and Definitions

 5

4. Terms and Definitions

For the purposes of this document, the following terms and definitions apply. Other terms are defined where

they appear in italic typeface. Terms explicitly defined in this Part of ECMA-376 are not to be presumed to refer

implicitly to similar terms defined elsewhere.

The terms base URI and relative reference are used in accordance with RFC 3986.

access style — The style in which local access or networked access is conducted. The access styles are as follows:

streaming creation, streaming consumption, simultaneous creation and consumption, and direct access

consumption.

behavior — External appearance or action.

behavior, implementation-defined — Unspecified behavior where each implementation shall document that

behavior, thereby promoting predictability and reproducibility within any given implementation. (This term is

sometimes called “application-defined behavior”.)

behavior, unspecified —Behavior where this Open Packaging specification imposes no requirements.

byte — A sequence of 8 bits treated as a unit.

communication style — The style in which package contents are delivered by a producer or received by a

consumer. Communication styles include random access and sequential delivery.

consumer —Software or a device that reads packages through a package implementer. A consumer is often

designed to consume packages only for a specific physical package format.

content type — Describes the content stored in a part. Content types define a media type, a subtype, and an

optional set of parameters, as defined in RFC 2616.

Content Types stream — A specially-named stream that defines mappings from part names to content types.

The content types stream is not itself a part, and is not URI addressable.

device — Hardware, such as a personal computer, printer, or scanner, that performs a single function or set of

functions.

format consumer — A consumer that consumes packages conforming to a format designer's specification.

format designer — The author of a particular file format specification built on this Open Packaging Conventions

specification.

format producer — A producer that produces packages conforming to a format designer's specification.

ECMA-376 Part 2

6

growth hint — A suggested number of bytes to reserve for a part to grow in-place.

id — In some XML-related technologies, the term id implies use of the xsd:ID data type. In this international

standard, this term is used to refer to a variety of different identification schemes. See unique identifier.

interleaved ordering — The layout style of a physical package where parts are broken into pieces and “mixed-

in” with pieces from other parts. When delivered, interleaved packages can help improve the performance of

the consumer processing the package.

layout style — The style in which the collection of parts in a physical package is laid out: either simple ordering

or interleaved ordering.

local access — The access architecture in which a pipe carries data directly from a producer to a consumer on a

single device.

logical item name — An abstraction that allows package implementers to manipulate physical data items

consistently regardless of whether those data items can be mapped to parts or not or whether the package is

laid out with simple ordering or interleaved ordering.

networked access — The access architecture in which a consumer and the producer communicate over a

protocol, such as across a process boundary, or between a server and a desktop computer.

pack URI — A URI scheme that allows URIs to be used as a uniform mechanism for addressing parts within a

package. Pack URIs are used as Base URIs for resolving relative references among parts in a package.

package — A logical entity that holds a collection of parts.

package implementer — Software that implements the physical input-output operations to a package according

to the requirements and recommendations of this Open Packaging specification. A package implementer is used

by a producer or consumer to interact with a physical package. A package implementer can be either a stand-

alone API or can be an integrated component of a producer, consumer application, or device.

package model — A package abstraction that holds a collection of parts.

package relationship — A relationship whose target is a part and whose source is the package as a whole.

Package relationships are found in the package relationships part named “/_rels/.rels”.

part — A stream of bytes with a MIME content type and associated common properties. Typically corresponds

to a file [Example: on a file system end example], a stream [Example: in a compound file end example], or a

resource [Example: in an HTTP URI end example].

part name — The path component of a pack URI. Part names are used to refer to a part in the context of a

package, typically as part of a URI.

physical model — A description of the capabilities of a particular physical format.

4. Terms and Definitions

 7

physical package format — A specific file format, or other persistence or transport mechanism, that can

represent all of the capabilities of a package.

piece — A portion of a part. Pieces of different parts can be interleaved together. The individual pieces are

named using a unique mapping from the part name. Piece name grammar is not equivalent to the part name

grammar. Pieces are not addressable in the package model.

pipe — A communication mechanism that carries data from the producer to the consumer.

producer — Software or a device that writes packages through a package implementer. A producer is often

designed to produce packages according to a particular physical package format specification.

random access — A style of communication between the producer and the consumer of the package. Random

access allows the consumer to reference and obtain data from anywhere within a package.

relationship —A connection between a source part and a target part in a package. (See also Package

Relationships.)

relationship type — An absolute IRI for identifying a relationship.

relationships part — A part containing an XML representation of relationships.

sequential delivery — A communication style in which all of the physical bits in the package are delivered in the

order they appear in the package.

signature policy — A format-defined policy that specifies what configuration of parts and relationships shall or

might be included in a signature for that format and what additional behaviors that producers and consumers of

that format shall follow when applying or verifying signatures following that format's signature policy.

simple ordering — A defined ordering for laying out the parts in a package in which all the bits comprising each

part are stored contiguously.

simultaneous creation and consumption — A style of access between a producer and a consumer in highly

pipelined environments where streaming creation and streaming consumption occur simultaneously.

source part — The part from which a connection is established by a relationship. [Example: Picture a

SpreadsheetML file with a chart part, “drawing1.xml”, and a sheet part “sheet1.xml”, with the relationship

between the chart and the sheet defined in the “sheet1.xml.rels” part as “rId1”. The source part of that

relationship is sheet1.xml, because it is inside sheet1.xml that the relationship rId1 is actually referenced. The

target part for the relationship is the value of the “Target” attribute of the relationship - drawing1.xml, in this

case. end example].

stream — A linearly ordered sequence of bytes.

streaming consumption — An access style in which parts of a physical package can be processed by a consumer

before all of the bits of the package have been delivered through the pipe.

ECMA-376 Part 2

8

streaming creation — A production style in which a producer dynamically adds parts to a package after other

parts have been added without modifying those parts.

target part — The part referenced by the “Target” attribute of a relationship.

thumbnail — A small image that is a graphical representation of a part or the package as a whole.

unique identifier — In some XML-related technologies, the term unique identifier implies use of the xsd:ID data

type. In this international standard, this term is used to refer to a variety of different identification schemes.

See id.

XSD — W3C XML Schema

ZIP archive — A ZIP file as defined in the ZIP file format specification. A ZIP archive contains ZIP items.

ZIP item — A ZIP item is an atomic set of data in a ZIP archive that becomes a file when the archive is

uncompressed. When a user unzips a ZIP-based package, the user sees an organized set of files and folders.

5. Notational Conventions

 9

5. Notational Conventions

5.1 Document Conventions

The following typographical conventions are used in ECMA-376:

1. The first occurrence of a new term is written in italics. [Example: The text in ECMA-376 is divided into

normative and informative categories. end example]

2. In each definition of a term in §4 (Terms and Definitions), the term is written in bold. [Example: behavior

— External appearance or action. end example]

3. The tag name of an XML element is written using a distinct style and typeface. [Example: The

bookmarkStart and bookmarkEnd elements specify … end example]

4. The name of an XML attribute is written using a distinct style and typeface. [Example: The dropCap

attribute specifies … end example]

5. The value of an XML attribute is written using a constant-width style. [Example: The attribute value of

auto specifies … end example]

6. The qualified or unqualified name of a simple type, complex type, or base datatype is written using a

distinct style and typeface. [Example: The possible values for this attribute are defined by the

ST_HexColor simple type. end example]

5.2 Diagram Notes

In some cases, markup semantics are described using diagrams. The diagrams place the parent element on the

left, with attributes and child elements to the right. The symbols are described below.

Symbol Description

Required element: This box represents an element that shall appear
exactly once in markup when the parent element is included. The
“+” and “–” symbols on the right of these boxes have no semantic
meaning.

Optional element: This box represents an element that shall appear
zero or one times in markup when the parent element is included.

Range indicator: These numbers indicate that the designated
element or choice of elements can appear in markup any number of
times within the range specified.

Attribute group: This box indicates that the enclosed boxes are each
attributes of the parent element. Solid-border boxes are required
attributes; dashed-border boxes are optional attributes.

ECMA-376 Part 2

10

Symbol Description

Sequence symbol: The element boxes connected to this symbol
shall appear in markup in the illustrated sequence only, from top to
bottom.

Choice symbol: Only one of the element boxes connected to this
symbol shall appear in markup.

Complex Type indicator: The elements within the dashed box are of
the complex type indicated.

6. Acronyms and Abbreviations

 11

6. Acronyms and Abbreviations

This clause is informative.

The following acronyms and abbreviations are used throughout this Part of ECMA-376:

IEC — the International Electrotechnical Commission

ISO — the International Organization for Standardization

W3C — World Wide Web Consortium

End of informative text.

ECMA-376 Part 2

12

7. General Description

This Open Packaging specification is divided into the following subdivisions:

1. Front matter (clauses 1–7);

2. Overview (clause 8);

3. Main body (clauses 9–13);

4. Annexes

Examples are provided to illustrate possible forms of the constructions described. References are used to refer

to related clauses. Notes are provided to give advice or guidance to implementers or programmers. Annexes

provide additional information and summarize the information contained in this Open Packaging specification.

The following form the normative part of this Open Packaging specification:

 Introduction

 Clauses 1–5, 7, and 9–13

 Annex A–Annex D

 Annex F

The following form the informative part of this Open Packaging specification:

 Clauses 6 and 8

 Annex E

 Annex G–Annex J

 All notes

 All examples

Conformance requirements written as requirements for package implementers (e.g., M1.1) are document

conformance requirements.

Except for whole clauses or annexes that are identified as being informative, informative text that is contained

within normative text is indicated in the following ways:

1. [Example: code fragment, possibly with some narrative … end example]

2. [Note: narrative … end note]

3. [Rationale: narrative … end rationale]

4. [Guidance: narrative … end guidance]

8. Overview

 13

8. Overview

This clause is informative.

This Open Packaging specification describes an abstract model and physical format conventions for the use of

XML, Unicode, ZIP, and other openly available technologies and specifications to organize the content and

resources of a document within a package. It is intended to support the content types and organization for

various applications and is written for developers who are building systems that process package content.

In addition, this Open Packaging specification defines common services that can be included in a package, such

as Core Properties and Digital Signatures.

A primary goal is to ensure the interoperability of independently created software and hardware systems that

produce or consume package content and use common services. This Open Packaging specification defines the

formal requirements that producers and consumers must satisfy in order to achieve interoperability.

Various XML-based building blocks within a package make use of the conventions described in Part 3 to facilitate

future enhancement and extension of XML markup. That part must be cited explicitly by any markup

specification that bases its versioning and extensibility strategy on Markup Compatibility elements and

attributes.

End of informative text.

ECMA-376 Part 2

14

9. Package Model

A package is a container that holds a collection of parts. The purpose of the package is to aggregate constituent

components of a document (or other type of content) into a single object. [Example: A package holding a

document with a picture might contain two parts: an XML markup part representing the document, and another

part representing the picture. end example] The package is also capable of storing relationships between parts.

The package provides a convenient way to distribute documents with all of their constituent components, such

as images, fonts, and data. Although this Open Packaging specification defines a single-file package format, the

package model allows for the future definition of other physical package representations. [Example: A package

could be represented physically in a collection of loose files, in a database, or ephemerally in transit over a

network connection. end example]

This Open Packaging specification also defines a URI scheme, the pack URI, that allows URIs to be used as a

uniform mechanism for addressing parts within a package.

9.1 Parts

A part is a stream of bytes with the properties listed in Table 9–1. A stream is a linearly ordered sequence of

bytes. Parts are analogous to a file in a file system or to a resource on an HTTP server.

Table 9–1. Part properties

Name Description Required/Optional

Name The name of the part Required. The package
implementer shall require a
part name. [M1.1]

Content
Type

The type of content stored in the part Required. The package
implementer shall require a
content type and the format
designer shall specify the
content type. [M1.2]

Growth Hint A suggested number of bytes to reserve for
the part to grow in-place

Optional. The package
implementer might allow a
growth hint to be provided by
a producer. [O1.1]

9.1.1 Part Names

Each part has a name. Part names refer to parts within a package. [Example: The part name

“/hello/world/doc.xml” contains three segments: “hello”, “world”, and “doc.xml”. The first two segments in the

sample represent levels in the logical hierarchy and serve to organize the parts of the package, whereas the

9. Package Model

 15

third contains actual content. Note that segments are not explicitly represented as folders in the package model,

and no directory of folders exists in the package model. end example]

9.1.1.1 Part Name Syntax

A Part name shall be an IRI and shall be encoded as either a Part IRI or a Part URI. A Part IRI is a physical

representation that permits direct use of Unicode characters. A Part URI is a physical representation that uses a

percent-encoding for non-ASCII Unicode characters.

[Note: Not all versions of the ZIP specification support a Part name represented as a Part IRI. To preserve

interoperability, implementers are encouraged to use the currently more prevalent Part URI representation. end

note]

9.1.1.1.1 Part IRI Syntax

The part IRI grammar is defined as follows:

part-IRI = 1*("/" isegment)

isegment = 1*(ipchar)

ipchar is defined in RFC 3987:

ipchar = iunreserved / pct-encoded / sub-delims / ":" / "@"

iunreserved = ALPHA / DIGIT / "-" / "." / "_" / "~" / ucschar

ucschar = %xA0-D7FF / %xF900-FDCF / %xFDF0-FFEF

 / %x10000-1FFFD / %x20000-2FFFD / %x30000-3FFFD

 / %x40000-4FFFD / %x50000-5FFFD / %x60000-6FFFD

 / %x70000-7FFFD / %x80000-8FFFD / %x90000-9FFFD

 / %xA0000-AFFFD / %xB0000-BFFFD / %xC0000-CFFFD

 / %xD0000-DFFFD / %xE1000-EFFFD

pct-encoded = "%" HEXDIG HEXDIG

sub-delims = "!" / "$" / "&" / "'" / "(" / ")" / "*" / "+" / "," / ";" / "="

The part IRI grammar implies the following constraints. The package implementer shall neither create any part

that violates these constraints nor retrieve any data from a package as a part if the purported part IRI violates

these constraints.

 A part IRI shall not be empty. [M1.1]

 A part IRI shall not have empty isegments. [M1.3]

 A part IRI shall start with a forward slash (“/”) character. [M1.4]

 A part IRI shall not have a forward slash as the last character. [M1.5]

 An isegment shall not hold any characters other than ipchar characters. [M1.6]

Part IRI isegments have the following additional constraints. The package implementer shall neither create any

part with a part IRI comprised of an isegment that violates these constraints nor retrieve any data from a

package as a part if the purported part IRI contains an isegment that violates these constraints.

ECMA-376 Part 2

16

 An isegment shall not contain percent-encoded forward slash (“/”), or backward slash (“\”) characters.

[M1.7]

 An isegment shall not contain percent-encoded iunreserved characters. [M1.8]

 An isegment shall not end with a dot (“.”) character. [M1.9]

 An isegment shall include at least one non-dot character. [M1.10]

9.1.1.1.2 Part URI Syntax

The part URI grammar is defined as follows:

part-URI = 1*("/" segment)

segment = 1*(pchar)

pchar is defined in RFC 3986:

pchar = unreserved / pct-encoded / sub-delims / ":" / "@"

unreserved = ALPHA / DIGIT / "-" / "." / "_" / "~"

pct-encoded = "%" HEXDIG HEXDIG

sub-delims = "!" / "$" / "&" / "'" / "(" / ")" / "*" / "+" / "," / ";" / "="

The part URI grammar implies the following constraints. The package implementer shall neither create any part

that violates these constraints nor retrieve any data from a package as a part if the purported part URI violates

these constraints.

 A part URI shall not be empty. [M1.1] [Note: The Mx.x notation is discussed in §2. end note]

 A part URI shall not have empty segments. [M1.3]

 A part URI shall start with a forward slash (“/”) character. [M1.4]

 A part URI shall not have a forward slash as the last character. [M1.5]

 A segment shall not hold any characters other than pchar characters. [M1.6]

Part URI segments have the following additional constraints. The package implementer shall neither create any

part with a part URI comprised of a segment that violates these constraints nor retrieve any data from a package

as a part if the purported part URI contains a segment that violates these constraints.

 A segment shall not contain percent-encoded forward slash (“/”), or backward slash (“\”) characters.

[M1.7]

 A segment shall not contain percent-encoded unreserved characters. [M1.8]

 A segment shall not end with a dot (“.”) character. [M1.9]

 A segment shall include at least one non-dot character. [M1.10]

[Example:

Example 9–1. A part name

/a/%D1%86.xml

/xml/item1.xml

9. Package Model

 17

Example 9–2. An invalid part name

//xml/.

end example]

9.1.1.2 Part IRI and Part URI Mapping

A Part IRI can be converted to a Part URI by converting ucschar characters to percent-encoded triplets, as

defined in Step 2 in §3.1 of RFC 3987.

A Part URI can be converted to a Part IRI by converting percent-encoded triplets to ucschar characters, as

defined in §3.2 of RFC 3987.

9.1.1.3 Part Name Equivalence

Part names shall be mapped to either the Part IRI or Part URI form for comparison. Part names represented in

different forms cannot be compared.

[Note: Equivalence rules for the Part IRI and Part URI forms guarantee uniformity of the comparison result for

Part Names converted either to Part IRI or to Part URI form. end note]

Packages shall not contain equivalent part names, and package implementers shall neither create nor recognize

packages with equivalent part names. [M1.12]

9.1.1.3.1 Part IRI Equivalence

Part IRI equivalence is determined by comparing part IRIs character-by-character:

 pct-encoded and ALPHA characters as case-insensitive ASCII

 ucschar characters as case-sensitive Unicode

9.1.1.3.2 Part Name Equivalence

Part URI equivalence is determined by comparing part URIs as case-insensitive ASCII strings.

9.1.1.4 Part Naming

A package implementer shall neither create nor recognize a part with a part name derived from another part

name by appending segments to it. [M1.11] [Example: If a package contains a part named

“/segment1/segment2/…/segmentn”, then other parts in that package shall not have names such as:

“/segment1”, “segment1/segment2”, or “/segment1/segment2/…/segmentn-1”. end example]

9.1.2 Content Types

Every part has a content type, which identifies the type of content that is stored in the part. Content types

define a media type, a subtype, and an optional set of parameters. Package implementers shall only create and

only recognize parts with a content type; format designers shall specify a content type for each part included in

the format. Content types for package parts shall fit the definition and syntax for media types as specified in RFC

2616, §3.7. [M1.13] This definition is as follows:

ECMA-376 Part 2

18

media-type = type "/" subtype *(";" parameter)

where parameter is expressed as

attribute "=" value

The type, subtype, and parameter attribute names are case-insensitive. Parameter values might be case-

sensitive, depending on the semantics of the parameter attribute name.

The value of the content type is permitted to be the empty string.

Content types shall not use linear white space either between the type and subtype or between an attribute and

its value. Content types also shall not have leading or trailing white space. Package implementers shall create

only such content types and shall require such content types when retrieving a part from a package; format

designers shall specify only such content types for inclusion in the format. [M1.14]

The package implementer shall require a content type that does not include comments, and the format designer

shall specify such a content type. [M1.15]

Format designers might restrict the usage of parameters for content types. [O1.2]

Content types for package-specific parts are defined in Annex F.

9.1.3 Growth Hint

Sometimes a part is modified after it is placed in a package. Depending on the nature of the modification, the

part might need to grow. For some physical package formats, this could be an expensive operation and could

damage an otherwise efficiently interleaved package. Ideally, the part should be allowed to grow in-place,

moving as few bytes as possible.

To support these scenarios, a package implementer can associate a growth hint with a part. [O1.1] The growth

hint identifies the number of bytes by which the producer predicts that the part might grow. In a mapping to a

particular physical format, this information might be used to reserve space to allow the part to grow in-place.

This number serves as a hint only. The package implementer might ignore the growth hint or adhere only loosely

to it when specifying the physical mapping. [O1.3] If the package implementer specifies a growth hint, it is set

when a part is created, and the package implementer shall not change the growth hint after the part has been

created. [M1.16]

9.1.4 XML Usage

All XML content defined in this Open Packaging specification shall conform to the following validation rules:

1. XML content shall be encoded using either UTF-8 or UTF-16. If any part includes an encoding

declaration, as defined in §4.3.3 of the XML 1.0 specification, that declaration shall not name any

encoding other than UTF-8 or UTF-16. Package implementers shall enforce this requirement upon

creation and retrieval of the XML content. [M1.17]

9. Package Model

 19

2. The XML 1.0 specification allows for the usage of Document Type Definitions (DTDs), which enable

Denial of Service attacks, typically through the use of an internal entity expansion technique. As

mitigation for this potential threat, DTD declarations shall not be used in the XML markup defined in this

Open Packaging specification. Package implementers shall enforce this requirement upon creation and

retrieval of the XML content and shall treat the presence of DTD declarations as an error. [M1.18]

3. If the XML content contains the Markup Compatibility namespace, as described in Part 3, it shall be

processed by the package implementer to remove Markup Compatibility elements and attributes,

ignorable namespace declarations, and ignored elements and attributes before applying subsequent

validation rules. [M1.19]

4. XML content shall be valid against the corresponding XSD schema defined in this Open Packaging

specification. In particular, the XML content shall not contain elements or attributes drawn from

namespaces that are not explicitly defined in the corresponding XSD unless the XSD allows elements or

attributes drawn from any namespace to be present in particular locations in the XML markup. Package

implementers shall enforce this requirement upon creation and retrieval of the XML content. [M1.20]

5. XML content shall not contain elements or attributes drawn from “xml” or “xsi” namespaces unless they

are explicitly defined in the XSD schema or by other means described in this Open Packaging

specification. Package implementers shall enforce this requirement upon creation and retrieval of the

XML content. [M1.21]

9.2 Part Addressing

Parts often contain references to other parts. [Example: A package might contain two parts: an XML markup file

and an image. The markup file holds a reference to the image so that when the markup file is processed, the

associated image can be identified and located. end example.]

9.2.1 Relative References

A relative reference is expressed so that the address of the referenced part is determined relative to the part

containing the reference.

Relative references from a part are interpreted relative to the base URI of that part. By default, the base URI of a

part is derived from the name of the part, as defined in §B.3.

If the format designer permits it, parts can contain Unicode strings representing references to other parts. If

allowed by the format designer, format producers can create such parts, and format consumers shall consume

them. [O1.4] In particular, XML markup might contain Unicode strings referencing other parts as values of the

xsd:anyURI data type. Format consumers shall convert these Unicode strings to URIs, as defined in Annex A

before resolving them relative to the base URI of the part containing the Unicode string. [M1.23]

Some types of content provide a way to override the default base URI by specifying a different base in the

content. [Example: XML Base or HTML end example]. In the presence of one of these overrides, format

consumers shall use the specified base URI instead of the default. [M1.24]

[Example:

ECMA-376 Part 2

20

Example 9–3. Part names and relative references

A package includes parts with the following names:

 /markup/page.xml

 /images/picture.jpg

 /images/other_picture.jpg

If /markup/page.xml contains a reference to ../images/picture.jpg, then this reference is interpreted as referring

to the part name /images/picture.jpg.

end example]

9.3 Relationships

Parts may contain references to other parts in the package and to resources outside of the package. These

references are represented inside the referring part in ways that are specific to the content type of the part; that

is, in arbitrary markup or an application-defined encoding. This effectively hides the internal and external links

between parts from consumers that do not understand the content types of the parts containing such

references.

The package introduces a higher-level mechanism to describe references from parts to other internal or external

resources, namely, relationships. Relationships represent the type of connection between a source part and a

target resource. They make the connection directly discoverable without looking at the part contents, so they

are independent of content-specific schemas and are quick to resolve.

Relationships provide a second important function: providing additional information about parts without

modifying their content. [Note: Some scenarios require information to be attached to an existing part without

modifying that part, for example, because the part is encrypted and cannot be decrypted, or because it is

digitally signed and changing it would invalidate the signature. end note]

9.3.1 Relationships Part

Each set of relationships sharing a common source is represented by XML stored in a Relationships part. The

Relationships part is URI-addressable and it can be opened, read, and deleted. The Relationships part shall not

have relationships to any other part. Package implementers shall enforce this requirement upon the attempt to

create such a relationship and shall treat any such relationship as invalid. [M1.25]

The content type of the Relationships part is defined in Annex F.

9.3.2 Relationship Markup

Relationships are represented using Relationship elements nested in a single Relationships element. These

elements are defined in the Relationships namespace, as specified in Annex F. The W3C XML Schema for

relationships is described in Annex D.

9. Package Model

 21

After the removal of any extensions using the mechanisms in ECMA-376-3, a Relationships Part shall be a

schema-valid XML document against opc-relationships.xsd.

The package implementer shall require that every Relationship element has an Id attribute, the value of which

is unique within the Relationships part, and that the Id datatype is xsd:ID, the value of which conforms to the

naming restrictions for xsd:ID as described in the W3C Recommendation “XML Schema Part 2: Datatypes.”

[M1.26]

The nature of a Relationship element is identified by the Type attribute. The value of this attribute shall be a

relationship type. By using types patterned after the Internet domain-name space, non-coordinating parties can

safely create non-conflicting relationship types.

Relationship types can be compared to determine whether two Relationship elements are of the same type.

This comparison is conducted in the same way as when comparing URIs that identify XML namespaces: the two

URIs are treated as strings and considered identical if and only if the strings have the same sequence of

characters. The comparison is case-sensitive and no escaping is done or undone.

The Target attribute of the Relationship element holds a URI that points to a target resource. Where the URI is

expressed as a relative reference, it is resolved against the base URI of the Relationships source part. The

xml:base attribute shall not be used to specify a base URI for relationship XML content.

9.3.2.1 Relationships Element

The structure of a Relationships element is shown in the following diagram:

diagram

annotation The root element of the Relationships part.

9.3.2.2 Relationship Element

The structure of a Relationship element is shown in the following diagram:

ECMA-376 Part 2

22

diagram

attributes Name Type Use Default Fixed Annotation

TargetMode ST_TargetMode optional The package implementer might allow

a TargetMode to be provided by a

producer. [O1.5]

The TargetMode indicates whether

or not the target describes a resource

inside the package or outside the

package. The valid values, in the

Relationships schema, are Internal

and External.

The default value is Internal. When

set to Internal, the Target attribute

shall be a relative reference and that

reference is interpreted relative to

the “parent” part. For package

relationships, the package

implementer shall resolve relative

references in the Target attribute

against the pack URI that identifies

the entire package resource. [M1.29]

For more information, see Annex B.

When set to External, the Target

attribute can be a relative reference

or a URI. If the Target attribute is a

relative reference, then that

reference is interpreted relative to

the location of the package.

9. Package Model

 23

Target xsd:anyURI required The package implementer shall

require the Target attribute to be a

URI reference pointing to a target

resource. The URI reference shall be a

URI or a relative reference. [M1.28]

[Note: The target is a reference to a

part, not a Part name, and thus is not

restricted to the syntax requirements

for Part names. end note]

Target attribute values are

dependent on the TargetMode

attribute value.

Type xsd:anyURI required The package implementer shall

require the Type attribute to be a URI

that defines the role of the

relationship and the format designer

shall specify such a Type. [M1.27]

Id xsd:ID required The package implementer shall

require a valid XML identifier. [M1.26]

The Id type is xsd:ID and it shall

conform to the naming restrictions

for xsd:ID as specified in the W3C

Recommendation “XML Schema Part

2: Datatypes.” The value of the Id

attribute shall be unique within the

Relationships part.

annotation Represents a single relationship.

A format designer might allow fragment identifiers in the value of the Target attribute of the Relationship

element. [O1.6] If a fragment identifier is allowed in the Target attribute of the Relationship element, a

package implementer shall not resolve the URI to a scope less than an entire part. [M1.32]

ECMA-376 Part 2

24

9.3.3 Representing Relationships

Relationships are represented in XML in a Relationships part. Each part in the package that is the source of one

or more relationships can have an associated Relationships part. This part holds the list of relationships for the

source part. For more information on the Relationships namespace and relationship types, see Annex F.

A special naming convention is used for the Relationships part. First, the Relationships part for a part in a given

folder in the name hierarchy is stored in a sub-folder called “_rels”. Second, the name of the Relationships part

is formed by appending “.rels” to the name of the original part. Package relationships are found in the package

relationships part named “/_rels/.rels”.

The package implementer shall name relationship parts according to the special relationships part naming

convention and require that parts with names that conform to this naming convention have the content type for

a Relationships part. [M1.30]

[Example:

Example 9–4. Sample relationships and associated markup

The figure below shows a Digital Signature Origin part and a Digital Signature XML Signature part. The Digital

Signature Origin part is targeted by a package relationship. The connection from the Digital Signature Origin to

the Digital Signature XML Signature part is represented by a relationship.

The relationship targeting the Digital Signature Origin part is stored in /_rels/.rels and the relationship for the

Digital Signature XML Signature part is stored in /_rels/origin.rels.

The Relationships part associated with the Digital Signature Origin contains a relationship that connects the

Digital Signature Origin part to the Digital Signature XML Signature part. This relationship is expressed as follows:

9. Package Model

 25

<Relationships

 xmlns="http://schemas.openxmlformats.org/package/2006/relationships">

 <Relationship

 Target="./Signature.xml"

 Id="A5FFC797514BC"

 Type="http://schemas.openxmlformats.org/package/2006/relationships/

 digital-signature/signature"/>

</Relationships>

end example]

[Example:

Example 9–5. Targeting resources

Relationships can target resources outside of the package at an absolute location and resources located relative

to the current location of the package. The following Relationships part specifies relationships that connect a

part to pic1.jpg at an external absolute location, and to my_house.jpg at an external location relative to the

location of the package:

<Relationships

 xmlns="http://schemas.openxmlformats.org/package/2006/relationships"

 <Relationship

 TargetMode="External"

 Id="A9EFC627517BC"

 Target="http://www.custom.com/images/pic1.jpg"

 Type="http://www.custom.com/external-resource"/>

 <Relationship

 TargetMode="External"

 Id="A5EFC797514BC"

 Target="./images/my_house.jpg"

 Type="http://www.custom.com/external-resource"/>

</Relationships>

end example]

[Example:

Example 9–6. Re-using attribute values

The following Relationships part contains two relationships, each using unique Id values. The relationships share

the same Target, but have different relationship types.

<Relationships

 xmlns="http://schemas.openxmlformats.org/package/2006/relationships">

 <Relationship

ECMA-376 Part 2

26

 Target="./Signature.xml"

 Id="A5FFC797514BC"

 Type="http://schemas.openxmlformats.org/package/2006/

 relationships/digital-signature/signature"/>

 <Relationship

 Target="./Signature.xml"

 Id="B5F32797CC4B7"

 Type="http://www.custom.com/internal-resource"/>

</Relationships>

end example]

9.3.4 Support for Versioning and Extensibility

Producers might generate relationship markup that uses the versioning and extensibility mechanisms defined in

Part 3 to incorporate elements and attributes drawn from other XML namespaces. [O1.7]

Consumers shall process relationship markup in a manner that conforms to Part 3. [M1.31]

10. Physical Package

 27

10. Physical Package

In contrast to the package model that describes the contents of a package in an abstract way, the physical

package refers to a package that is stored in a particular physical file format. This includes the physical model

and physical mapping considerations.

The physical model abstractly describes the capabilities of a particular physical format and how producers and

consumers can use a package implementer to interact with that physical package format. The physical model

includes the access style, or the manner in which package input-output is conducted, as well as the

communication style, which describes the method of interaction between producers and consumers across a

communications pipe. The physical model also includes the layout style, or how part contents are physically

stored within the package. The layout style can either be simple ordering, where the parts are arranged

contiguously as atomic blocks of data, or interleaved ordering, where the parts are broken into individual pieces

and the pieces are stored as interleaved blocks of data in an optimized fashion. The performance of a physical

package design is reliant upon the physical model capabilities.

[Note: See Annex G for additional discussion of the physical model. end note]

Physical mappings describe the manner in which the package contents are mapped to the features of that

specific physical format. Details of how package components are mapped are described, as well as common

mapping patterns and mechanisms for storing part content types. This Open Packaging specification describes

both the specific considerations for physical mapping to a ZIP archive as well as generic physical mapping

considerations applicable to any physical package format.

10.1 Physical Mapping Guidelines

Whereas the package model defines a package abstraction, an instance of a package is based on a physical

representation. A physical package format is a particular physical representation of the package contents in a

file.

Many physical package formats have features that partially match the packaging model components. In defining

mappings from the package model to a physical package format, it is advisable to take advantage of any

similarities in capabilities between the package model and the physical package medium while using layers of

mapping to provide additional capabilities not inherently present in the physical package medium. [Example:

Some physical package formats store parts as individual files in a file system, in which case it is advantageous to

map many part names directly to identical physical file names. end example]

Designers of physical package formats face some common mapping problems. [Example: Associating arbitrary

content types with parts and supporting part interleaving end example] Package implementers might use the

common mapping solutions defined in this Open Packaging specification. [O2.3]

ECMA-376 Part 2

28

10.1.1 Mapped Components

The package implementer shall define a physical package format with a mapping for the required components

package, part name, part content type and part contents. [M2.2] [Note: Not all physical package formats support

the part growth hint. end note]

Table 10–1. Mapped components

Name Description Required/Optional

Package URI-addressable resource that identifies package
as a whole unit

Required. The package implementer shall
provide a physical mapping for the
package. [M2.2]

Part name Names a part Required. The package implementer shall
provide a physical mapping for each
part’s name. [M2.2]

Part content
type

Identifies the kind of content stored in the part Required. The package implementer shall
provide a physical mapping for each
part’s content type. [M2.2]

Part contents Stores the actual content of the part Required. The package implementer shall
provide a physical mapping for each
part’s contents. [M2.2]

Part growth
hint

Number of additional bytes to reserve for possible
growth of part

Optional. The package implementer
might provide a physical mapping for a
growth hint that might be specified by a
producer. [O2.2]

10.1.2 Mapping Content Types

Methods for mapping part content types to a physical format are described below.

10.1.2.1 Identifying the Part Content Type

The package implementer shall define a format mapping with a mechanism for associating content types with

parts. [M2.3]

Some physical package formats have a native mechanism for representing content types. [Example: the content

type header in MIME. end example] For such packages, the package implementer should use the native

mechanism to map the content type for a part. [S2.1]

For all other physical package formats, the package implementer should include a specially-named XML stream

in the package called the Content Types stream. [S2.2] The Content Types stream shall not be mapped to a part

by the package implementer. [M2.1] This stream is therefore not URI-addressable. However, it can be

interleaved in the physical package using the same mechanisms used for interleaving parts.

10. Physical Package

 29

10.1.2.2 Content Types Stream Markup

The Content Types stream identifies the content type for each package part. The Content Types stream contains

XML with a top-level Types element, and one or more Default and Override child elements. Default elements

define default mappings from the extensions of part names to content types. Override elements are used to

specify content types on parts that are not covered by, or are not consistent with, the default mappings.

Package producers can use pre-defined Default elements to reduce the number of Override elements on a part,

but are not required to do so. [O2.4]

For all parts of the package other than relationships parts (§9.3.1) and the Content Types part itself, the Content

Types stream shall specify either:

 One matching Default element, or

 One matching Override element, or

 Both a matching Default element and a matching Override element, in which case the Override

element takes precedence. [M2.4]

The package implementer shall require that there not be more than one Default element for any given

extension, and there not be more than one Override element for any given part name. [M2.5]

The order of Default and Override elements in the Content Types stream is not significant.

If the package is intended for streaming consumption:

 The package implementer should not allow Default elements; as a consequence, there should be one

Override element for each part in the package.

 The format producer should write the Override elements to the package so they appear before the

parts to which they correspond, or in close proximity to the part to which they correspond.

[S2.3]

The package implementer can define Default content type mappings even though no parts use them. [O2.5]

10.1.2.2.1 Types Element

The structure of a Types element is shown in the following diagram:

diagram

annotation The root element of the Content Types stream.

ECMA-376 Part 2

30

10.1.2.2.2 Default Element

The structure of a Default element is shown in the following diagram:

diagram

attributes Name Type Use Default Fixed Annotation

Extension ST_Extension required A part name extension. A Default

element matches any part whose

name ends with a period followed by

the value of this attribute. The

package implementer shall require a

non-empty extension in a Default

element. [M2.6]

ContentType ST_ContentType required A content type as defined in RFC 2616.

Indicates the content type of any

matching parts (unless overridden).

The package implementer shall

require a content type in a Default

element and the format designer shall

specify the content type. [M2.6]

annotation Defines default mappings from the extensions of part names to content types.

10.1.2.2.3 Override Element

The structure of an Override element is shown in the following diagram:

diagram

10. Physical Package

 31

attributes Name Type Use Default Fixed Annotation

ContentType ST_ContentType required A content type as defined in RFC 2616.

Indicates the content type of the

matching part. The package

implementer shall require a content

type and the format designer shall

specify the content type in an

Override element. [M2.7]

PartName xs:anyURI required A part name (§9.1.1). An Override

element matches the part whose

name is equal to the value of this

attribute. The package implementer

shall require a part name. [M2.7]

annotation Specifies content types on parts that are not covered by, or are not consistent with,

the default mappings.

10.1.2.2.4 Content Types Stream Markup Example

[Example:

Example 10–7. Content Types stream markup

<Types

 xmlns="http://schemas.openxmlformats.org/package/2006/content-types">

 <Default Extension="txt" ContentType="text/plain" />

 <Default Extension="jpeg" ContentType="image/jpeg" />

 <Default Extension="picture" ContentType="image/gif" />

 <Override PartName="/a/b/sample4.picture" ContentType="image/jpeg" />

</Types>

The Types element is not a container for generic types, but specifically for content types to be used within the

package.

The following is a sample list of parts and their corresponding content types as defined by the Content Types

stream markup above.

Part name Content type

/a/b/sample1.txt text/plain

/a/b/sample2.jpg image/jpeg

ECMA-376 Part 2

32

Part name Content type

/a/b/sample3.picture image/gif

/a/b/sample4.picture image/jpeg

end example]

10.1.2.3 Setting the Content Type of a Part

When adding a new part to a package, the package implementer shall ensure that a content type for that part is

specified in the Content Types stream; the package implementer shall perform the following steps to do so

[M2.8]:

1. Get the extension from the part name by taking the substring to the right of the rightmost occurrence of

the dot character (.) from the rightmost segment.

2. If a part name has no extension, a corresponding Override element shall be added to the Content Types

stream.

3. Compare the resulting extension with the values specified for the Extension attributes of the Default

elements in the Content Types stream. The comparison shall be case-insensitive ASCII.

4. If there is a Default element with a matching Extension attribute, then the content type of the new part

shall be compared with the value of the ContentType attribute. The comparison might be case-sensitive

and include every character regardless of the role it plays in the content-type grammar of RFC 2616, or it

might follow the grammar of RFC 2616.

a. If the content types match, no further action is required.

b. If the content types do not match, a new Override element shall be added to the Content Types

stream.

5. If there is no Default element with a matching Extension attribute, a new Default element or Override

element shall be added to the Content Types stream.

10.1.2.4 Getting the Content Type of a Part

To get the content type of a part, the package implementer shall perform the following steps [M2.9]:

1. Compare the part name with the values specified for the PartName attribute of the Override elements.

The comparison shall be case-insensitive ASCII.

2. If there is an Override element with a matching PartName attribute, return the value of its

ContentType attribute. No further action is required.

3. If there is no Override element with a matching PartName attribute, then

a. Get the extension from the part name by taking the substring to the right of the rightmost

occurrence of the dot character (.) from the rightmost segment.

b. Check the Default elements of the Content Types stream, comparing the extension with the

value of the Extension attribute. The comparison shall be case-insensitive ASCII.

10. Physical Package

 33

4. If there is a Default element with a matching Extension attribute, return the value of its ContentType

attribute. No further action is required.

5. If neither Override nor Default elements with matching attributes are found for the specified part

name, the implementation shall not map this part name to a part.

10.1.2.5 Support for Versioning and Extensibility

The package implementer shall not use the versioning and extensibility mechanisms defined in Part 3 to

incorporate elements and attributes drawn from other XML-namespaces into the Content Types stream markup.

[M2.10]

10.1.3 Mapping Part Names to Physical Package Item Names

The mapping of part names to the names of items in the physical package uses an intermediate logical item

name abstraction. This logical item name abstraction allows package implementers to manipulate physical data

items consistently regardless of whether those data items can be mapped to parts or not or whether the

package is laid out with simple ordering or interleaved ordering. See §10.1.4 for interleaving details.

[Example:

Figure 10–1 illustrates the relationship between part names, logical item names, and physical package item

names.

Figure 10–1. Part names and logical item names

end example]

10.1.3.1 Logical Item Names

Logical item names have the following syntax:

LogicalItemName = PrefixName [SuffixName]

ECMA-376 Part 2

34

PrefixName = *AChar

AChar = %x20-7E

SuffixName = "/" "[" PieceNumber "]" [".last"] ".piece"

PieceNumber = "0" | NonZeroDigit [1*Digit]

Digit = "0" | NonZeroDigit

NonZeroDigit = "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

[Note: Piece numbers identify the individual pieces of an interleaved part. end note]

The package implementer shall compare prefix names as case-insensitive ASCII strings. [M2.12]

The package implementer shall compare suffix names as case-insensitive ASCII strings. [M2.13]

Logical item names are considered equivalent if their prefix names and suffix names are equivalent. The package

implementer shall not allow packages that contain equivalent logical item names. [M2.14] The package

implementer shall not allow packages that contain logical items with equivalent prefix names and with equal

piece numbers, where piece numbers are treated as integer decimal values. [M2.15]

Logical item names that use suffix names form a complete sequence if and only if:

1. The prefix names of all logical item names in the sequence are equivalent, and

2. The suffix names of the sequence start with “/[0].piece” and end with “/[n].last.piece” and include a

piece for every piece number between 0 and n, without gaps, when the piece numbers are interpreted

as decimal integer values.

10.1.3.2 Mapping Part Names to Logical Item Names

Non-interleaved part names are mapped to logical item names that have an equivalent prefix name and no

suffix name.

Interleaved part names are mapped to the complete sequence of logical item names with an equivalent prefix

name.

[Note: Prefix names mapped to part names correspond to the part names grammar (§9.1.1). In particular, prefix

names can hold percent-encoded characters. For example, a logical name of “%C3%B1.ext” results in a ZIP item

name of “%C3%B1.ext”, not “ñ.ext” (interpreted as a 2-byte UTF-8 sequence). end note]

10.1.3.3 Mapping Logical Item Names and Physical Package Item Names

The mapping of logical item names and physical package item names is specific to the particular physical

package.

10.1.3.4 Mapping Logical Item Names to Part Names

A logical item name without a suffix name is mapped to a part name with an equivalent prefix name provided

that the prefix name conforms to the part name syntax.

10. Physical Package

 35

A complete sequence of logical item names is mapped to the part name that is equal to the prefix name of the

logical item name having the suffix name “/[0].piece”, provided that the prefix name conforms to the part name

syntax.

The package implementer might allow a package that contains logical item names and complete sequences of

logical item names that cannot be mapped to a part name because the logical item name does not follow the

part naming grammar or the logical item does not have an associated content type. [O2.7] The package

implementer shall not map logical items to parts if the logical item names violate the part naming rules. [M2.16]

The package implementer shall consider naming collisions within the set of part names mapped from logical

item names to be an error. [M2.17]

10.1.4 Interleaving

Not all physical packages natively support interleaving of the data streams of parts. The package implementer

should use the mechanism described in this Open Packaging specification to allow interleaving when mapping to

the physical package for layout scenarios that support streaming consumption. [S2.4]

The interleaving mechanism breaks the data stream of a part into pieces, which can be interleaved with pieces

of other parts or with whole parts. Pieces are named using a unique mapping from the part name, defined in

§10.1.3. This enables a consumer to join the pieces together in their original order, forming the data stream of

the part.

The individual pieces of an interleaved part exist only in the physical package and are not addressable in the

packaging model. A piece might be empty.

An individual part shall be stored either in an interleaved or non-interleaved fashion. The package implementer

shall not mix interleaving and non-interleaving for an individual part. [M2.11] The format designer specifies

whether that format might use interleaving. [O2.1]

The grammar for deriving piece names from a given part name is defined by the logical item name grammar as

defined in §10.1.3.1. A suffix name is mandatory.

The package implementer should store pieces in their natural order for optimal efficiency. [S2.5] The package

implementer might create a physical package containing interleaved parts and non-interleaved parts. [O2.6]

[Example:

Example 10–8. ZIP archive contents

A ZIP archive might contain the following item names mapped to part pieces and whole parts:

spine.xml/[0].piece

pages/page0.xml

spine.xml/[1].piece

pages/page1.xml

spine.xml/[2].last.piece

ECMA-376 Part 2

36

pages/page2.xml

end example]

Under certain scenarios, interleaved ordering can provide important performance benefits, as demonstrated in

the following example.

[Example:

Example 10–9. Performance benefits with interleaved ordering

The figure below contains two parts: a page part (markup/page.xml) describing the contents of a page, and an

image part (images/picture.jpg) referring to an image that appears on the page.

With simple ordering, all of the bytes of the page part are delivered before the bytes of the image part. The

figure below illustrates this scenario. The consumer is unable to display the image until it has received all of the

page part and the image part. In some circumstances, such as small packages on a high-speed network, this

might be acceptable. In others, having to read through all of markup/page.xml to get to the image results in

unacceptable performance or places unreasonable memory demands on the consumer’s system.

With interleaved ordering, performance is improved by splitting the page part into pieces and inserting the

image part immediately following the reference to the image. This allows the consumer to begin processing the

image as soon as it encounters the reference.

end example]

10. Physical Package

 37

10.2 Mapping to a ZIP Archive

This Open Packaging specification defines a mapping for the ZIP archive format. Future versions of this Open

Packaging specification might provide additional mappings.

A ZIP archive is a ZIP file as defined in the ZIP file format specification excluding all elements of that specification

related to encryption, decryption, or digital signatures. A ZIP archive contains ZIP items. [Note: ZIP items become

files when the archive is unzipped. When users unzip a ZIP-based package, they see a set of files and folders that

reflects the parts in the package and their hierarchical naming structure. end note]

Table 10–2, Package model components and their physical representations, shows the various components of

the package model and their corresponding physical representation in a ZIP archive.

Table 10–2. Package model components and their physical representations

Package model
component

Physical representation

Package ZIP archive file

Part ZIP item

Part name Stored in item header (and ZIP central directory as appropriate).
See §10.2.3 for conversion rules.

Part content type ZIP item containing XML that identifies the content types for each part
according to the pattern described in §10.1.2.1.

Growth hint Padding reserved in the ZIP Extra field in the local header that precedes
the item. See §10.2.7 for a detailed description of the data structure.

10.2.1 Mapping Part Data

In a ZIP archive, the data associated with a part is represented as one or more items.

A package implementer shall store a non-interleaved part as a single ZIP item. [M3.1] When interleaved, a

package implementer shall represent a part as one or more pieces, using the method described in §10.1.4.

[M2.18] Pieces are named using the specified pattern, making it possible to rebuild the entire part from its

constituent pieces. Each piece is stored within a ZIP archive as a single ZIP item.

In the ZIP archive, the chunk of bits that represents an item is stored contiguously. A package implementer

might intentionally order the sequence of ZIP items in the archive to enable an efficient organization of the part

data in order to achieve correct and optimal interleaving. [O3.1]

10.2.2 ZIP Item Names

ZIP item names are case-sensitive ASCII strings. Package implementers shall create ZIP item names that conform

to ZIP archive file name grammar. [M3.2] Package implementers shall create item names that are unique within

a given archive. [M3.3]

ECMA-376 Part 2

38

10.2.3 Mapping Part Names to ZIP Item Names

To map part names to ZIP item names the package implementer shall perform, in order, the following steps

[M3.4]:

1. Convert the part name to a logical item name or, in the case of interleaved parts, to a complete

sequence of logical item names.

2. Remove the leading forward slash (/) from the logical item name or, in the case of interleaved parts,

from each of the logical item names within the complete sequence.

The package implementer shall not map a logical item name or complete sequence of logical item names sharing

a common prefix to a part name if the logical item prefix has no corresponding content type. [M3.5]

10.2.4 Mapping ZIP Item Names to Part Names

To map ZIP item names to part names, the package implementer shall perform, in order, the following steps

[M3.6]:

1. Map the ZIP item names to logical item names by adding a forward slash (/) to each of the ZIP item

names.

2. Map the obtained logical item names to part names. For more information, see §10.1.3.4.

10.2.5 ZIP Package Limitations

The package implementer shall map all ZIP items to parts except MS-DOS ZIP items, as defined in the ZIP

specification, that are not MS-DOS files. [M3.7]

[Note: The ZIP specification specifies that ZIP items recognized as MS-DOS files are those with a “version made

by” field and an “external file attributes” field in the “file header” record in the central directory that have a

value of 0. end note]

In ZIP archives, the package implementer shall not exceed 65,535 bytes for the combined length of the item

name, Extra field, and Comment fields. [M3.8] Accordingly, part names stored in ZIP archives are limited to

65,535 characters, subtracting the size of the Extra and Comment fields.

Package implementers should restrict part naming to accommodate file system limitations when naming parts

to be stored as ZIP items. [S3.1]

[Example:

Examples of these limitations are:

 On Windows file systems, the asterisk (“*”) and colon (“:”) are not supported, so parts named with this

character do not unzip successfully.

 On Windows file systems, many programs can handle only file names that are less than 256 characters

including the full path; parts with longer names might not behave properly once unzipped.

end example]

10. Physical Package

 39

ZIP-based packages shall not include encryption as described in the ZIP specification. Package implementers

shall enforce this restriction. [M3.9]

The compression algorithm supported is DEFLATE, as described in the .ZIP specification. The package

implementer shall not use any compression algorithm other than DEFLATE.

10.2.6 Mapping Part Content Type

Part content types are used for associating content types with part data within a package. In ZIP archives,

content type information is stored using the common mapping pattern that stores this information in a single

XML stream as follows:

 Package implementers shall store content type data in an item(s) mapped to the logical item name with

the prefix_name equal to “/[Content_Types].xml” or in the interleaved case to the complete sequence

of logical item names with that prefix_name. [M3.10]

Package implementers shall not map logical item name(s) mapped to the Content Types stream in a ZIP archive

to a part name. [M3.11] [Note: Bracket characters "[" and "]" were chosen for the Content Types stream name

specifically because these characters violate the part naming grammar, thus reinforcing this requirement. end

note]

10.2.7 Mapping the Growth Hint

In a ZIP archive, the growth hint is used to reserve additional bytes that can be used to allow an item to grow in-

place. The padding is stored in the Extra field, as defined in the ZIP file format specification. If a growth hint is

used for an interleaved part, the package implementer should store the Extra field containing the growth hint

padding with the item that represents the first piece of the part. [S3.2]

The format of the ZIP item's Extra field, when used for growth hints, is shown in Table 10–3, Structure of the

Extra field for growth hints below.

Table 10–3. Structure of the Extra field for growth hints

Field Size Value

Header ID 2 bytes A220

Length of Extra field 2 bytes The signature length (2 bytes) + the padding initial
value length (2 bytes) + Length of the padding
(variable)

Signature (for
verification)

2 bytes A028

Padding Initial Value 2 bytes Hex number value is set by the producer when the
item is created

<padding> [Padding
Length]

Should be filled with NULL characters

ECMA-376 Part 2

40

10.2.8 Late Detection of ZIP Items Unfit for Streaming Consumption

Several substantial conditions that represent a package unfit for streaming consumption might be detected mid-

processing by a streaming package implementer. These include:

 A duplicate ZIP item name is detected the moment the second ZIP item with that name is encountered.

Duplicate ZIP item names are not allowed. [M3.3]

 In interleaved packages, an incomplete sequence of ZIP items is detected when the last ZIP item is

received. Because one of the interleaved pieces is missing, the entire sequence of ZIP items cannot be

mapped to a part and is therefore invalid. [M2.16]

 An inconsistency between the local ZIP item headers and the ZIP central directory file headers is

detected at the end of package consumption, when the central directory is processed.

 A ZIP item that is not a file, according to the file attributes in the ZIP central directory, is detected at the

end of package consumption, when the central directory is processed. Only a ZIP item that is a file shall

be mapped to a part in a package.

When any of these conditions are detected, the streaming package implementer shall generate an error,

regardless of any processing that has already taken place. Package implementers shall not generate a package

containing any of these conditions when generating a package intended for streaming consumption. [M3.13]

10.2.9 ZIP Format Clarifications for Packages

The ZIP format includes a number of features that packages do not support. Some ZIP features are clarified in

the package context. See Annex C for package-specific ZIP information.

11. Core Properties

 41

11. Core Properties

Core properties enable users to get and set well-known and common sets of property metadata within

packages. The core properties and the Standard that describes them are shown in Table 11–1, “Core

properties”. The namespace for the properties in this table in the Open Packaging Conventions domain are

defined in Annex F.

Core property elements are non-repeatable. They can be empty or omitted. The Core Properties Part can be

omitted if no core properties are present.

Table 11–1. Core properties

Property Domain Description

category Open
Packaging
Conventions

A categorization of the content of this package.

[Example: Example values for this property might include:
Resume, Letter, Financial Forecast, Proposal, Technical
Presentation, and so on. This value might be used by an
application's user interface to facilitate navigation of a large
set of documents. end example]

contentStatus Open
Packaging
Conventions

The status of the content. [Example: Values might include
“Draft”, “Reviewed”, and “Final”. end example]

created Dublin Core Date of creation of the resource.

creator Dublin Core An entity primarily responsible for making the content of
the resource.

description Dublin Core An explanation of the content of the resource. [Example:
Values might include an abstract, table of contents,
reference to a graphical representation of content, and a
free-text account of the content. end example]

identifier Dublin Core An unambiguous reference to the resource within a given
context.

ECMA-376 Part 2

42

Property Domain Description

keywords Open
Packaging
Conventions

A delimited set of keywords to support searching and
indexing. This is typically a list of terms that are not
available elsewhere in the properties.

The definition of this element uniquely allows for:

 Use of the xml:lang attribute to identify languages

 A mixed content model, such that keywords can be
flagged individually

[Example: The following instance of the keywords element
has keywords in English (Canada), English (U.S.), and French
(France):

<keywords xml:lang="en-US">
 color
 <value xml:lang="en-CA">colour</value>
 <value xml:lang="fr-FR">couleur</value>
</keywords>

end example]

language Dublin Core The language of the intellectual content of the resource.
[Note: IETF RFC 3066 provides guidance on encoding to
represent languages. end note]

lastModifiedBy Open
Packaging
Conventions

The user who performed the last modification. The
identification is environment-specific. [Example: A name,
email address, or employee ID. end example] It is
recommended that this value be as concise as possible.

lastPrinted Open
Packaging
Conventions

The date and time of the last printing.

modified Dublin Core Date on which the resource was changed.

revision Open
Packaging
Conventions

The revision number. [Example: This value might indicate
the number of saves or revisions, provided the application
updates it after each revision. end example]

subject Dublin Core The topic of the content of the resource.

title Dublin Core The name given to the resource.

version Open
Packaging
Conventions

The version number. This value is set by the user or by the
application.

11.1 Core Properties Part

Core properties are stored in XML in the Core Properties part. The Core Properties part content type is defined

in Annex F.

11. Core Properties

 43

The structure of the CoreProperties element is shown in the following diagram:

diagram

annotation Producers might provide all or a subset of these metadata properties to describe the contents of a

package.

[Example:

Example 11–1. Core properties markup

An example of a core properties part is illustrated by this example:

<coreProperties

 xmlns="http://schemas.openxmlformats.org/package/2006/metadata/

 core-properties"

 xmlns:dcterms="http://purl.org/dc/terms/"

 xmlns:dc="http://purl.org/dc/elements/1.1/"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <dc:creator>Alan Shen</dc:creator>

 <dcterms:created xsi:type="dcterms:W3CDTF">

 2005-06-12

 </dcterms:created>

ECMA-376 Part 2

44

 <dc:title>OPC Core Properties</dc:title>

 <dc:subject>Spec defines the schema for OPC Core Properties and their

 location within the package</dc:subject>

 <dc:language>eng</dc:language>

 <version>1.0</version>

 <lastModifiedBy>Alan Shen</lastModifiedBy>

 <dcterms:modified xsi:type="dcterms:W3CDTF">2005-11-23</dcterms:modified>

 <contentStatus>Reviewed</contentStatus>

 <category>Specification</category>

</coreProperties>

end example]

11.2 Location of Core Properties Part

The location of the Core Properties part within the package is determined by traversing a well-defined package

relationship as listed in Annex F. The format designer shall specify and the format producer shall create at most

one core properties relationship for a package. A format consumer shall consider more than one core properties

relationship for a package to be an error. If present, the relationship shall target the Core Properties part. [M4.1]

11.3 Support for Versioning and Extensibility

The format designer shall not specify and the format producer shall not create Core Properties that use the

Markup Compatibility namespace as defined in Annex F. A format consumer shall consider the use of the

Markup Compatibility namespace to be an error. [M4.2] Instead, versioning and extensibility functionality is

accomplished by creating a new part and using a relationship with a new type to point from the Core Properties

part to the new part. This Open Packaging specification does not provide any requirements or guidelines for new

parts or relationship types that are used to extend core properties.

11.4 Schema Restrictions for Core Properties

The following restrictions apply to every XML document instance that contains Open Packaging Conventions

core properties:

1. Producers shall not create a document element that contains refinements to the Dublin Core elements,

except for the two specified in the schema: <dcterms:created> and <dcterms:modified> Consumers shall

consider a document element that violates this constraint to be an error. [M4.3]

2. Producers shall not create a document element that contains the xml:lang attribute at any other

location than on the keywords or value elements. Consumers shall consider a document element that

violates this constraint to be an error. [M4.4] For Dublin Core elements, this restriction is enforced by

applications.

3. Producers shall not create a document element that contains the xsi:type attribute, except for a

<dcterms:created> or <dcterms:modified> element where the xsi:type attribute shall be present and

shall hold the value dcterms:W3CDTF, where dcterms is the namespace prefix of the Dublin Core

11. Core Properties

 45

namespace. Consumers shall consider a document element that violates this constraint to be an error.

[M4.5]

ECMA-376 Part 2

46

12. Thumbnails

The format designer might allow images, called thumbnails, to be used to help end-users identify parts of a

package or a package as a whole. These images can be generated by the producer and stored as parts. [O5.1]

12.1 Thumbnail Parts

The format designer shall specify thumbnail parts that are identified by either a part relationship or a package

relationship. The producer shall build the package accordingly. [M5.1] For information about the relationship

type for Thumbnail parts, see Annex F.

13. Digital Signatures

 47

13. Digital Signatures

Format designers might allow a package to include digital signatures to enable consumers to validate the

integrity of the contents. The producer might include the digital signature when allowed by the format designer.

[O6.1] Consumers can identify the parts of a package that have been signed and the process for validating the

signatures. Digital signatures do not protect data from being changed. However, consumers can detect whether

signed data has been altered and notify the end-user, restrict the display of altered content, or take other

actions.

Producers incorporate digital signatures using a specified configuration of parts and relationships. This clause

describes how the package digital signature framework applies the W3C Recommendation “XML-Signature

Syntax and Processing” (referred to here as the “XML Digital Signature specification”). In addition to complying

with the XML Digital Signature specification, producers and consumers also apply the modifications specified

in §13.2.4.1.

13.1 Choosing Content to Sign

Any part or relationship in a package can be signed, including Digital Signature XML Signature parts themselves.

An entire Relationships part or a subset of relationships can be signed. By signing a subset, other relationships

can be added, removed, or modified without invalidating the signature.

Because applications use the package format to store various types of content, application designers that

include digital signatures should define signature policies that are meaningful to their users. A signature policy

specifies which portions of a package should not change in order for the content to be considered intact. To

ensure validity, some clients require that all of the parts and relationships in a package be signed. Others require

that selected parts or relationships be signed and validated to indicate that the content has not changed. The

digital signature infrastructure in packages provides flexibility in defining the content to be signed, while

allowing parts of the package to remain changeable.

13.2 Digital Signature Parts

The digital signature parts consist of the Digital Signature Origin part, Digital Signature XML Signature parts, and

Digital Signature Certificate parts. Relationship names and content types relating to the use of digital signatures

in packages are defined in Annex F.

[Example:

Figure 13–1 shows a signed package with signature parts, signed parts, and an X.509 certificate. The example

Digital Signature Origin part references two Digital Signature XML Signature parts, each containing a signature.

The signatures relate to the signed parts.

Figure 13–1. A signed package

ECMA-376 Part 2

48

end example]

13.2.1 Digital Signature Origin Part

The Digital Signature Origin part is the starting point for navigating through the signatures in a package. The

package implementer shall include only one Digital Signature Origin part in a package and it shall be targeted

from the package root using the well-defined relationship type specified in Annex F. [M6.1] When creating the

first Digital Signature XML Signature part, the package implementer shall create the Digital Signature Origin part,

if it does not exist, in order to specify a relationship to that Digital Signature XML Signature part. [M6.2] If there

are no Digital Signature XML Signature parts in the package, the Digital Signature Origin part is optional. [O6.2]

Relationships to the Digital Signature XML Signature parts are defined in the Relationships part. The producer

should not create any content in the Digital Signature Origin part itself. [S6.1]

The producer shall create Digital Signature XML Signature parts that have a relationship from the Digital

Signature Origin part and the consumer shall use that relationship to locate signature information within the

package. [M6.3]

13.2.2 Digital Signature XML Signature Part

Digital Signature XML Signature parts are targeted from the Digital Signature Origin part by a relationship that

uses the well-defined relationship type specified in Annex F. The Digital Signature XML Signature part contains

digital signature markup. The producer might create zero or more Digital Signature XML Signature parts in a

package. [O6.4]

13. Digital Signatures

 49

13.2.3 Digital Signature Certificate Part

If present, the Digital Signature Certificate part contains an X.509 certificate for validating the signature.

Alternatively, the producer might store the certificate as a separate part in the package, might embed it within

the Digital Signature XML Signature part itself, or might not include it in the package if certificate data is known

or can be obtained from a local or remote certificate store. [O6.5]

The package digital signature infrastructure supports X.509 certificate technology for signer authentication.

If the certificate is represented as a separate part within the package, the producer shall target that certificate

from the appropriate Digital Signature XML Signature part by a Digital Signature Certificate relationship as

specified in Annex F and the consumer shall use that relationship to locate the certificate. [M6.4] The producer

might sign the part holding the certificate. [O6.6] The content types of the Digital Signature Certificate part and

the relationship targeting it from the Digital Signature XML Signature part are defined in Annex F, Producers

might share Digital Signature Certificate parts by using the same certificate to create more than one signature.

[O6.7] Producers generating digital signatures should not create Digital Signature Certificate parts that are not

the target of at least one Digital Signature Certificate relationship from a Digital Signature XML Signature part. In

addition, producers should remove a Digital Signature Certificate part if removing the last Digital Signature XML

Signature part that has a Digital Signature Certificate relationship to it. [S6.2]

13.2.4 Digital Signature Markup

The markup described here includes a subset of elements and attributes from the XML Digital Signature

specification and some package-specific markup. For a complete example of a digital signature, see §5.

13.2.4.1 Modifications to the XML Digital Signature Specification

The package modifications to the XML Digital Signature specification are summarized as follows:

1. The producer shall create Reference elements within a SignedInfo element that reference elements

within the same Signature element. The consumer shall consider Reference elements within a

SignedInfo element that reference any resources outside the same Signature element to be in error.

[M6.5] The producer should only create Reference elements within a SignedInfo element that reference

an Object element. [S6.5] The producer shall not create a reference to a package-specific Object

element that contains a transform other than a canonicalization transform. The consumer shall consider

a reference to a package-specific Object element that contains a transform other than a canonical

transform to be an error. [M6.6]

2. The producer shall create one and only one package-specific Object element in the Signature element.

The consumer shall consider zero or more than one package-specific Object element in the Signature

element to be an error. [M6.7]

3. The producer shall create package-specific Object elements that contain exactly one Manifest element

and exactly one SignatureProperties element. [Note: This SignatureProperties element can contain

multiple SignatureProperty elements. end note] The consumer shall consider package-specific Object

elements that contain other types of elements to be an error. [M6.8] [Note: A signature can contain

other Object elements that are not package-specific. end note]

ECMA-376 Part 2

50

a. The producer shall create Reference elements within a Manifest element that reference with

their URI attribute only parts within the package. The consumer shall consider Reference

elements within a Manifest element that reference resources outside the package to be an

error. [M6.9] The producer shall create relative references to the local parts that have query

components that specifies the part content type as described in §13.2.4.6. The relative

reference excluding the query component shall conform to the part name grammar. The

consumer shall consider a relative reference to a local part that has a query component that

incorrectly specifies the part content type to be an error. [M6.10] The producer shall create

Reference elements with a query component that specifies the content type that matches the

content type of the referenced part. The consumer shall consider signature validation to fail if

the part content type compared in a case-sensitive manner to the content type specified in the

query component of the part reference does not match. [M6.11]

b. The producer shall not create Reference elements within a Manifest element that contain

transforms other than the canonicalization transform and relationships transform. The

consumer shall consider Reference elements within a Manifest element that contain transforms

other than the canonicalization transform and relationships transform to be in error. [M6.12]

c. A producer that uses an optional relationships transform shall follow it by a canonicalization

transform. The consumer shall consider any relationships transform that is not followed by a

canonicalization transform to be an error. [M6.13]

d. The producer shall create exactly one SignatureProperty element with the Id attribute value

set to idSignatureTime. The Target attribute value of this element shall be either empty or

contain a fragment reference to the value of the Id attribute of the root Signature element. A

SignatureProperty element shall contain exactly one SignatureTime child element. The

consumer shall consider a SignatureProperty element that does not contain a SignatureTime

element or whose Target attribute value is not empty or does not contain a fragment reference

the Id attribute of the ancestor Signature element to be in error. [M6.14].

[Note: All modifications to XML Digital Signature markup occur in locations where the XML Signature schema

allows any namespace. Therefore, package digital signature XML is valid against the XML Signature schema. end

note]

13.2.4.2 Signature Element

The structure of a Signature element is defined in §4.1 of XML-Signature Syntax and Processing.

The producer shall create a Signature element that contains exactly one local-data, package-specific Object

element and zero or more application-defined Object elements. If a Signature element violates this constraint, a

consumer shall consider this to be an error. [M6.15]

13.2.4.3 SignedInfo Element

The structure of a SignedInfo element is defined in §4.3 of XML-Signature Syntax and Processing.

The SignedInfo element specifies the data in the package that is signed. This element holds one or more

references to Object elements within the same Digital Signature XML Signature part. The producer shall create a

13. Digital Signatures

 51

SignedInfo element that contains exactly one reference to the package-specific Object element. The consumer

shall consider it an error if a SignedInfo element does not contain a reference to the package-specific Object

element. [M6.16]

13.2.4.4 CanonicalizationMethod Element

The structure of a CanonicalizationMethod element is defined in §4.3.1 of XML-Signature Syntax and

Processing.

Since XML allows equivalent content to be represented differently, a producer should apply a canonicalization

transform to the SignedInfo element when it generates it, and a consumer should apply the canonicalization

transform to the SignedInfo element when validating it. [S6.3]

[Note: Performing a canonicalization transform ensures that SignedInfo content can be validated even if the

content has been regenerated using, for example, different entity structures, attribute ordering, or character

encoding.

Producers and consumers should also use canonicalization transforms for references to parts that hold XML

documents. [S6.4]These transforms are defined using the Transform element. end note]

The following canonicalization methods shall be supported by producers and consumers of packages with digital

signatures:

 XML Canonicalization (c14n)

 XML Canonicalization with Comments (c14n with comments)

Consumers validating signed packages shall fail the validation if other canonicalization methods are

encountered. [M6.34]

13.2.4.5 SignatureMethod Element

The structure of a SignatureMethod element is defined in §4.3.2 of XML-Signature Syntax and Processing.

The SignatureMethod element defines the algorithm that is used to convert the SignedInfo element into a

hashed value contained in the SignatureValue element. Producers shall support DSA and RSA algorithms to

produce signatures. Consumers shall support DSA and RSA algorithms to validate signatures. [M6.17]

13.2.4.6 Reference Element

The structure of a Reference element is defined in §4.3.3 of XML-Signature Syntax and Processing.

13.2.4.6.1 Usage of <Reference> Element as <Manifest> Child Element

The producer shall create a Reference element within a Manifest element with a URI attribute and that

attribute shall contain a part name, without a fragment identifier. The consumer shall consider a Reference

element with a URI attribute that does not contain a part name to be an error. [M6.18]

References to package parts include the part content type as a query component. The syntax of the relative

reference is as follows:

ECMA-376 Part 2

52

/page1.xml?ContentType="value"

where value is the content type of the targeted part.

[Note: See §13.2.4.1 for additional requirements on Reference elements. end note]

[Example:

Example 13–2. Part reference with query component

In the following example, the content type is “application/vnd.openxmlformats-package.relationships+xml”.

URI="/_rels/document.xml.rels?ContentType=application/vnd.openxmlformats-

package.relationships+xml"

end example]

13.2.4.7 Transforms Element

The structure of a Transforms element is defined in §4.3.3.4 of XML-Signature Syntax and Processing.

The following transforms shall be supported by producers and consumers of packages with digital signatures:

 XML Canonicalization (c14n)

 XML Canonicalization with Comments (c14n with comments)

 Relationships transform (package-specific)

Consumers validating signed packages shall fail the validation if other transforms are encountered. Relationships

transforms shall only be supported by producers and consumers when the Transform element is a descendant

element of a Manifest element [M6.19]

13.2.4.8 Transform Element

The structure of a Transform element is defined in §4.3.3.4 of XML-Signature Syntax and Processing.

The structure of a Transform element defining Relationships Transform is shown in the following diagram:

diagram

namespa

ce

http://www.w3.org/2000/09/xmldsig#

13. Digital Signatures

 53

attributes Name Type Use Fixed

 Algorith

m

xs:anyU

RI

require

d

 http://schemas.openxmlformats.org/package/2005/06/Relationship

Transform

annotatio

n
Describes how the Relationship elements from the Relationships XML are filtered

using ID and/or Type attribute values. For algorithm details, see §13.2.4.22.

13.2.4.9 DigestMethod Element

The structure of a DigestMethod element is defined in §4.3.3.5 of XML-Signature Syntax and Processing.

The DigestMethod element defines the algorithm that yields the DigestValue from the object data after

transforms are applied. Package producers and consumers shall support RSA-SHA1 algorithms to produce or

validate signatures. [M6.17]

13.2.4.10 DigestValue Element

The structure of a DigestValue element is defined in §4.3.3.6 of XML-Signature Syntax and Processing.

The DigestValue element contains the base-64 encoded value of the digest.

13.2.4.11 SignatureValue Element

The structure of a SignatureValue element is defined in §4.2 of XML-Signature Syntax and Processing.

This element contains the actual value of the digital signature, base-64 encoded.

13.2.4.12 Object Element

The structure of a Object element is defined in §4.2 of XML-Signature Syntax and Processing.

The Object element can be either package-specific or application-defined.

13.2.4.13 Package-Specific Object Element

The structure of a package-specific Object element is shown in the following diagram:

diagram

ECMA-376 Part 2

54

namespace http://www.w3.org/2000/09/xmldsig#

attributes Name Type Use Default Fixed Annotation

 Id xs:ID Shall have value of "idPackageObject".

annotation Holds the Manifest and SignatureProperties elements that are package-specific.

[Note: Although the diagram above shows use of the Id attribute as optional, as does the XML Digital Signature

schema, for package-specific Object elements, the Id attribute shall be specified and have the value of

“idPackageObject”. This is a package-specific restriction over and above the XML Digital Signature schema. end

note]

The producer shall create each Signature element with exactly one package-specific Object. For a signed

package, consumers shall treat the absence of a package-specific Object, or the presence of multiple package-

specific Object elements, as an invalid signature. [M6.15]

13.2.4.14 Application-Defined Object Element

The application-defined Object element specifies application-defined information. The format designer might

permit one or more application-defined Object elements. If allowed by the format designer, format producers

can create one or more application-defined Object elements. [O6.8] Producers shall create application-defined

Object elements that contain XML-compliant data; consumers shall treat data that is not XML-compliant as an

error. [M6.20] Format designers and producers might not apply package-specific restrictions regarding URIs and

Transform elements to application-defined Object element. [O6.9]

13.2.4.15 KeyInfo Element

The structure of a KeyInfo element is defined in §4.4 of XML-Signature Syntax and Processing.

Producers and consumers shall use the certificate embedded in the Digital Signature XML Signature part when it

is specified. [M6.21]

13.2.4.16 Manifest Element

The structure of a Manifest element is defined in §4.4 of XML-Signature Syntax and Processing.

The Manifest element within a package-specific Object element contains references to the signed parts of the

package. The producer shall not create a Manifest element that references any data outside of the package. The

consumer shall consider a Manifest element that references data outside of the package to be in error. [M6.22]

13.2.4.17 SignatureProperties Element

The structure of a SignaturePropertieselement is defined in §5.2 of XML-Signature Syntax and Processing.

13. Digital Signatures

 55

The SignatureProperties element contains additional information items concerning the generation of

signatures placed in SignatureProperty elements.

13.2.4.18 SignatureProperty Element

The structure of a SignatureProperty element within a package-specific Object element is shown in the

following diagram:

diagram

namespace http://www.w3.org/2000/09/xmldsig#

attributes Name Type Use Default Fixed Annotation

 Target xs:anyURI required Contains a unique identifier of the

Signature element.

 Id xs:ID optional Contains signature property’s unique

identifier.

annotation Contains additional information concerning the generation of signatures.

13.2.4.19 SignatureTime Element

The structure of a SignatureTime element is shown in the following diagram:

diagram

namespace http://schemas.openxmlformats.org/package/2006/digital-signature

annotation Holds the date/time stamp for the signature.

ECMA-376 Part 2

56

SignatureTime elements can only occur as a child of SignatureProperty.

13.2.4.20 Format Element

The structure of a Format element is shown in the following diagram:

diagram

namespace http://schemas.openxmlformats.org/package/2006/digital-signature

annotation Specifies the format of the date/time stamp. The producer shall create a data/time format that

conforms to the syntax described in the W3C Note "Date and Time Formats". The consumer shall

consider a format that does not conform to the syntax described in that WC3 note to be in error.

[M6.23]

The date and time format definition conforms to the syntax described in the W3C Note “Date and Time

Formats.”

13.2.4.21 Value Element

The structure of a Value element is shown in the following diagram:

diagram

namespace http://schemas.openxmlformats.org/package/2006/digital-signature

annotation Holds the value of the date/time stamp. The producer shall create a value that conforms to the

format specified in the Format element. The consumer shall consider a value that does not

conform to that format to be in error. [M6.24]

13.2.4.22 RelationshipReference Element

The structure of a RelationshipReference element is shown in the following diagram:

diagram

namespace http://schemas.openxmlformats.org/package/2006/digital-signature

13. Digital Signatures

 57

attributes Name Type Use Default Fixed Annotation

SourceId xsd:string required Specifies the value of the Id attribute of the

Relationship element.

annotation Specifies the Relationship element with the specified Id value is to be signed.

RelationshipsReference can only occur as a child element of the Transform

Element (§13.2.4.8) that is a Relationship Transform.

13.2.4.23 RelationshipsGroupReference Element

The structure of a RelationshipsGroupReference element is shown in the following diagram:

diagram

namespace http://schemas.openxmlformats.org/package/2006/digital-signature

attributes Name Type Use Default Fixed Annotation

SourceType xsd:anyURI required Specifies the value of the Type attribute of

Relationship elements.

annotation Specifies that the group of Relationship elements with the specified Type value is to

be signed.

RelationshipsGroupReference can only occur as a child element of the Transform

Element (§13.2.4.8) that is a Relationship Transform.

Format designers might permit producers to sign individual relationships in a package or the Relationships part

as a whole. [O6.10] To sign a subset of relationships, the producer shall use the package-specific relationships

transform. The consumer shall use the package-specific relationships transform to validate the signature when a

subset of relationships are signed. [M6.25] To filter relationships based on their IDs, RelationshipReference tag

with the corresponding SourceID attribute should be added to the relationship transform element (§13.2.4.8)

and to filter relationships based on their type, RelationshipGroupReference tag with the corresponding

SourceType attribute should be added to the relationship transform element. A producer shall not specify more

than one relationship transform for a particular relationships part. A consumer shall treat the presence of more

than one relationship transform for a particular relationships part as an error. [M6.35]

ECMA-376 Part 2

58

Producers shall specify a canonicalization transform immediately following a relationships transform and

consumers that encounter a relationships transform that is not immediately followed by a canonicalization

transform shall generate an error. [M6.26]

13.2.4.24 Relationships Transform Algorithm

The relationships transform takes the XML document from the Relationships part and converts it to another

XML document.

The package implementer might create relationships XML that contains content from several namespaces, along

with versioning instructions as defined in Part 3, “Markup Compatibility and Extensibility”. [O6.11]

The relationships transform algorithm is as follows:

Step 1: Process versioning instructions

1. The package implementer shall process the versioning instructions, considering that the only known

namespace is the Relationships namespace.

2. The package implementer shall remove all ignorable content, ignoring preservation attributes.

3. The package implementer shall remove all versioning instructions.

Step 2: Sort and filter relationships

1. The package implementer shall remove all namespace declarations except the Relationships namespace

declaration.

2. The package implementer shall remove the Relationships namespace prefix, if it is present.

3. The package implementer shall sort relationship elements by Id value in lexicographical order,

considering Id values as case-sensitive Unicode strings.

4. The package implementer shall remove all Relationship elements that do not have either an Id value

that matches any SourceId value or a Type value that matches any SourceType value, among the

SourceId and SourceType values specified in the transform definition. Producers and consumers shall

compare values as case-sensitive Unicode strings. [M6.27] The resulting XML document holds all

Relationship elements that either have an Id value that matches a SourceId value or a Type value that

matches a SourceType value specified in the transform definition.

Step 3: Prepare for canonicalization

1. The package implementer shall remove all characters between the Relationships start tag and the first

Relationship start tag.

2. The package implementer shall remove any contents of the Relationship element.

3. The package implementer shall remove all characters between the last Relationship end tag and the

Relationships end tag.

4. If there are no Relationship elements, the package implementer shall remove all characters between

the Relationships start tag and the Relationships end tag.

5. The package implementer shall remove comments from the Relationships XML content.

13. Digital Signatures

 59

6. The package implementer shall add a TargetMode attribute with its default value, if this optional

attribute is missing from the Relationship element.

7. The package implementer can generate Relationship elements as start-tag/end-tag pairs with empty

content, or as empty elements. A canonicalization transform, applied immediately after the

Relationships Transform, converts all XML elements into start-tag/end-tag pairs.

13.3 Digital Signature Example

The contents of digital signature parts are defined by the W3C Recommendation “XML-Signature Syntax and

Processing” with some package-specific modifications specified in §13.2.4.1.

[Example:

Digital signature markup for packages is illustrated in this example. For information about namespaces used in

this example, see Annex F.

<Signature Id="SignatureId" xmlns="http://www.w3.org/2000/09/xmldsig#">

 <SignedInfo>

 <CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/

 REC-xml-c14n-20010315"/>

 <SignatureMethod Algorithm="http://www.w3.org/2000/09/

 xmldsig#dsa-sha1"/>

 <Reference

 URI="#idPackageObject"

 Type="http://www.w3.org/2000/09/xmldsig#Object">

 <Transforms>

 <Transform Algorithm="http://www.w3.org/TR/2001/

 REC-xml-c14n-20010315"/>

 </Transforms>

 <DigestMethod Algorithm="http://www.w3.org/2000/09/

 xmldsig#sha1"/>

 <DigestValue>…</DigestValue>

 </Reference>

 <Reference

 URI="#Application"

 Type="http://www.w3.org/2000/09/xmldsig#Object">

 <Transforms>

 <Transform Algorithm="http://www.w3.org/TR/2001/

 REC-xml-c14n-20010315"/>

 </Transforms>

 <DigestMethod

 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <DigestValue>…</DigestValue>

 </Reference>

 </SignedInfo>

ECMA-376 Part 2

60

 <SignatureValue>…</SignatureValue>

 <KeyInfo>

 <X509Data>

 <X509Certificate>…</X509Certificate>

 </X509Data>

 </KeyInfo>

 <Object Id="idPackageObject" xmlns:pds="http://schemas.openxmlformats.org

 /package/2006/digital-signature">

 <Manifest>

 <Reference URI="/document.xml?ContentType=application/

 vnd.ms-document+xml">

 <Transforms>

 <Transform Algorithm="http://www.w3.org/TR/2001/

 REC-xml-c14n-20010315"/>

 </Transforms>

 <DigestMethod Algorithm="http://www.w3.org/2000/09/

 xmldsig#sha1"/>

 <DigestValue>…</DigestValue>

 </Reference>

 <Reference

 URI="/_rels/document.xml.rels?ContentType=application/

 vnd.openxmlformats-package.relationships+xml">

 <Transforms>

 <Transform Algorithm="http://schemas.openxmlformats.org/

 package/2005/06/RelationshipTransform">

 <pds:RelationshipReference SourceId="B1"/>

 <pds:RelationshipReference SourceId="A1"/>

 <pds:RelationshipReference SourceId="A11"/>

 <pds:RelationshipsGroupReference SourceType=

 "http://schemas.custom.com/required-resource"/>

 </Transform>

 <Transform Algorithm="http://www.w3.org/TR/2001/

 REC-xml-c14n-20010315"/>

 </Transforms>

 <DigestMethod Algorithm="http://www.w3.org/2000/09/

 xmldsig#sha1"/>

 <DigestValue>…</DigestValue>

 </Reference>

 </Manifest>

 <SignatureProperties>

 <SignatureProperty Id="idSignatureTime" Target="#SignatureId">

13. Digital Signatures

 61

 <pds:SignatureTime>

 <pds:Format>YYYY-MM-DDThh:mmTZD</pds:Format>

 <pds:Value>2003-07-16T19:20+01:00</pds:Value>

 </pds:SignatureTime>

 </SignatureProperty>

 </SignatureProperties>

 </Object>

 <Object Id="Application">…</Object>

</Signature>

end example]

13.4 Generating Signatures

The steps for signing package contents follow the algorithm outlined in §3.1 of the W3C Recommendation “XML-

Signature Syntax and Processing,” with some modification for package-specific constructs.

The steps below might not be sufficient for generating signatures that contain application-defined Object

elements. Format designers that utilize application-defined Object elements shall also define the additional

steps that shall be performed to sign the application-defined Object elements.

To generate references:

1. For each package part being signed:

a. The package implementer shall apply the transforms, as determined by the producer, to the

contents of the part. [Note: Relationships transforms are applied only to Relationship parts.

When applied, the relationship transform filters the subset of relationships within the entire

Relationship part for purposes of signing. end note]

b. The package implementer shall calculate the digest value using the resulting contents of the

part.

2. The package implementer shall create a Reference element that includes the reference of the part with

the query component matching the content type of the target part, necessary Transform elements, the

DigestMethod element and the DigestValue element.

3. The package implementer shall construct the package-specific Object element containing a Manifest

element with both the child Reference elements obtained from the preceding step and a child

SignatureProperties element, which, in turn, contains a child SignatureTime element.

4. The package implementer shall create a reference to the resulting package-specific Object element.

When signing Object element data, package implementers shall follow the generic reference creation algorithm

described in §3.1 of the W3C Recommendation “XML-Signature Syntax and Processing”. [M6.28]

To generate signatures:

ECMA-376 Part 2

62

1. The package implementer shall create the SignedInfo element with a SignatureMethodelement, a

CanonicalizationMethod element, and at least one Reference element.

2. The package implementer shall canonicalize the data and then calculate the SignatureValue element

using the SignedInfo element based on the algorithms specified in the SignedInfo element.

3. The package implementer shall construct a Signature element that includes SignedInfo, Object, and

SignatureValue elements. If a certificate is embedded in the signature, the package implementer shall

also include the KeyInfo element.

13.5 Validating Signatures

Consumers validate signatures following the steps described in §3.2 of the W3C Recommendation “XML-

Signature Syntax and Processing.” When validating digital signatures, consumers shall verify the content type

and the digest contained in each Reference descendant element of the SignedInfo element, and validate the

signature calculated using the SignedInfo element. [M6.29]

The steps below might not be sufficient to validate signatures that contain application-defined Object elements.

Format designers that utilize application-defined Object elements shall also define the additional steps that shall

be performed to validate the application-defined Object elements.

To validate references:

1. The package implementer shall canonicalize the SignedInfo element based on the

CanonicalizationMethod element specified in the SignedInfo element.

2. For each Reference element in the SignedInfo element:

a. The package implementer shall obtain the Object element to be digested.

b. For the package-specific Object element, the package implementer shall validate references to

signed parts stored in the Manifest element. The package implementer shall consider

references invalid if there is a missing part. [M6.9] [Note: If a relationships transform is specified

for a signed Relationships part, only the specified subset of relationships within the entire

Relationships part are validated. end note]

c. For the package-specific Object element, validation of Reference elements includes verifying

the content type of the referenced part and the content type specified in the reference query

component. Package implementers shall consider references invalid if these two values are

different. The string comparison shall be case-sensitive and locale-invariant. [M6.11]

d. The package implementer shall digest the obtained Object element using the DigestMethod

element specified in the Reference element.

e. The package implementer shall compare the generated digest value against the DigestValue

element in the Reference element of the SignedInfo element. Package implementers shall

consider references invalid if there is any mismatch. [M6.30]

To validate signatures:

1. The package implementer shall obtain the public key information from the KeyInfo element or from an

external source.

13. Digital Signatures

 63

2. The package implementer shall obtain the canonical form of the SignatureMethod element using the

CanonicalizationMethod element. The package implementer shall use the result and the previously

obtained KeyInfo element to confirm the SignatureValue element stored in the SignedInfo element.

The package implementer shall decrypt the SignatureValue element using the public key prior to

comparison.

13.5.1 Signature Validation and Streaming Consumption

Streaming consumers that maintain signatures shall be able to cache the parts necessary for detecting and

processing signatures. [M6.31]

13.6 Support for Versioning and Extensibility

The package digital signature infrastructure supports the exchange of signed packages between current and

future package clients.

13.6.1 Using Relationship Types

Future versions of the package format might specify distinct relationship types for revised signature parts. Using

these relationships, producers would be able to store separate signature information for current and previous

versions. Consumers would be able to choose the signature information they know how to validate.

Figure 13–2, “Part names and logical item names”, illustrates this versioning capability that might be available in

future versions of the package format.

Figure 13–2. A package containing versioned signatures

13.6.2 Markup Compatibility Namespace for Package Digital Signatures

The package implementer shall not use the Markup Compatibility namespace, as specified in Annex F within the

package-specific Object element. The package implementer shall consider the use of the Markup Compatibility

namespace within the package-specific Object element to be an error. [M6.32]

ECMA-376 Part 2

64

Format designers might specify an application-defined package part format that allows for the embedding of

versioned or extended content that might not be fully understood by all present and future implementations.

Producers might create such embedded versioned or extended content and consumers might encounter such

content. [O6.12] [Example: An XML package part format might rely on Markup Compatibility elements and

attributes to embed such versioned or extended content. end example]

If an application allows for a single part to contain information that might not be fully understood by all

implementations, then the format designer shall carefully design the signing and verification policies to account

for the possibility of different implementations being used for each action in the sequence of content creation,

content signing, and signature verification. Producers and consumers shall account for this possibility in their

signing and verification processing. [M6.33]

Annex A

 65

Annex A.
(normative)

Resolving Unicode Strings to Part Names

Package clients might use strings of Unicode characters to represent relative references to parts in a package.

Further in this Annex, such strings are referred to as Unicode strings. [Example: Values of xsd:anyURI data type

within XML markup are Unicode strings. end example]

This annex specifies how such Unicode strings shall be resolved to part names.

The diagram below illustrates the conversion path from the Unicode string to a part name. The numbered arcs

identify string transformations.

Figure A–1. Strings are converted to part names for referencing parts

Unicode
string

1

IRI

2

[1-2] URI Part Name[2-3] [3-4]

3 4

A Unicode string representing a URI can be passed to the producer or consumer. The producing or consuming

application shall convert the Unicode string to a URI. If the URI is a relative reference, the application shall

resolve it using the base URI of the part, which is expressed using the pack scheme, to the URI of the referenced

part. [M1.33]

The process for resolving a Unicode string to a part name follows Arcs [1-2], [2-3], and [3-4].

A.1 Creating an IRI from a Unicode String

With reference to Arc [1-2] in Figure A–1, a Unicode string is converted to an IRI by percent-encoding each

character that does not belong to the set of reserved or unreserved characters as defined in RFC 3986.

A.2 Creating a URI from an IRI

With reference to Arc [2-3] in Figure A–1, an IRI is converted to a URI by converting non-ASCII characters as

defined in Step 2 in §3.1 of RFC 3987

If a consumer converts the URI back into an IRI, the conversion shall be performed as specified in §3.2 of RFC

3987. [M1.34]

ECMA-376 Part 2

66

A.3 Resolving a Relative Reference to a Part Name

If the URI reference obtained in §A.2 is a URI, it is resolved in the regular way, that is, with no package-specific

considerations. Otherwise, if the URI reference is a relative reference, it is resolved (with reference to Arc [3-4]

in Figure A–1) as follows:

1. Percent-encode each open bracket ([) and close bracket (]).

2. Percent-encode each percent (%) character that is not followed by a hexadecimal notation of an octet

value.

3. Un-percent-encode each percent-encoded unreserved character.

4. Un-percent-encode each forward slash (/) and back slash (\).

5. Convert all back slashes to forward slashes.

6. If present in a segment containing non-dot (“.”) characters, remove trailing dot (“.”) characters from

each segment.

7. Replace each occurrence of multiple consecutive forward slashes (/) with a single forward slash.

8. If a single trailing forward slash (/) is present, remove that trailing forward slash.

9. Remove complete segments that consist of three or more dots.

10. Resolve the relative reference against the base URI of the part holding the Unicode string, as it is defined

in §5.2 of RFC 3986. The path component of the resulting absolute URI is the part name.

A.4 String Conversion Examples

[Example:

Examples of Unicode strings converted to IRIs, URIs, and part names are shown below:

Unicode string IRI URI Part name

/a/b.xml /a/b.xml /a/b.xml /a/b.xml

/a/ц.xml /a/ц.xml /a/%D1%86.xml /a/%D1%86.xml

/%41/%61.xml /%41/%61.xml /%41/%61.xml /A/a.xml

/%25XY.xml /%25XY.xml /%25XY.xml /%25XY.xml

/%XY.xml /%XY.xml /%25XY.xml /%25XY.xml

/%2541.xml /%2541.xml /%2541.xml /%2541.xml

/../a.xml /../a.xml /../a.xml /a.xml

/./ц.xml /./ц.xml /./%D1%86.xml /%D1%86.xml

/%2e/%2e/a.xml /%2e/%2e/a.xml /%2e/%2e/a.xml /a.xml

\a.xml %5Ca.xml %5Ca.xml /a.xml

\%41.xml %5C%41.xml %5C%41.xml /A.xml

/%D1%86.xml /%D1%86.xml /%D1%86.xml /%D1%86.xml

\%2e/a.xml %5C%2e/a.xml %5C%2e/a.xml /a.xml

end example]

Annex B

 67

Annex B.
(normative)

Pack URI

A package is a logical entity that holds a collection of parts. This Open Packaging specification defines a way to

use URIs to reference part resources inside a package. This approach defines a new scheme in accordance with

the guidelines in RFC 3986.

The following terms are used as they are defined in RFC 3986: scheme, authority, path, segment, reserved

characters, sub-delims, unreserved characters, pchar, pct-encoded characters, query, fragment, and resource.

B.1 Pack URI Scheme

RFC 3986 provides an extensible mechanism for defining new kinds of URIs based on new schemes. Schemes are

the prefix in a URI before the colon. [Example: “http”, “ftp”, and “file”. end example] This Open Packaging

specification defines a specific URI scheme used to refer to parts in a package: the pack scheme. A URI that uses

the pack scheme is called a pack URI.

The Pack URI scheme "pack" is a provisional URI scheme in the IANA-maintained registry of URI Schemes located

at http://www.iana.org/assignments/uri-schemes.html. A provisional registration does not have an expiration

date. Further information on provisional registrations can be found at http://www.rfc-editor.org/rfc/rfc4395.txt.

The pack URI grammar is defined as follows:

pack_URI = "pack://" authority ["/" | path]

authority = *(unreserved | sub-delims | pct-encoded)

path = 1*("/" segment)

segment = 1*(pchar)

unreserved, sub-delims, pchar and pct-encoded are defined in RFC 3986

The authority component contains an embedded URI that points to a package. The authority component shall

not reference a package embedded in another package. The package implementer shall create an embedded

URI that meets the requirements defined in RFC 3986 for a valid URI. [M7.1] §B.3 describes the rules for

composing pack URIs by combining the URI of an entire package resource with a part name.

The package implementer shall not create an authority component with an unescaped colon (:) character.

[M7.4] Consumer applications, based on the obsolete URI specification RFC 2396, might tolerate the presence of

an unescaped colon character in an authority component. [O7.1]

http://www.iana.org/assignments/uri-schemes.html
http://www.rfc-editor.org/rfc/rfc4395.txt

ECMA-376 Part 2

68

The optional path component identifies a particular part within the package. The package implementer shall

only create path components that conform to the part naming rules. When the path component is missing, the

resource identified by the pack URI is the package as a whole. [M7.2]

In order to be able to embed the URI of the package in the pack URI, it is necessary either to replace or to

percent-encode occurrences of certain characters in the embedded URI. For example, forward slashes (/) are

replaced with commas (,). The rules for these substitutions are described in §B.3.

The optional query component in a pack URI is ignored when resolving the URI to a part.

A pack URI might have a fragment identifier as specified in RFC 3986. If present, this fragment applies to

whatever resource the pack URI identifies.

[Example:

Example B–1. Using the pack URI to identify a part

The following URI identifies the “/a/b/foo.xml” part within the “http://www.openxmlformats.org/my.container”

package resource:

pack://http%3c,,www.openxmlformats.org,my.container/a/b/foo.xml

end example]

[Example:

Example B–2. Equivalent pack URIs

The following pack URIs are equivalent:

pack://http%3c,,www.openxmlformats.org,my.container

pack://http%3c,,www.openxmlformats.org,my.container/

end example]

[Example:

Example B–3. A pack URI with percent-encoded characters

The following URI identifies the “/c/d/bar.xml” part within the

“http://myalias:pswr@www.my.com/containers.aspx?my.container” package:

pack://http%3c,,myalias%3cpswr%40www.my.com,containers.aspx%3fmy.container

/c/d/bar.xml

end example]

Annex B

 69

B.2 Resolving a Pack URI to a Resource

The following is an algorithm for resolving a pack URI to a resource (either a package or a part):

1. Parse the pack URI into the potential three components: scheme, authority, path, as well as any

fragment identifier.

2. In the authority component, replace all commas (,) with forward slashes (/).

3. Un-percent-encode ASCII characters in the resulting authority component.

4. The resultant authority component is the URI for the package as a whole.

5. If the path component is empty, the pack URI resolves to the package as a whole and the resolution

process is complete.

6. A non-empty path component shall be a valid part name. If it is not, the pack URI is invalid.

7. The pack URI resolves to the part with this part name in the package identified by the authority

component.

[Example:

Example B–4. Resolving a pack URI to a resource

Given the pack URI:

pack://http%3c,,www.my.com,packages.aspx%3fmy.package/a/b/foo.xml

The components:

<authority>= http%3c,,www.my.com,packages.aspx%3fmy.package

<path>= /a/b/foo.xml

Are converted to the package URI:

http://www.my.com/packages.aspx?my.package

And the path:

/a/b/foo.xml

Therefore, this URI refers to a part named “/a/b/foo.xml” in the package at the following URI:

http://www.my.com/packages.aspx?my.package.

end example]

B.3 Composing a Pack URI

The following is an algorithm for composing a pack URI from the URI of an entire package resource and a part

name.

In order to be suitable for creating a pack URI, the URI reference of a package resource shall conform to

RFC 3986 requirements for absolute URIs.

ECMA-376 Part 2

70

To compose a pack URI from the absolute package URI and a part name, the following steps shall be performed,

in order:

1. Remove the fragment identifier from the package URI, if present.

2. Percent-encode all percent signs (%), question marks (?), at signs (@), colons (:) and commas (,) in the

package URI.

3. Replace all forward slashes (/) with commas (,) in the resulting string.

4. Append the resulting string to the string “pack://”.

5. Append a forward slash (/) to the resulting string. The constructed string represents a pack URI with a

blank path component.

6. Using this constructed string as a base URI and the part name as a relative reference, apply the rules

defined in RFC 3986 for resolving relative references against the base URI.

The result of this operation is the pack URI that refers to the resource specified by the part name.

[Example:

Example B–5. Composing a pack URI

Given the package URI:

http://www.my.com/packages.aspx?my.package

And the part name:

/a/foo.xml

The pack URI is:

pack://http%3c,,www.my.com,packages.aspx%3fmy.package/a/foo.xml

end example]

B.4 Equivalence

In some scenarios, such as caching or writing parts to a package, it is necessary to determine if two pack URIs are

equivalent without resolving them.

The package implementer shall consider pack URIs equivalent if:

1. The scheme components are octet-by-octet identical after they are both converted to lowercase; and

2. The URIs, decoded as described in §B.2 from the authority components are equivalent (the equivalency

rules by scheme, as per RFC 3986); and

3. The path components are equivalent when compared as case-insensitive ASCII strings.

[M7.3]

Annex C

 71

Annex C.
(normative)

ZIP Appnote.txt Clarifications

The ZIP specification includes a number of features that packages do not support. Some ZIP features are clarified

in the context of this Open Packaging specification. Package producers and consumers shall adhere to the

requirements noted below.

C.1 Archive File Header Consistency

Data describing files stored in the archive is substantially duplicated in the Local File Headers and Data

Descriptors, and in the File headers within the Central Directory Record. For a ZIP archive to be a physical layer

for a package, the package implementer shall ensure that the ZIP archive holds equal values in the appropriate

fields of every File Header within the Central Directory and the corresponding Local File Header and Data

Descriptor pair, when the Data Descriptor exists, except as described in Table C–5 for bit 3 of general-purpose

bit flags. [M3.14]

C.2 Data Descriptor Signature

Packages may contain a 4-byte signature value 0x08074b50 at the beginning of Data Descriptors, immediately

before the crc-32 field. Package implementers should be able to read packages, whether or not a signature

exists.

C.3 Table Key

 “Yes” — During consumption of a package, a "Yes" value for a field in a table in Annex C indicates a

package implementer shall support reading the ZIP archive containing this record or field, however,

support might mean ignoring. [M3.15] During production of a package, a “Yes” value for a field in a table

in Annex C indicates that the package implementer shall write out this record or field. [M3.16]

 “No” — A “No” value for a field in a table in Annex C indicates the package implementer should not use

this record or field. [M3.17]

 “Optional” — An “Optional” value for a record in a table in Annex C indicates that package implementers

might write this record during production. [O3.2]

 “Partially, details below” — A “Partially, details below” value for a record in a table in Annex C indicates

that the record contains fields that might not be supported by package implementers during production

or consumption. See the details in the corresponding table to determine requirements. [M3.18]

 “Only used when needed” — The value “Only used when needed” associated with a record in a table in

Annex C indicates that the package implementer shall use the record only when needed to store data in

the ZIP archive. [M3.19]

ECMA-376 Part 2

72

Table C–1,“Support for records”, specifies the requirements for package production, consumption, and editing

in regard to particular top-level records or fields described in the ZIP Appnote.txt. [Note: Editing, in this context,

means in-place modification of individual records. A format specification can require editing applications to

instead modify content in-memory and re-write all parts and relationships on each save in order to maintain

more rigorous control of ZIP record usage. end note]

Table C–1. Support for records

Record name Supported on
Consumption

Supported on
Production

Pass through on
editing

Local File Header Yes (partially, details
below)

Yes (partially, details
below)

Yes

File data Yes Yes Yes

Data descriptor Yes Optional Optional

Archive decryption
header

No No No

Archive extra data
record

No No No

Central directory
structure:
File header

Yes (partially, details
below)

Yes (partially, details
below)

Yes

Central directory
structure:
Digital signature

Yes (ignore the
signature data)

Optional Optional

Zip64 end of central
directory record V1
(from spec version
4.5)

Yes (partially, details
below)

Yes (partially, details
below, used only when
needed)

Optional

Zip64 end of central
directory record V2
(from spec version
6.2)

No No No

Zip64 end of central
directory locator

Yes (partially, details
below)

Yes (partially, details
below, used only when
needed)

Optional

End of central
directory record

Yes (partially, details
below)

Yes (partially, details
below, used only when
needed)

Yes

Table C–2, “Support for record components”, specifies the requirements for package production, consumption,

and editing in regard to individual record components described in the ZIP Appnote.txt.

Annex C

 73

Table C–2. Support for record components

Record Field Supported on
Consumption

Supported on
Production

Pass through
on editing

Local File Header Local file header signature Yes Yes Yes

Version needed to extract Yes (partially, see
Table C–3)

Yes (partially, see
Table C–3)

Yes (partially,
see Table C–3)

General purpose bit flag Yes (partially, see
Table C–5)

Yes (partially, see
Table C–5)

Yes (partially,
see Table C–5)

Compression method Yes (partially, see
Table C–4)

Yes (partially, see
Table C–4)

Yes (partially,
see Table C–4)

Last mod file time Yes Yes Yes

Last mod file date Yes Yes Yes

Crc-32 Yes Yes Yes

Compressed size Yes Yes Yes

Uncompressed size Yes Yes Yes

File name length Yes Yes Yes

Extra field length Yes Yes Yes

File name (variable size) Yes Yes Yes

Extra field (variable size) Yes (partially, see
Table C–6)

Yes (partially, see
Table C–6)

Yes (partially,
see Table C–6)

Central directory
structure: File header

Central file header
signature

Yes Yes Yes

version made by: high
byte

Yes Yes (0 = MS-DOS
is default
publishing value)

Yes

Version made by: low byte Yes Yes Yes

Version needed to extract
(see Table C–3 for details)

Yes (partially, see
Table C–3)

Yes (1.0, 1.1, 2.0,
4.5)

Yes

General purpose bit flag Yes (partially, see
Table C–5)

Yes (partially, see
Table C–5)

Yes (partially,
see Table C–5)

Compression method Yes (partially, see
Table C–4)

Yes (partially, see
Table C–4)

Yes (partially,
see Table C–4)

Last mod file time (Pass
through, no
interpretation)

Yes Yes Yes

Last mod file date (Pass
through, no
interpretation)

Yes Yes Yes

Crc-32 Yes Yes Yes

ECMA-376 Part 2

74

Record Field Supported on
Consumption

Supported on
Production

Pass through
on editing

Compressed size Yes Yes Yes

Uncompressed size Yes Yes Yes

File name length Yes Yes Yes

Extra field length Yes Yes Yes

File comment length Yes Yes
(always set to 0)

Yes

Disk number start Yes (partial — no
multi disk
archives)

Yes (always 1
disk)

Yes (partial —
no multi disk
archives)

Internal file attributes Yes Yes Yes

External file attributes
(Pass through, no
interpretation)

Yes Yes
(MS DOS default
value)

Yes

Relative offset of local
header

Yes Yes Yes

File name (variable size) Yes Yes Yes

Extra field (variable size) Yes (partially, see
Table C–6)

Yes (partially, see
Table C–6)

Yes (partially,
see Table C–6)

File comment (variable
size)

Yes Yes (always set to
empty)

Yes

Zip64 end of central
directory V1 (from spec
version 4.5, only used
when needed)

Zip64 end of central
directory signature

Yes Yes Yes

Size of zip64 end of central
directory

Yes Yes Yes

Version made by: high
byte (Pass through, no
interpretation)

Yes Yes (0 = MS-DOS
is default
publishing value)

Yes

Version made by: low byte Yes Yes (always 4.5 or
above)

Yes

Version needed to extract
(see Table C–3 for details)

Yes (4.5) Yes (4.5) Yes (4.5)

Number of this disk Yes (partial — no
multi disk
archives)

Yes (always 1
disk)

Yes (partial —
no multi disk
archives)

Number of the disk with
the start of the central
directory

Yes (partial — no
multi disk
archives)

Yes (always 1
disk)

Yes (partial —
no multi disk
archives)

Annex C

 75

Record Field Supported on
Consumption

Supported on
Production

Pass through
on editing

Total number of entries in
the central directory on
this disk

Yes Yes Yes

Total number of entries in
the central directory

Yes Yes Yes

Size of the central
directory

Yes Yes Yes

Offset of start of central
directory with respect to
the starting disk number

Yes Yes Yes

Zip64 extensible data
sector

Yes No Yes

Zip64 end of central
directory locator (only
used when needed)

Zip64 end of central dir
locator signature

Yes Yes Yes

Number of the disk with
the start of the zip64 end
of central directory

Yes (partial — no
multi disk
archives)

Yes (always 1
disk)

Yes (partial —
no multi disk
archives)

Relative offset of the zip64
end of central directory
record

Yes Yes Yes

Total number of disks Yes (partial — no
multi disk
archives)

Yes (always 1
disk)

Yes (partial —
no multi disk
archives)

End of central directory
record

End of central dir
signature

Yes Yes Yes

Number of this disk Yes (partial — no
multi disk
archives)

Yes (always 1
disk)

Yes (partial —
no multi disk
archives)

Number of the disk with
the start of the central
directory

Yes (partial — no
multi disk archive)

Yes (always 1
disk)

Yes (partial —
no multi disk
archive)

Total number of entries in
the central directory on
this disk

Yes Yes Yes

Total number of entries in
the central directory

Yes Yes Yes

Size of the central
directory

Yes Yes Yes

ECMA-376 Part 2

76

Record Field Supported on
Consumption

Supported on
Production

Pass through
on editing

Offset of start of central
directory with respect to
the starting disk number

Yes Yes Yes

ZIP file comment length Yes Yes Yes

ZIP file comment Yes No Yes

Table C–3, “Support for Version Needed to Extract field”, specifies the detailed production, consumption, and

editing requirements for the Extract field, which is fully described in the ZIP Appnote.txt.

Table C–3. Support for Version Needed to Extract field

Version Feature Supported on
Consumption

Supported on
Production

Pass through on
editing

1.0 Default value Yes Yes Yes

1.1 File is a volume label Yes (do not
interpret as a
part)

No (rewrite/remove)

2.0 File is a folder (directory) Yes (do not
interpret as a
part)

No (rewrite/remove)

2.0 File is compressed using
Deflate compression

Yes Yes Yes

2.0 File is encrypted using
traditional PKWARE
encryption

No No No

2.1 File is compressed using
Deflate64(tm)

No No No

2.5 File is compressed using
PKWARE DCL Implode

No No No

2.7 File is a patch data set No No No

4.5 File uses ZIP64 format
extensions

Yes Yes Yes

4.6 File is compressed using
BZIP2 compression

No No No

5.0 File is encrypted using DES No No No

5.0 File is encrypted using 3DES No No No

5.0 File is encrypted using
original RC2 encryption

No No No

Annex C

 77

Version Feature Supported on
Consumption

Supported on
Production

Pass through on
editing

5.0 File is encrypted using RC4
encryption

No No No

5.1 File is encrypted using AES
encryption

No No No

5.1 File is encrypted using
corrected RC2 encryption

No No No

5.2 File is encrypted using
corrected RC2-64
encryption

No No No

6.1 File is encrypted using non-
OAEP key wrapping

No No No

6.2 Central directory encryption No No No

Table C–4, “Support for Compression Method field”, specifies the detailed production, consumption, and editing

requirements for the Compression Method field, which is fully described in the ZIP Appnote.txt.

Table C–4. Support for Compression Method field

Code Method Supported on
Consumption

Supported
on

Production

Pass
through

on editing

0 The file is stored (no compression) Yes Yes Yes

1 The file is Shrunk No No No

2 The file is Reduced with compression
factor 1

No No No

3 The file is Reduced with compression
factor 2

No No No

4 The file is Reduced with compression
factor 3

No No No

5 The file is Reduced with compression
factor 4

No No No

6 The file is Imploded No No No

7 Reserved for Tokenizing compression
algorithm

No No No

8 The file is Deflated Yes Yes Yes

9 Enhanced Deflating using Deflate64™ No No No

10 PKWARE Data Compression Library
Imploding

No No No

ECMA-376 Part 2

78

Code Method Supported on
Consumption

Supported
on

Production

Pass
through

on editing

11 Reserved by PKWARE No No No

Table C–5, “Support for modes/structures defined by general purpose bit flags”, specifies the detailed

production, consumption, and editing requirements when utilizing these general-purpose bit flags within

records.

Table C–5. Support for modes/structures defined by general purpose bit flags

Bit Feature Supported
on

Consumption

Supported
on

Production

Pass
through

on
editing

0 If set, indicates that the file is encrypted. No No No

1,
2

Bit
2

Bit
1

0 0 Normal (-en) compression option
was used.

0 1 Maximum (-exx/-ex) compression
option was used.

1 0 Fast (-ef) compression option was
used.

1 1 Super Fast (-es) compression
option was used.

Yes Yes Yes

3 If this bit is set, the fields crc-32, compressed size
and uncompressed size are set to zero in the local
header. The correct values are put in the data
descriptor immediately following the compressed
data.

Yes Yes Yes

4 Reserved for use with method 8, for enhanced
deflating

No Bits set to
0

Yes

5 If this bit is set, this indicates that the file is
compressed patched data. (Requires PKZIP version
2.70 or greater.)

No Bits set to
0

Yes

6 Strong encryption. If this bit is set, you should set
the version needed to extract value to at least 50
and you shall set bit 0. If AES encryption is used,
the version needed to extract value shall be at
least 51.

No Bits set to
0

Yes

Annex C

 79

Bit Feature Supported
on

Consumption

Supported
on

Production

Pass
through

on
editing

7 Currently unused No Bits set to
0

Yes

8 Currently unused No Bits set to
0

Yes

9 Currently unused No Bits set to
0

Yes

10 Currently unused No Bits set to
0

Yes

11 Currently unused No Bits set to
0

Yes

12 Unused No Bits set to
0

Yes

13 Used when encrypting the Central Directory to
indicate selected data values in the Local Header
are masked to hide their actual values. See the
section describing the Strong Encryption
Specification for details.

No Bits set to
0

Yes

14 Unused No Bits set to
0

Yes

15 Unused No Bits set to
0

Yes

Table C–6, “Support for Extra field (variable size), PKWARE-reserved”, specifies the detailed production,

consumption, and editing requirements for the Extra field entries reserved by PKWARE and described in the ZIP

Appnote.txt.

Table C–6. Support for Extra field (variable size), PKWARE-reserved

Field
ID

Field description Supported on
Consumption

Supported on
Production

Pass through
on editing

0x0001 ZIP64 extended information
extra field

Yes Yes Optional

0x0007 AV Info No No Yes

0x0008 Reserved for future Unicode
file name data (PFS)

No No Yes

0x0009 OS/2 No No Yes

0x000a NTFS No No Yes

ECMA-376 Part 2

80

Field
ID

Field description Supported on
Consumption

Supported on
Production

Pass through
on editing

0x000c OpenVMS No No Yes

0x000d Unix No No Yes

0x000e Reserved for file stream and
fork descriptors

No No Yes

0x000f Patch Descriptor No No Yes

0x0014 PKCS#7 Store for X.509
Certificates

No No Yes

0x0015 X.509 Certificate ID and
Signature for individual file

No No Yes

0x0016 X.509 Certificate ID for
Central Directory

No No Yes

0x0017 Strong Encryption Header No No Yes

0x0018 Record Management
Controls

No No Yes

0x0019 PKCS#7 Encryption
Recipient Certificate List

No No Yes

0x0065 IBM S/390 (Z390), AS/400
(I400) attributes —
uncompressed

No No Yes

0x0066 Reserved for IBM S/390
(Z390), AS/400 (I400)
attributes — compressed

No No Yes

0x4690 POSZIP 4690 (reserved) No No Yes

Table C–7, “Support for Extra field (variable size), third-party extensions”, specifies the detailed production,

consumption, and editing requirements for the Extra field entries reserved by third parties and described in the

ZIP Appnote.txt.

Table C–7. Support for Extra field (variable size), third-party extensions

Field
ID

Field description Supported on
Consumption

Supported on
Production

Pass through on
editing

0x07c8 Macintosh No No Yes

0x2605 ZipIt Macintosh No No Yes

0x2705 ZipIt Macintosh
1.3.5+

No No Yes

0x2805 ZipIt Macintosh
1.3.5+

No No Yes

Annex C

 81

Field
ID

Field description Supported on
Consumption

Supported on
Production

Pass through on
editing

0x334d Info-ZIP Macintosh No No Yes

0x4341 Acorn/SparkFS No No Yes

0x4453 Windows NT security
descriptor (binary
ACL)

No No Yes

0x4704 VM/CMS No No Yes

0x470f MVS No No Yes

0x4b46 FWKCS MD5 (see
below)

No No Yes

0x4c41 OS/2 access control
list (text ACL)

No No Yes

0x4d49 Info-ZIP OpenVMS No No Yes

0x4f4c Xceed original
location extra field

No No Yes

0x5356 AOS/VS (ACL) No No Yes

0x5455 extended timestamp No No Yes

0x554e Xceed unicode extra
field

No No Yes

0x5855 Info-ZIP Unix (original,
also OS/2, NT, etc)

No No Yes

0x6542 BeOS/BeBox No No Yes

0x756e ASi Unix No No Yes

0x7855 Info-ZIP Unix (new) No No Yes

0xa220 Padding, Microsoft No Optional Optional

0xfd4a SMS/QDOS No No Yes

The package implementer shall ensure that all 64-bit stream record sizes and offsets have the high-order bit = 0.

[M3.20]

The package implementer shall ensure that all fields that contain “number of entries” do not exceed

2,147,483,647. [M3.21]

ECMA-376 Part 2

82

Annex D.
(normative)

Schemas - W3C XML Schema

This Part of ECMA-376 includes a family of schemas defined using the W3C XML Schema 1.0 syntax. The

normative definitions of these schemas follow below, and they also reside in an accompanying file named

OpenPackagingConventions-XMLSchema.zip, which is distributed in electronic form.

D.1 Content Types Stream

<xs:schema xmlns="http://schemas.openxmlformats.org/package/2006/content-types" 1

xmlns:xs="http://www.w3.org/2001/XMLSchema" 2

targetNamespace="http://schemas.openxmlformats.org/package/2006/content-types" 3

elementFormDefault="qualified" attributeFormDefault="unqualified" blockDefault="#all"> 4

 <xs:element name="Types" type="CT_Types"/> 5

 <xs:element name="Default" type="CT_Default"/> 6

 <xs:element name="Override" type="CT_Override"/> 7

 <xs:complexType name="CT_Types"> 8

 <xs:choice minOccurs="0" maxOccurs="unbounded"> 9

 <xs:element ref="Default"/> 10

 <xs:element ref="Override"/> 11

 </xs:choice> 12

 </xs:complexType> 13

 <xs:complexType name="CT_Default"> 14

 <xs:attribute name="Extension" type="ST_Extension" use="required"/> 15

 <xs:attribute name="ContentType" type="ST_ContentType" use="required"/> 16

 </xs:complexType> 17

 <xs:complexType name="CT_Override"> 18

 <xs:attribute name="ContentType" type="ST_ContentType" use="required"/> 19

 <xs:attribute name="PartName" type="xs:anyURI" use="required"/> 20

 </xs:complexType> 21

 <xs:simpleType name="ST_ContentType"> 22

 <xs:restriction base="xs:string"> 23

 <xs:pattern value=" (((([\p{IsBasicLatin}-24

[\p{Cc}\(\)<>@,;:\\"/\[\]\?=\{\}\s\t]])+))/((([\p{IsBasicLatin}-25

[\p{Cc}\(\)<>@,;:\\"/\[\]\?=\{\}\s\t]])+))((\s+)*;(\s+)*(((([\p{IsBasicLatin}-26

[\p{Cc}\(\)<>@,;:\\"/\[\]\?=\{\}\s\t]])+))=((([\p{IsBasicLatin}-27

[\p{Cc}\(\)<>@,;:\\"/\[\]\?=\{\}\s\t]])+)|("(([\p{IsLatin-28

1Supplement}\p{IsBasicLatin}-[\p{Cc}"\n\r]]|(\s+))|(\\[\p{IsBasicLatin}]))*"))))*)"/> 29

 </xs:restriction> 30

 </xs:simpleType> 31

 <xs:simpleType name="ST_Extension"> 32

 <xs:restriction base="xs:string"> 33

 <xs:pattern value=" ([!$&'\(\)*\+,:=]|(%[0-9a-fA-F][0-9a-fA-F])|[:@]|[a-zA-Z0-9\-_~])+"/> 34

Annex D

 83

 </xs:restriction> 35

 </xs:simpleType> 36

</xs:schema>37

D.2 Core Properties Part

<xs:schema targetNamespace="http://schemas.openxmlformats.org/package/2006/metadata/core-properties" 1

xmlns="http://schemas.openxmlformats.org/package/2006/metadata/core-properties" 2

xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:dc="http://purl.org/dc/elements/1.1/" 3

xmlns:dcterms="http://purl.org/dc/terms/" elementFormDefault="qualified" blockDefault="#all"> 4

 <xs:import namespace="http://purl.org/dc/elements/1.1/" 5

schemaLocation="http://dublincore.org/schemas/xmls/qdc/2003/04/02/dc.xsd"/> 6

 <xs:import namespace="http://purl.org/dc/terms/" 7

schemaLocation="http://dublincore.org/schemas/xmls/qdc/2003/04/02/dcterms.xsd"/> 8

 <xs:import id="xml" namespace="http://www.w3.org/XML/1998/namespace"/> 9

 <xs:element name="coreProperties" type="CT_CoreProperties"/> 10

 <xs:complexType name="CT_CoreProperties"> 11

 <xs:all> 12

 <xs:element name="category" minOccurs="0" maxOccurs="1" type="xs:string"/> 13

 <xs:element name="contentStatus" minOccurs="0" maxOccurs="1" type="xs:string"/> 14

 <xs:element ref="dcterms:created" minOccurs="0" maxOccurs="1"/> 15

 <xs:element ref="dc:creator" minOccurs="0" maxOccurs="1"/> 16

 <xs:element ref="dc:description" minOccurs="0" maxOccurs="1"/> 17

 <xs:element ref="dc:identifier" minOccurs="0" maxOccurs="1"/> 18

 <xs:element name="keywords" minOccurs="0" maxOccurs="1" type="CT_Keywords"/> 19

 <xs:element ref="dc:language" minOccurs="0" maxOccurs="1"/> 20

 <xs:element name="lastModifiedBy" minOccurs="0" maxOccurs="1" type="xs:string"/> 21

 <xs:element name="lastPrinted" minOccurs="0" maxOccurs="1" type="xs:dateTime"/> 22

 <xs:element ref="dcterms:modified" minOccurs="0" maxOccurs="1"/> 23

 <xs:element name="revision" minOccurs="0" maxOccurs="1" type="xs:string"/> 24

 <xs:element ref="dc:subject" minOccurs="0" maxOccurs="1"/> 25

 <xs:element ref="dc:title" minOccurs="0" maxOccurs="1"/> 26

 <xs:element name="version" minOccurs="0" maxOccurs="1" type="xs:string"/> 27

 </xs:all> 28

 </xs:complexType> 29

 <xs:complexType name="CT_Keywords" mixed="true"> 30

 <xs:sequence> 31

 <xs:element name="value" minOccurs="0" maxOccurs="unbounded" type="CT_Keyword"/> 32

 </xs:sequence> 33

 <xs:attribute ref="xml:lang" use="optional"/> 34

 </xs:complexType> 35

 <xs:complexType name="CT_Keyword"> 36

 <xs:simpleContent> 37

 <xs:extension base="xs:string"> 38

 <xs:attribute ref="xml:lang" use="optional"/> 39

 </xs:extension> 40

 </xs:simpleContent> 41

 </xs:complexType> 42

</xs:schema>43

ECMA-376 Part 2

84

D.3 Digital Signature XML Signature Markup

<xsd:schema xmlns="http://schemas.openxmlformats.org/package/2006/digital-signature" 1

xmlns:xsd="http://www.w3.org/2001/XMLSchema" 2

targetNamespace="http://schemas.openxmlformats.org/package/2006/digital-signature" 3

elementFormDefault="qualified" attributeFormDefault="unqualified" blockDefault="#all"> 4

 <xsd:element name="SignatureTime" type="CT_SignatureTime"/> 5

 <xsd:element name="RelationshipReference" type="CT_RelationshipReference"/> 6

 <xsd:element name="RelationshipsGroupReference" type="CT_RelationshipsGroupReference"/> 7

 <xsd:complexType name="CT_SignatureTime"> 8

 <xsd:sequence> 9

 <xsd:element name="Format" type="ST_Format"/> 10

 <xsd:element name="Value" type="ST_Value"/> 11

</xsd:sequence> 12

 </xsd:complexType> 13

 <xsd:complexType name="CT_RelationshipReference"> 14

 <xsd:simpleContent> 15

 <xsd:extension base="xsd:string"> 16

 <xsd:attribute name="SourceId" type="xsd:string" use="required"/> 17

 </xsd:extension> 18

 </xsd:simpleContent> 19

 </xsd:complexType> 20

 <xsd:complexType name="CT_RelationshipsGroupReference"> 21

 <xsd:simpleContent> 22

 <xsd:extension base="xsd:string"> 23

 <xsd:attribute name="SourceType" type="xsd:anyURI" use="required"/> 24

 </xsd:extension> 25

 </xsd:simpleContent> 26

 </xsd:complexType> 27

 <xsd:simpleType name="ST_Format"> 28

 <xsd:restriction base="xsd:string"> 29

 <xsd:pattern value="(YYYY)|(YYYY-MM)|(YYYY-MM-DD)|(YYYY-MM-DDThh:mmTZD)|(YYYY-MM-30

DDThh:mm:ssTZD)|(YYYY-MM-DDThh:mm:ss.sTZD)"/> 31

 </xsd:restriction> 32

 </xsd:simpleType> 33

 <xsd:simpleType name="ST_Value"> 34

 <xsd:restriction base="xsd:string"> 35

 <xsd:pattern value="(([0-9][0-9][0-9][0-9]))|(([0-9][0-9][0-9][0-9])-((0[1-36

9])|(1(0|1|2))))|(([0-9][0-9][0-9][0-9])-((0[1-9])|(1(0|1|2)))-((0[1-9])|(1[0-9])|(2[0-37

9])|(3(0|1))))|(([0-9][0-9][0-9][0-9])-((0[1-9])|(1(0|1|2)))-((0[1-9])|(1[0-9])|(2[0-38

9])|(3(0|1)))T((0[0-9])|(1[0-9])|(2(0|1|2|3))):((0[0-9])|(1[0-9])|(2[0-9])|(3[0-9])|(4[0-39

9])|(5[0-9]))(((\+|-)((0[0-9])|(1[0-9])|(2(0|1|2|3))):((0[0-9])|(1[0-9])|(2[0-9])|(3[0-40

9])|(4[0-9])|(5[0-9])))|Z))|(([0-9][0-9][0-9][0-9])-((0[1-9])|(1(0|1|2)))-((0[1-9])|(1[0-41

9])|(2[0-9])|(3(0|1)))T((0[0-9])|(1[0-9])|(2(0|1|2|3))):((0[0-9])|(1[0-9])|(2[0-9])|(3[0-42

9])|(4[0-9])|(5[0-9])):((0[0-9])|(1[0-9])|(2[0-9])|(3[0-9])|(4[0-9])|(5[0-9]))(((\+|-43

)((0[0-9])|(1[0-9])|(2(0|1|2|3))):((0[0-9])|(1[0-9])|(2[0-9])|(3[0-9])|(4[0-9])|(5[0-44

9])))|Z))|(([0-9][0-9][0-9][0-9])-((0[1-9])|(1(0|1|2)))-((0[1-9])|(1[0-9])|(2[0-45

9])|(3(0|1)))T((0[0-9])|(1[0-9])|(2(0|1|2|3))):((0[0-9])|(1[0-9])|(2[0-9])|(3[0-9])|(4[0-46

9])|(5[0-9])):(((0[0-9])|(1[0-9])|(2[0-9])|(3[0-9])|(4[0-9])|(5[0-9]))\.[0-9])(((\+|-47

)((0[0-9])|(1[0-9])|(2(0|1|2|3))):((0[0-9])|(1[0-9])|(2[0-9])|(3[0-9])|(4[0-9])|(5[0-48

9])))|Z))"/> 49

 </xsd:restriction> 50

 </xsd:simpleType> 51

Annex D

 85

</xsd:schema> 52

D.4 Relationships Part

<xsd:schema xmlns="http://schemas.openxmlformats.org/package/2006/relationships" 1

xmlns:xsd="http://www.w3.org/2001/XMLSchema" 2

targetNamespace="http://schemas.openxmlformats.org/package/2006/relationships" 3

elementFormDefault="qualified" attributeFormDefault="unqualified" blockDefault="#all"> 4

 <xsd:element name="Relationships" type="CT_Relationships"/> 5

 <xsd:element name="Relationship" type="CT_Relationship"/> 6

 <xsd:complexType name="CT_Relationships"> 7

 <xsd:sequence> 8

 <xsd:element ref="Relationship" minOccurs="0" maxOccurs="unbounded"/> 9

 </xsd:sequence> 10

 </xsd:complexType> 11

 <xsd:complexType name="CT_Relationship"> 12

 <xsd:simpleContent> 13

 <xsd:extension base="xsd:string"> 14

 <xsd:attribute name="TargetMode" type="ST_TargetMode" use="optional"/> 15

 <xsd:attribute name="Target" type="xsd:anyURI" use="required"/> 16

 <xsd:attribute name="Type" type="xsd:anyURI" use="required"/> 17

 <xsd:attribute name="Id" type="xsd:ID" use="required"/> 18

 </xsd:extension> 19

 </xsd:simpleContent> 20

 </xsd:complexType> 21

 <xsd:simpleType name="ST_TargetMode"> 22

 <xsd:restriction base="xsd:string"> 23

 <xsd:enumeration value="External"/> 24

 <xsd:enumeration value="Internal"/> 25

 </xsd:restriction> 26

 </xsd:simpleType> 27

</xsd:schema> 28

ECMA-376 Part 2

86

Annex E.
(informative)

Schemas - RELAX NG

This clause is informative.

This Part of ECMA-376 includes a family of schemas defined using the RELAX NG syntax. The definitions of these

schemas follow below, and they also reside in an accompanying file named

OpenPackagingConventions-RELAXNG.zip, which is distributed in electronic form.

If discrepancies exist between the RELAX NG version of a schema and its corresponding XML Schema, the XML

Schema is the definitive version.

E.1 Content Types Stream

default namespace = 1

 "http://schemas.openxmlformats.org/package/2006/content-types" 2

 3

start = Types 4

Types = element Types { CT_Types } 5

Default = element Default { CT_Default } 6

Override = element Override { CT_Override } 7

CT_Types = (Default | Override)* 8

CT_Default = 9

 attribute Extension { ST_Extension }, 10

 attribute ContentType { ST_ContentType } 11

CT_Override = 12

 attribute ContentType { ST_ContentType }, 13

 attribute PartName { xsd:anyURI } 14

ST_ContentType = 15

 xsd:string { 16

 pattern = 17

 '(((([\p{IsBasicLatin}-[\p{Cc}\x{127}\(\)<>@,;:\\"/\[\]\?=\{\}\s\t]])+))/((([\p{IsBasicLatin}-18

[\p{Cc}\x{127}\(\)<>@,;:\\"/\[\]\?=\{\}\s\t]])+))((\s+)*;(\s+)*(((([\p{IsBasicLatin}-19

[\p{Cc}\x{127}\(\)<>@,;:\\"/\[\]\?=\{\}\s\t]])+))=((([\p{IsBasicLatin}-20

[\p{Cc}\x{127}\(\)<>@,;:\\"/\[\]\?=\{\}\s\t]])+)|("(([\p{IsLatin-1Supplement}\p{IsBasicLatin}-21

[\p{Cc}\x{127}"\n\r]]|(\s+))|(\\[\p{IsBasicLatin}]))*"))))*)' 22

 } 23

ST_Extension = 24

 xsd:string { 25

 pattern = 26

 "([!$&'\(\)*\+,:=]|(%[0-9a-fA-F][0-9a-fA-F])|[:@]|[a-zA-Z0-9\-_~])+" 27

 }28

Annex E

 87

E.2 Core Properties Part

default namespace = 1

 "http://schemas.openxmlformats.org/package/2006/metadata/core-properties" 2

namespace dc = "http://purl.org/dc/elements/1.1/" 3

namespace dcterms = "http://purl.org/dc/terms/" 4

namespace xsi = "http://www.w3.org/2001/XMLSchema-instance" 5

include "xml.rnc" 6

 7

start = coreProperties 8

coreProperties = element coreProperties { CT_CoreProperties } 9

CT_CoreProperties = 10

 element category { xsd:string }? 11

 & element contentStatus { xsd:string }? 12

 & element dcterms:created { 13

 attribute xsi:type { xsd:QName "dcterms:W3CDTF" }, xml_lang?, W3CDTF 14

 }? 15

 & element dc:creator { SimpleLiteral }? 16

 & element dc:description { SimpleLiteral }? 17

 & element dc:identifier { SimpleLiteral }? 18

 & element keywords { CT_Keywords }? 19

 & element dc:language { SimpleLiteral }? 20

 & element lastModifiedBy { xsd:string }? 21

 & element lastPrinted { xsd:dateTime }? 22

 & element dcterms:modified { 23

 attribute xsi:type { xsd:QName "dcterms:W3CDTF" }, xml_lang?, W3CDTF 24

 }? 25

 & element revision { xsd:string }? 26

 & element dc:subject { SimpleLiteral }? 27

 & element dc:title { SimpleLiteral }? 28

 & element version { xsd:string }? 29

CT_Keywords = 30

 mixed { 31

 xml_lang?, 32

 element value { CT_Keyword }* 33

 } 34

CT_Keyword = xsd:string, xml_lang? 35

SimpleLiteral = xml_lang?, xsd:string 36

W3CDTF = xsd:gYear | xsd:gYearMonth | xsd:date | xsd:dateTime37

E.3 Digital Signature XML Signature Markup

default namespace = 1

 "http://schemas.openxmlformats.org/package/2006/digital-signature" 2

namespace ds = "http://www.w3.org/2000/09/xmldsig#" 3

 4

include "xmldsig-core-schema.rnc" { 5

 6

SignaturePropertyType = 7

 SignatureTime, 8

 attribute Id { xsd:ID }?, 9

 attribute Target { xsd:anyURI } 10

 11

ECMA-376 Part 2

88

TransformType = 12

 element ds:XPath { xsd:string }?, 13

 (RelationshipReference | RelationshipsGroupReference)*, 14

 attribute Algorithm { xsd:anyURI } 15

} 16

 17

SignatureTime = element SignatureTime { CT_SignatureTime } 18

RelationshipReference = 19

 element RelationshipReference { CT_RelationshipReference } 20

RelationshipsGroupReference = 21

 element RelationshipsGroupReference { CT_RelationshipsGroupReference } 22

CT_SignatureTime = 23

 element Format { ST_Format }, 24

 element Value { ST_Value } 25

CT_RelationshipReference = 26

 xsd:string, 27

 attribute SourceId { xsd:string } 28

CT_RelationshipsGroupReference = 29

 xsd:string, 30

 attribute SourceType { xsd:anyURI } 31

ST_Format = 32

 xsd:string { 33

 pattern = 34

 "(YYYY)|(YYYY-MM)|(YYYY-MM-DD)|(YYYY-MM-DDThh:mmTZD)|(YYYY-MM-DDThh:mm:ssTZD)|(YYYY-MM-35

DDThh:mm:ss.sTZD)" 36

 } 37

ST_Value = 38

 xsd:string { 39

 pattern = 40

 "(([0-9][0-9][0-9][0-9]))|(([0-9][0-9][0-9][0-9])-((0[1-9])|(1(0|1|2))))|(([0-9][0-9][0-9][0-41

9])-((0[1-9])|(1(0|1|2)))-((0[1-9])|(1[0-9])|(2[0-9])|(3(0|1))))|(([0-9][0-9][0-9][0-9])-((0[1-42

9])|(1(0|1|2)))-((0[1-9])|(1[0-9])|(2[0-9])|(3(0|1)))T((0[0-9])|(1[0-9])|(2(0|1|2|3))):((0[0-43

9])|(1[0-9])|(2[0-9])|(3[0-9])|(4[0-9])|(5[0-9]))(((\+|-)((0[0-9])|(1[0-9])|(2(0|1|2|3))):((0[0-44

9])|(1[0-9])|(2[0-9])|(3[0-9])|(4[0-9])|(5[0-9])))|Z))|(([0-9][0-9][0-9][0-9])-((0[1-9])|(1(0|1|2)))-45

((0[1-9])|(1[0-9])|(2[0-9])|(3(0|1)))T((0[0-9])|(1[0-9])|(2(0|1|2|3))):((0[0-9])|(1[0-9])|(2[0-46

9])|(3[0-9])|(4[0-9])|(5[0-9])):((0[0-9])|(1[0-9])|(2[0-9])|(3[0-9])|(4[0-9])|(5[0-9]))(((\+|-)((0[0-47

9])|(1[0-9])|(2(0|1|2|3))):((0[0-9])|(1[0-9])|(2[0-9])|(3[0-9])|(4[0-9])|(5[0-9])))|Z))|(([0-9][0-48

9][0-9][0-9])-((0[1-9])|(1(0|1|2)))-((0[1-9])|(1[0-9])|(2[0-9])|(3(0|1)))T((0[0-9])|(1[0-49

9])|(2(0|1|2|3))):((0[0-9])|(1[0-9])|(2[0-9])|(3[0-9])|(4[0-9])|(5[0-9])):(((0[0-9])|(1[0-9])|(2[0-50

9])|(3[0-9])|(4[0-9])|(5[0-9]))\.[0-9])(((\+|-)((0[0-9])|(1[0-9])|(2(0|1|2|3))):((0[0-9])|(1[0-51

9])|(2[0-9])|(3[0-9])|(4[0-9])|(5[0-9])))|Z))" 52

 }53

E.4 Relationships Part

default namespace = 1

 "http://schemas.openxmlformats.org/package/2006/relationships" 2

 3

start = Relationships 4

Relationships = element Relationships { CT_Relationships } 5

Relationship = element Relationship { CT_Relationship } 6

CT_Relationships = Relationship* 7

CT_Relationship = 8

Annex E

 89

 xsd:string, 9

 attribute TargetMode { ST_TargetMode }?, 10

 attribute Target { xsd:anyURI }, 11

 attribute Type { xsd:anyURI }, 12

 attribute Id { xsd:ID } 13

ST_TargetMode = string "External" | string "Internal"14

E.5 Additional Resources

E.5.1 XML

xml_lang = attribute xml:lang { xsd:language | xsd:string "" } 1

xml_space = attribute xml:space { "default" | "preserve" } 2

xml_base = attribute xml:base { xsd:anyURI } 3

xml_id = attribute xml:id { xsd:ID } 4

xml_specialAttrs = xml_base?, xml_lang?, xml_space?, xml_id?5

E.5.2 XML Digital Signature Core

xmldsig-core-schema.rnc (a RELAX NG schema in the compact syntax) can be created from xmldsig-core-

schema.rng (a RELAX NG schema in the XML syntax), which is available at

http://www.w3.org/Signature/2002/07/xmldsig-core-schema.rng.

End of informative text.

http://www.w3.org/Signature/2002/07/xmldsig-core-schema.rng

ECMA-376 Part 2

90

Annex F.
(normative)

Standard Namespaces and Content Types

The namespaces available for use in a package are listed in Table F–1, Package-wide namespaces

Table F–1. Package-wide namespaces

Description Namespace URI

Content Types http://schemas.openxmlformats.org/package/2006/content-types

Core Properties http://schemas.openxmlformats.org/package/2006/metadata/core-properties

Digital Signatures http://schemas.openxmlformats.org/package/2006/digital-signature

Relationships http://schemas.openxmlformats.org/package/2006/relationships

Markup Compatibility http://schemas.openxmlformats.org/markup-compatibility/2006

The content types available for use in a package are listed in Table F–2, Package-wide content types

Table F–2. Package-wide content types

Description Content Type

Core Properties part application/vnd.openxmlformats-package.core-properties+xml

Digital Signature Certificate
part

application/vnd.openxmlformats-package.digital-signature-
certificate

Digital Signature Origin part application/vnd.openxmlformats-package.digital-signature-origin

Digital Signature XML Signature
part

application/vnd.openxmlformats-package.digital-signature-
xmlsignature+xml

Relationships part application/vnd.openxmlformats-package.relationships+xml

Package implementers and format designers shall not create content types with parameters for the package-

specific parts defined in this Open Packaging specification and shall treat the presence of parameters in these

content types as an error. [M1.22]

The relationship types available for use in a package are listed in Table F–3, Package-wide relationship types.

Annex F

 91

Table F–3. Package-wide relationship types

Description Relationship Type

Core Properties http://schemas.openxmlformats.org/package/2006/relationships/metadata/c
ore-properties

Digital Signature http://schemas.openxmlformats.org/package/2006/relationships/digital-
signature/signature

Digital Signature
Certificate

http://schemas.openxmlformats.org/package/2006/relationships/digital-
signature/certificate

Digital Signature
Origin

http://schemas.openxmlformats.org/package/2006/relationships/digital-
signature/origin

Thumbnail http://schemas.openxmlformats.org/package/2006/relationships/metadata/t
humbnail

ECMA-376 Part 2

92

Annex G.
(informative)

Physical Model Design Considerations

This annex is informative.

The physical model defines the ways in which packages are produced and consumed. This model is based on

three components: a producer, a consumer, and a pipe between them.

Figure G–1. Components of the physical model

A producer is software or a device that writes packages. A consumer is software or a device that reads packages.

A device is hardware, such as a printer or scanner that performs a single function or set of functions. Data is

carried from the producer to the consumer by a pipe.

In local access, the pipe carries data directly from a producer to a consumer on a single device.

In networked access the consumer and the producer communicate with each other over a protocol. The

significant communication characteristics of this pipe are speed and request latency. For example, this

communication might occur across a process boundary or between a server and a desktop computer.

In order to maximize performance, designers of physical package formats consider access style, layout style, and

communication style.

Annex G

 93

G.1 Access Styles

The access style in which local access or networked access is conducted determines the simultaneity possible

between processing and input-output operations.

G.1.1 Direct Access Consumption

Direct access consumption allows consumers to request the specific portion of the package desired, without

sequentially processing the preceding parts of the package. For example a byte-range request. This is the most

common access style.

G.1.2 Streaming Consumption

Streaming consumption allows consumers to begin processing parts before the entire package has arrived.

Physical package formats should be designed to allow consumers to begin interpreting and processing the data

they receive before all of the bits of the package have been delivered through the pipe.

G.1.3 Streaming Creation

Streaming creation allows producers to begin writing parts to the package without knowing in advance all of the

parts that are to be written. For example, when an application begins to build a print spool file package, it might

not know how many pages the package contains. Likewise, a program that is generating a report might not know

initially how long the report is or how many pictures it has.

In order to support streaming creation, the package implementer should allow a producer to add parts after

other parts have already been added. A Consumer shall not require a producer to state how many parts they

might create when they start writing. The package implementer should allow a producer to begin writing the

contents of a part without knowing the ultimate length of the part.

G.1.4 Simultaneous Creation and Consumption

Simultaneous creation and consumption allows streaming creation and streaming consumption to happen at the

same time on a package. Because of the benefits that can be realized within pipelined architectures that use it,

the package implementer should support simultaneous creation and consumption in the physical package.

G.2 Layout Styles

The style in which parts are ordered within a package is referred to as the layout style. Parts can be arranged in

one of two styles: simple ordering or interleaved ordering.

G.2.1 Simple Ordering

With simple ordering, parts are arranged contiguously. When a package is delivered sequentially, all of the bytes

for the first part arrive first, followed by all of the bytes for the second part, and so on. When such a package

uses simple ordering, all of the bytes for each part are stored contiguously.

ECMA-376 Part 2

94

G.2.2 Interleaved Ordering

With interleaved ordering, pieces of parts are interleaved, allowing optimal performance in certain scenarios.

For example, interleaved ordering improves performance for multi-media playback, where video and audio are

delivered simultaneously and inline resource referencing, where a reference to an image occurs within markup.

By breaking parts into pieces and interleaving those pieces, it is possible to optimize performance while allowing

easy reconstruction of the original contiguous part.

Because of the performance benefits it provides, package implementers should support interleaving in the

physical package. The package implementer might handle the internal representation of interleaving differently

in different physical models. Regardless of how the physical model handles interleaving, a part that is broken

into multiple pieces in the physical file is considered one logical part; the pieces themselves are not parts and

are not addressable.

G.3 Communication Styles

The style in which a package and its parts are delivered by a producer or accessed by a consumer is referred to

as the communication style. Communication can be based on sequential delivery of or random access to parts.

The communication style used depends on the capabilities of both the pipe and the physical package format.

G.3.1 Sequential Delivery

With sequential delivery, all of the physical bits in the package are delivered in the order they appear in the.

Generally, all pipes support sequential delivery.

G.3.2 Random Access

Random access allows consumers to request the delivery of a part out of sequential physical order. Some pipes

are based on protocols that can enable random access. For example, HTTP 1.1 with byte-range support. In order

to maximize performance, the package implementer should support random access in both the pipe and the

physical package. In the absence of this support, consumers need to wait until the parts they need are delivered

sequentially.

End of informative text.

Annex H

 95

Annex H.
(informative)

Guidelines for Meeting Conformance

This annex is informative.

This annex summarizes best practices for producers and consumers implementing the Open Packaging

Conventions. It is intended as a convenience; the text in the referenced clause or subclause is considered

normative in all cases.

The top-level topics and their identifiers are described as follows:

1. Package Model requirements

2. Physical Packages requirements

3. ZIP Physical Mapping requirements

4. Core Properties requirements

5. Thumbnail requirements

6. Digital Signatures requirements

7. Pack URI requirements

Additionally, these tables identify, as does the referenced text, who is burdened with enforcing or supporting

the requirement:

H.1 Package Model

Table H–1. Package model conformance requirements

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M1.1 The package implementer shall
require a part name. A part IRI
shall not be empty. A part URI
shall not be empty.

9.1, 9.1.1.1.1,
9.1.1.1.2

×

M1.2 The package implementer shall
require a content type and the
format designer shall specify
the content type.

9.1 × ×

ECMA-376 Part 2

96

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M1.3 A part IRI shall not have empty
isegments. A part URI shall not
have empty segments. A part
URI shall not have empty
segments.

9.1.1.1.1,
9.1.1.1.2

×

M1.4 A part IRI shall start with a
forward slash (“/”) character. A
part URI shall start with a
forward slash (“/”) character.

9.1.1.1.1,
9.1.1.1.2

×

M1.5 A part IRI shall not have a
forward slash as the last
character. A part URI shall not
have a forward slash as the last
character.

9.1.1.1.1,
9.1.1.1.2

×

M1.6 An isegment shall not hold any
characters other than ipchar
characters. A segment shall not
hold any characters other than
pchar characters. .

9.1.1.1.1,
9.1.1.1.2

×

M1.7 An isegment shall not contain
percent-encoded forward slash
(“/”), or backward slash (“\”)
characters. A segment shall not
contain percent-encoded
forward slash (“/”), or
backward slash (“\”) characters.

9.1.1.1.1,
9.1.1.1.2

×

M1.8 A segment shall not contain
percent-encoded unreserved
characters.

9.1.1.1.1,
9.1.1.1.2

×

M1.9 An isegment shall not end with
a dot (“.”) character. A segment
shall not end with a dot (“.”)
character.

9.1.1.1.1,
9.1.1.1.2

×

M1.10 An isegment shall include at
least one non-dot character. A
segment shall include at least
one non-dot character

9.1.1.1.1,
9.1.1.1.2

×

M1.11 A package implementer shall
neither create nor recognize a
part with a part name derived
from another part name by
appending segments to it.

9.1.1.4 ×

Annex H

 97

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M1.12 Packages shall not contain
equivalent part names, and
package implementers shall
neither create nor recognize
packages with equivalent part
names.

9.1.1.3 ×

M1.13 Package implementers shall
only create and only recognize
parts with a content type;
format designers shall specify a
content type for each part
included in the format. Content
types for package parts shall fit
the definition and syntax for
media types as specified in RFC
2616, §3.7.

9.1.2 × ×

M1.14 The value of the content type is
permitted to be the empty
string.
Content types shall not use
linear white space either
between the type and subtype
or between an attribute and its
value. Content types also shall
not have leading or trailing
white space. Package
implementers shall create only
such content types and shall
require such content types
when retrieving a part from a
package; format designers shall
specify only such content types
for inclusion in the format.

9.1.2 × ×

M1.15 The package implementer shall
require a content type that
does not include comments,
and the format designer shall
specify such a content type.

9.1.2 × ×

M1.16 If the package implementer
specifies a growth hint, it is set
when a part is created, and the
package implementer shall not
change the growth hint after
the part has been created.

9.1.3 × ×

ECMA-376 Part 2

98

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M1.17 XML content shall be encoded
using either UTF-8 or UTF-16. If
any part includes an encoding
declaration, as defined in §4.3.3
of the XML 1.0 specification,
that declaration shall not name
any encoding other than UTF-8
or UTF-16. Package
implementers shall enforce this
requirement upon creation and
retrieval of the XML content.

9.1.4 ×

M1.18 DTD declarations shall not be
used in the XML markup
defined in this Open Packaging
specification. Package
implementers shall enforce this
requirement upon creation and
retrieval of the XML content
and shall treat the presence of
DTD declarations as an error.

9.1.4 ×

M1.19 If the XML content contains the
Markup Compatibility
namespace, as described in
Part 3, it shall be processed by
the package implementer to
remove Markup Compatibility
elements and attributes,
ignorable namespace
declarations, and ignored
elements and attributes before
applying subsequent validation
rules.

9.1.4 ×

Annex H

 99

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M1.20 XML content shall be valid
against the corresponding XSD
schema defined in this Open
Packaging specification. In
particular, the XML content
shall not contain elements or
attributes drawn from
namespaces that are not
explicitly defined in the
corresponding XSD unless the
XSD allows elements or
attributes drawn from any
namespace to be present in
particular locations in the XML
markup. Package implementers
shall enforce this requirement
upon creation and retrieval of
the XML content.

9.1.4 ×

M1.21 XML content shall not contain
elements or attributes drawn
from “xml” or “xsi” namespaces
unless they are explicitly
defined in the XSD schema or
by other means described in
this Open Packaging
specification. Package
implementers shall enforce this
requirement upon creation and
retrieval of the XML content.

9.1.4 ×

M1.22
Package implementers and
format designers shall not
create content types with
parameters for the package-
specific parts defined in this
Open Packaging specification
and shall treat the presence of
parameters in these content
types as an error.

Annex F × ×

ECMA-376 Part 2

100

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M1.23 XML markup might contain
Unicode strings referencing
other parts as values of the
xsd:anyURI data type. Format
consumers shall convert these
Unicode strings to URIs, as
defined in Annex A before
resolving them relative to the
base URI of the part containing
the Unicode string.

9.2.1 ×

M1.24 Some types of content provide
a way to override the default
base URI by specifying a
different base in the content. In
the presence of one of these
overrides, format consumers
shall use the specified base URI
instead of the default.

9.2.1 ×

M1.25 The Relationships part shall not
have relationships to any other
part. Package implementers
shall enforce this requirement
upon the attempt to create
such a relationship and shall
treat any such relationship as
invalid.

9.3.1 ×

M1.26 After the removal of any
extensions using the
mechanisms in ECMA-376-3, a
Relationships Part shall be a
schema-valid XML document
against opc-relationships.xsd.
The package implementer shall
require that every Relationship
element has an Id attribute, the
value of which is unique within
the Relationships part, and that
the Id datatype is xsd:ID, the
value of which conforms to the
naming restrictions for xsd:ID
as described in the W3C
Recommendation “XML
Schema Part 2: Datatypes.”

9.3.2 ×

Annex H

 101

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M1.27 The package implementer shall
require the Type attribute to be
a URI that defines the role of
the relationship and the format
designer shall specify such a
Type.

9.3.2.2 × ×

M1.28 The package implementer shall
require the Target attribute to
be a URI reference pointing to a
target resource. The URI
reference shall be a URI or a
relative reference.

9.3.2.2 ×

M1.29 When set to Internal, the
Target attribute shall be a
relative reference and that
reference is interpreted relative
to the “parent” part. For
package relationships, the
package implementer shall
resolve relative references in
the Target attribute against the
pack URI that identifies the
entire package resource.

9.3.2.2 ×

M1.30 The package implementer shall
name relationship parts
according to the special
relationships part naming
convention and require that
parts with names that conform
to this naming convention have
the content type for a
Relationships part

9.3.3 ×

M1.31

Consumers shall process
relationship markup in a
manner that conforms to
Part 3.

9.3.4 × ×

M1.32 If a fragment identifier is
allowed in the Target attribute
of the Relationship element, a
package implementer shall not
resolve the URI to a scope less
than an entire part.

9.3.2.2 ×

ECMA-376 Part 2

102

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M1.33 A Unicode string representing a
URI can be passed to the
producer or consumer. The
producing or consuming
application shall convert the
Unicode string to a URI. If the
URI is a relative reference, the
application shall resolve it using
the base URI of the part, which
is expressed using the pack
scheme, to the URI of the
referenced part.

Annex A × ×

M1.34 If a consumer converts the URI
back into an IRI, the conversion
shall be performed as specified
in §3.2 of RFC 3987.

A.2 ×

Table H–2. Package model optional requirements

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

O1.1 The package implementer might
allow a growth hint to be provided
by a producer.

9.1, 9.1.3 ×

O1.2 Format designers might restrict the
usage of parameters for content
types.

9.1.2 ×

O1.3 The package implementer might
ignore the growth hint or adhere
only loosely to it when specifying
the physical mapping.

9.1.3 ×

O1.4 If the format designer permits it,
parts can contain Unicode strings
representing references to other
parts. If allowed by the format
designer, format producers can
create such parts, and format
consumers shall consume them.

9.2.1 × × ×

O1.5 The package implementer might
allow a TargetMode to be provided
by a producer.

9.3.2.2 ×

Annex H

 103

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

O1.6 A format designer might allow
fragment identifiers in the value of
the Target attribute of the
Relationship element.

9.3.2.2 ×

O1.7 Producers might generate
relationship markup that uses the
versioning and extensibility
mechanisms defined in Part 3 to
incorporate elements and attributes
drawn from other XML namespaces.

9.3.4 ×

H.2 Physical Packages

Table H–3. Physical packages conformance requirements

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M2.1 The Content Types stream shall not
be mapped to a part by the package
implementer.

10.1.2.1 ×A

M2.2 The package implementer shall
define a physical package format
with a mapping for the required
components package, part name,
part content type and part contents.

10.1.1 ×

M2.3 The package implementer shall
define a format mapping with a
mechanism for associating content
types with parts.

10.1.2.1 ×

M2.4 For all parts of the package other
than relationships parts (§9.3.1) and
the Content Types part itself, the
Content Types stream shall specify
either:
One matching Default element, or
One matching Override element, or
Both a matching Default element
and a matching Override element,
in which case the Override element
takes precedence.

10.1.2.2 ×A

ECMA-376 Part 2

104

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M2.5 The package implementer shall
require that there not be more than
one Default element for any given
extension, and there not be more
than one Override element for any
given part name.

10.1.2.2 ×A

M2.6 The package implementer shall
require a non-empty extension in a
Default element. The package
implementer shall require a content
type in a Default element and the
format designer shall specify the
content type.

10.1.2.2.2 ×A ×A

M2.7 The package implementer shall
require a content type and the
format designer shall specify the
content type in an Override
element. The package implementer
shall require a part name.

10.1.2.2.3 ×A ×A

M2.8 When adding a new part to a
package, the package implementer
shall ensure that a content type for
that part is specified in the Content
Types stream; the package
implementer shall perform the steps
described in §10.1.2.3.

10.1.2.3 ×A

M2.9 To get the content type of a part,
the package implementer shall
perform the steps described
in §10.1.2.4.

10.1.2.4 ×A

M2.10 The package implementer shall not
use the versioning and extensibility
mechanisms defined in Part 3 to
incorporate elements and attributes
drawn from other XML-namespaces
into the Content Types stream
markup.

10.1.2.5 ×A

M2.11 The package implementer shall not
mix interleaving and non-
interleaving for an individual part.

10.1.4 ×B

M2.12 The package implementer shall
compare prefix names as case-
insensitive ASCII strings.

10.1.3.1 ×

Annex H

 105

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M2.13 The package implementer shall
compare suffix names as case-
insensitive ASCII strings.

10.1.3.1 ×B

M2.14 The package implementer shall not
allow packages that contain
equivalent logical item names.

10.1.3.1 ×

M2.15 The package implementer shall not
allow packages that contain logical
items with equivalent prefix names
and with equal piece numbers,
where piece numbers are treated as
integer decimal values.

10.1.3.1 ×B

M2.16 The package implementer shall not
map logical items to parts if the
logical item names violate the part
naming rules.

10.1.3.4 ×

M2.17 The package implementer shall
consider naming collisions within
the set of part names mapped from
logical item names to be an error.

10.1.3.4 ×

M2.18 When interleaved, a package
implementer shall represent a part
as one or more pieces, using the
method described in §10.1.4.

10.2.1 ×B

Notes:

A: Only relevant if using the content type mapping strategy specified in the Open Packaging Conventions.

B: Only relevant if supporting the interleaving strategy specified in the Open Packaging Conventions.

ECMA-376 Part 2

106

Table H–4. Physical packages recommendations

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

S2.1 Some physical package
formats have a native
mechanism for representing
content types. For such
packages, the package
implementer should use the
native mechanism to map the
content type for a part.

10.1.2.1 ×

S2.2 If no native method of
mapping a content type to a
part exists, the package
implementer should include a
specially-named XML stream
in the package called the
Content Types stream

10.1.2.1 ×

S2.3 If the package is intended for
streaming consumption:
The package implementer
should not allow Default
elements; as a consequence,
there should be one Override
element for each part in the
package.
The format producer should
write the Override elements
to the package so they appear
before the parts to which they
correspond, or in close
proximity to the part to which
they correspond.

10.1.2.2 ×A ×A

S2.4 The package implementer
should use the mechanism
described in this Open
Packaging specification to
allow interleaving when
mapping to the physical
package for layout scenarios
that support streaming
consumption.

10.1.4 ×B

Annex H

 107

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

S2.5 The package implementer
should store pieces in their
natural order for optimal
efficiency.

10.1.4 ×B

Notes:

A: Only relevant if using the content type mapping strategy specified in the Open Packaging Conventions.

B: Only relevant if supporting the interleaving strategy specified in the Open Packaging Conventions.

Table H–5. Physical packages optional requirements

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

O2.1 The format designer specifies
whether that format might use
interleaving.

10.1.4 ×

O2.2 Optional. The package implementer
might provide a physical mapping for
a growth hint that might be specified
by a producer.

10.1.1 ×

O2.3 Package implementers might use the
common mapping solutions defined
in this Open Packaging specification.

10.1 ×

O2.4 Package producers can use pre-
defined Default elements to reduce
the number of Override elements on
a part, but are not required to do so.

10.1.2.2 ×A

O2.5 The package implementer can define
Default content type mappings even
though no parts use them.

10.1.2.2 ×A

O2.6 The package implementer might
create a physical package containing
interleaved parts and non-interleaved
parts.

10.1.4 ×

ECMA-376 Part 2

108

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

O2.7 The package implementer might
allow a package that contains logical
item names and complete sequences
of logical item names that cannot be
mapped to a part name because the
logical item name does not follow the
part naming grammar or the logical
item does not have an associated
content type.

10.1.3.4 ×B

Notes:

A: Only relevant if using the content type mapping strategy specified in the Open Packaging Conventions.

B: Only relevant if supporting the interleaving strategy specified in the Open Packaging Conventions.

H.3 ZIP Physical Mapping

The requirements in Table H–6, Table H–7, and Table H–8 are only relevant when mapping to the ZIP physical

package format.

Table H–6. ZIP physical mapping conformance requirements

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M3.1 A package implementer shall store a
non-interleaved part as a single ZIP
item.

10.2.1 ×

M3.2 ZIP item names are case-sensitive
ASCII strings. Package implementers
shall create ZIP item names that
conform to ZIP archive file name
grammar.

10.2.2 ×

M3.3 Package implementers shall create
item names that are unique within a
given archive.

10.2.2 ×

M3.4 To map part names to ZIP item
names the package implementer
shall perform, in order, the steps
described in §10.2.3.

10.2.3 ×

Annex H

 109

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M3.5 The package implementer shall not
map a logical item name or
complete sequence of logical item
names sharing a common prefix to a
part name if the logical item prefix
has no corresponding content type.

10.2.3 ×

M3.6 To map ZIP item names to part
names, the package implementer
shall perform, in order, the steps
described in §10.2.4.

10.2.4 ×

M3.7 The package implementer shall map
all ZIP items to parts except MS-
DOS ZIP items, as defined in the ZIP
specification, that are not MS-DOS
files.

10.2.5 ×

M3.8 The package implementer shall map
all ZIP items to parts except MS-
DOS ZIP items, as defined in the ZIP
specification, that are not MS-DOS
files. [M3.7]
[Note: The ZIP specification
specifies that ZIP items recognized
as MS-DOS files are those with a
“version made by” field and an
“external file attributes” field in the
“file header” record in the central
directory that have a value of 0. end
note]
In ZIP archives, the package
implementer shall not exceed
65,535 bytes for the combined
length of the item name, Extra field,
and Comment fields.

10.2.5 ×

M3.9 ZIP-based packages shall not include
encryption as described in the ZIP
specification. Package implementers
shall enforce this restriction.

10.2.5 ×

ECMA-376 Part 2

110

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M3.10 Package implementers shall store
content type data in an item(s)
mapped to the logical item name
with the prefix_name equal to
“/[Content_Types].xml” or in the
interleaved case to the complete
sequence of logical item names with
that prefix_name.

10.2.6 ×

M3.11 Package implementers shall not
map logical item name(s) mapped to
the Content Types stream in a ZIP
archive to a part name.

10.2.6 ×

M3.13 Several substantial conditions that
represent a package unfit for
streaming consumption might be
detected mid-processing by a
streaming package implementer,
described in §10.2.8. When any of
these conditions are detected, the
streaming package implementer
shall generate an error, regardless
of any processing that has already
taken place. Package implementers
shall not generate a package
containing any of these conditions
when generating a package
intended for streaming
consumption.

10.2.8 ×

M3.14 For a ZIP archive to be a physical
layer for a package, the package
implementer shall ensure that the
ZIP archive holds equal values in the
appropriate fields of every File
Header within the Central Directory
and the corresponding Local File
Header and Data Descriptor pair,
when the Data Descriptor exists,
except as described in Table C–5 for
bit 3 of general-purpose bit flags.

Annex C ×

Annex H

 111

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M3.15 During consumption of a package, a
"Yes" value for a field in a table in
Annex C indicates a package
implementer shall support reading
the ZIP archive containing this
record or field, however, support
might mean ignoring.

Annex C ×

M3.16 During production of a package, a
“Yes” value for a field in a table in
Annex C indicates that the package
implementer shall write out this
record or field.

Annex C ×

M3.17 A “No” value for a field in a table in
Annex C indicates the package
implementer should not use this
record or field.

Annex C ×

M3.18 A “Partially, details below” value for
a record in a table in Annex C
indicates that the record contains
fields that might not be supported
by package implementers during
production or consumption. See the
details in the corresponding table to
determine requirements.

Annex C ×

M3.19 The value “Only used when needed”
associated with a record in a table in
Annex C indicates that the package
implementer shall use the record
only when needed to store data in
the ZIP archive.

Annex C ×

M3.20 The package implementer shall
ensure that all 64-bit stream record
sizes and offsets have the high-
order bit = 0.

Annex C ×

M3.21 The package implementer shall
ensure that all fields that contain
“number of entries” do not exceed
2,147,483,647.

Annex C x

Notes:

A: Only relevant if supporting the interleaving strategy specified in the Open Packaging Conventions.

ECMA-376 Part 2

112

Table H–7. ZIP physical mapping recommendations

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

S3.1 Package implementers should restrict
part naming to accommodate file
system limitations when naming
parts to be stored as ZIP items.

10.2.5 ×

S3.2 If a growth hint is used for an
interleaved part, the package
implementer should store the Extra
field containing the growth hint
padding with the item that
represents the first piece of the part.

10.2.7 ×

Table H–8. ZIP physical mapping optional requirements

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

O3.1 A package implementer might
intentionally order the sequence of
ZIP items in the archive to enable an
efficient organization of the part data
in order to achieve correct and
optimal interleaving.

10.2.1 ×

O3.2 An “Optional” value for a record in a
table in Annex C indicates that
package implementers might write
this record during production.

Annex C ×

H.4 Core Properties

The requirements in Table H–9 are only relevant if using the core properties feature.

Annex H

 113

Table H–9. Core properties conformance requirements

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M4.1 The format designer shall specify
and the format producer shall
create at most one core properties
relationship for a package. A format
consumer shall consider more than
one core properties relationship for
a package to be an error. If present,
the relationship shall target the Core
Properties part.

11.2 × × ×

M4.2 The format designer shall not
specify and the format producer
shall not create Core Properties that
use the Markup Compatibility
namespace as defined in Annex F. A
format consumer shall consider the
use of the Markup Compatibility
namespace to be an error.

11.3 × × ×

M4.3 Producers shall not create a
document element that contains
refinements to the Dublin Core
elements, except for the two
specified in the schema:
<dcterms:created> and
<dcterms:modified> Consumers
shall consider a document element
that violates this constraint to be an
error.

11.4 × ×

M4.4 Producers shall not create a
document element that contains the
xml:lang attribute at any other
location than on the keywords or
value elements. Consumers shall
consider a document element that
violates this constraint to be an
error.

11.4 × ×

ECMA-376 Part 2

114

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M4.5 Producers shall not create a
document element that contains the
xsi:type attribute, except for a
<dcterms:created> or
<dcterms:modified> element where
the xsi:type attribute shall be
present and shall hold the value
dcterms:W3CDTF, where dcterms is
the namespace prefix of the Dublin
Core namespace. Consumers shall
consider a document element that
violates this constraint to be an
error.

11.4 × ×

H.5 Thumbnail

The requirements in Table H–10 and Table H–11 are only relevant if using the thumbnail feature.

Table H–10. Thumbnail conformance requirements

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M5.1 The format designer shall specify
thumbnail parts that are identified
by either a part relationship or a
package relationship. The producer
shall build the package accordingly.

12.1 × ×

Table H–11. Thumbnail optional requirements

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

O5.1 The format designer might allow
images, called thumbnails, to be
used to help end-users identify parts
of a package or a package as a
whole. These images can be
generated by the producer and
stored as parts.

12 × ×

H.6 Digital Signatures

The requirements in Table H–12, Table H–13, and Table H–14 are only relevant if using the digital signatures

feature.

Annex H

 115

Table H–12. Digital Signatures conformance requirements

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M6.1 The package implementer shall
include only one Digital Signature
Origin part in a package and it shall
be targeted from the package root
using the well-defined relationship
type specified in Annex F.

13.2.1 ×

M6.2 When creating the first Digital
Signature XML Signature part, the
package implementer shall create
the Digital Signature Origin part, if
it does not exist, in order to specify
a relationship to that Digital
Signature XML Signature part.

13.2.1 ×

M6.3 The producer shall create Digital
Signature XML Signature parts that
have a relationship from the Digital
Signature Origin part and the
consumer shall use that
relationship to locate signature
information within the package.

13.2.1 × ×

M6.4 If the certificate is represented as a
separate part within the package,
the producer shall target that
certificate from the appropriate
Digital Signature XML Signature
part by a Digital Signature
Certificate relationship as specified
in Annex F and the consumer shall
use that relationship to locate the
certificate.

13.2.3 × ×

M6.5 The producer shall create
Reference elements within a
SignedInfo element that reference
elements within the same
Signature element. The consumer
shall consider Reference elements
within a SignedInfo element that
reference any resources outside
the same Signature element to be
in error.

13.2.4.1 × ×

ECMA-376 Part 2

116

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M6.6 The producer shall not create a
reference to a package-specific
Object element that contains a
transform other than a
canonicalization transform. The
consumer shall consider a
reference to a package-specific
Object element that contains a
transform other than a canonical
transform to be an error.

13.2.4.1 × ×

M6.7 The producer shall create one and
only one package-specific Object
element in the Signature element.
The consumer shall consider zero
or more than one package-specific
Object element in the Signature
element to be an error.

13.2.4.1 × ×

M6.8 The producer shall create package-
specific Object elements that
contain exactly one Manifest
element and exactly one
SignatureProperties element.
[Note: This SignatureProperties
element can contain multiple
SignatureProperty elements. end
note] The consumer shall consider
package-specific Object elements
that contain other types of
elements to be an error.

13.2.4.1 × ×

M6.9 The producer shall create
Reference elements within a
Manifest element that reference
with their URI attribute only parts
within the package. The consumer
shall consider Reference elements
within a Manifest element that
reference resources outside the
package to be an error.

13.2.4.1 × ×

Annex H

 117

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M6.10 The producer shall create relative
references to the local parts that
have query components that
specifies the part content type as
described in §13.2.4.6. The relative
reference excluding the query
component shall conform to the
part name grammar. The
consumer shall consider a relative
reference to a local part that has a
query component that incorrectly
specifies the part content type to
be an error.

13.2.4.1 × ×

M6.11 The producer shall create
Reference elements with a query
component that specifies the
content type that matches the
content type of the referenced
part. The consumer shall consider
signature validation to fail if the
part content type compared in a
case-sensitive manner to the
content type specified in the query
component of the part reference
does not match.

13.2.4.1 × ×

M6.12 The producer shall not create
Reference elements within a
Manifest element that contain
transforms other than the
canonicalization transform and
relationships transform. The
consumer shall consider Reference
elements within a Manifest
element that contain transforms
other than the canonicalization
transform and relationships
transform to be in error.

13.2.4.1 × ×

M6.13 A producer that uses an optional
relationships transform shall follow
it by a canonicalization transform.
The consumer shall consider any
relationships transform that is not
followed by a canonicalization
transform to be an error.

13.2.4.1 × ×

ECMA-376 Part 2

118

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M6.14 The producer shall create exactly
one SignatureProperty element
with the Id attribute value set to
idSignatureTime. The Target
attribute value of this element
shall be either empty or contain a
fragment reference to the value of
the Id attribute of the root
Signature element. A
SignatureProperty element shall
contain exactly one
SignatureTime child element. The
consumer shall consider a
SignatureProperty element that
does not contain a SignatureTime
element or whose Target attribute
value is not empty or does not
contain a fragment reference the
Id attribute of the ancestor
Signature element to be in error.

13.2.4.1 × ×

M6.15 The producer shall create a
Signature element that contains
exactly one local-data, package-
specific Object element and zero or
more application-defined Object
elements. If a Signature element
violates this constraint, a
consumer shall consider this to be
an error.

13.2.4.2 × ×

M6.16 The producer shall create a
SignedInfo element that contains
exactly one reference to the
package-specific Object element.
The consumer shall consider it an
error if a SignedInfo element does
not contain a reference to the
package-specific Object element.

13.2.4.3 × ×

M6.17 Package producers and consumers
shall support RSA-SHA1 algorithms
to produce or validate signatures.

13.2.4.5 × ×

Annex H

 119

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M6.18 The producer shall create a
Reference element within a
Manifest element with a URI
attribute and that attribute shall
contain a part name, without a
fragment identifier. The consumer
shall consider a Reference element
with a URI attribute that does not
contain a part name to be an error.

13.2.4.6 × ×

M6.19 The following transforms shall be
supported by producers and
consumers of packages with digital
signatures:

 XML Canonicalization
(c14n)

 XML Canonicalization with
Comments (c14n with
comments)

 Relationships transform
(package-specific)

Consumers validating signed
packages shall fail the validation if
other transforms are encountered.
Relationships transforms shall only
be supported by producers and
consumers when the Transform
element is a descendant element
of a Manifest element

13.2.4.7 × ×

M6.20 Producers shall create application-
defined Object elements that
contain XML-compliant data;
consumers shall treat data that is
not XML-compliant as an error.

13.2.4.14 × ×

M6.21 Producers and consumers shall use
the certificate embedded in the
Digital Signature XML Signature
part when it is specified. Producers
and consumers shall use the
certificate embedded in the Digital
Signature XML Signature part when
it is specified.

13.2.4.15 × ×

ECMA-376 Part 2

120

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M6.22 The producer shall not create a
Manifest element that references
any data outside of the package.
The consumer shall consider a
Manifest element that references
data outside of the package to be
in error.

13.2.4.16 × ×

M6.23 The producer shall create a
data/time format that conforms to
the syntax described in the W3C
Note "Date and Time Formats".
The consumer shall consider a
format that does not conform to
the syntax described in that WC3
note to be in error.

13.2.4.20 × ×

M6.24 The producer shall create a value
that conforms to the format
specified in the Format element.
The consumer shall consider a
value that does not conform to
that format to be in error.

13.2.4.21 × ×

M6.25 To sign a subset of relationships,
the producer shall use the
package-specific relationships
transform. The consumer shall use
the package-specific relationships
transform to validate the signature
when a subset of relationships are
signed.

13.2.4.23 × ×

M6.26 Producers shall specify a
canonicalization transform
immediately following a
relationships transform and
consumers that encounter a
relationships transform that is not
immediately followed by a
canonicalization transform shall
generate an error.

13.2.4.23 × ×

Annex H

 121

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M6.27 When applying a relationships
transform for digital signatures,
the package implementer shall
remove all Relationship elements
that do not have either an Id value
that matches any SourceId value
or a Type value that matches any
SourceType value, among the
SourceId and SourceType values
specified in the transform
definition. Producers and
consumers shall compare values as
case-sensitive Unicode strings.

13.2.4.24 × ×

M6.28 When signing Object element
data, package implementers shall
follow the generic reference
creation algorithm described
in §3.1 of the W3C
Recommendation “XML-Signature
Syntax and Processing”.

13.4 ×

M6.29 When validating digital signatures,
consumers shall verify the content
type and the digest contained in
each Reference descendant
element of the SignedInfo
element, and validate the
signature calculated using the
SignedInfo element.

13.5 ×

M6.30 The package implementer shall
compare the generated digest
value against the DigestValue
element in the Reference element
of the SignedInfo element.
Package implementers shall
consider references invalid if there
is any mismatch.

13.5 ×

M6.31 Streaming consumers that
maintain signatures shall be able to
cache the parts necessary for
detecting and processing
signatures.

13.5.1 ×

ECMA-376 Part 2

122

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M6.32 The package implementer shall not
use the Markup Compatibility
namespace, as specified in Annex F
within the package-specific Object
element. The package
implementer shall consider the use
of the Markup Compatibility
namespace within the package-
specific Object element to be an
error.

13.6.2 ×

M6.33 If an application allows for a single
part to contain information that
might not be fully understood by
all implementations, then the
format designer shall carefully
design the signing and verification
policies to account for the
possibility of different
implementations being used for
each action in the sequence of
content creation, content signing,
and signature verification.
Producers and consumers shall
account for this possibility in their
signing and verification processing.

13.6.2 × × ×

M6.34 The following canonicalization
methods shall be supported by
producers and consumers of
packages with digital signatures:
XML Canonicalization (c14n)
XML Canonicalization with
Comments (c14n with comments)
Consumers validating signed
packages shall fail the validation if
other canonicalization methods are
encountered.

13.2.4.4 × ×

M6.35 A producer shall not specify more
than one relationship transform for
a particular relationships part. A
consumer shall treat the presence
of more than one relationship
transform for a particular
relationships part as an error.

13.2.4.23 × ×

Annex H

 123

Table H–13. Digital signatures recommendations

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

S6.1 The producer should not create any
content in the Digital Signature Origin
part itself.

13.2.1 ×

S6.2 Producers generating digital
signatures should not create Digital
Signature Certificate parts that are
not the target of at least one Digital
Signature Certificate relationship from
a Digital Signature XML Signature
part. In addition, producers should
remove a Digital Signature Certificate
part if removing the last Digital
Signature XML Signature part that has
a Digital Signature Certificate
relationship to it.

13.2.3 ×

S6.3 For digital signatures, a producer
should apply a canonicalization
transform to the SignedInfo element
when it generates it, and a consumer
should apply the canonicalization
transform to the SignedInfo element
when validating it.

13.2.4.4 × ×

S6.4 Producers and consumers should also
use canonicalization transforms for
references to parts that hold XML
documents.

13.2.4.4 × ×

S6.5 The producer should only create
Reference elements within a
SignedInfo element that reference an
Object element.

13.2.4.1 ×

ECMA-376 Part 2

124

Table H–14. Digital signatures optional requirements

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

O6.1 Format designers might allow a
package to include digital signatures
to enable consumers to validate the
integrity of the contents. The
producer might include the digital
signature when allowed by the
format designer.

13 × ×

O6.2 If there are no Digital Signature XML
Signature parts in the package, the
Digital Signature Origin part is
optional.

13.2.1 ×

O6.4 The producer might create zero or
more Digital Signature XML
Signature parts in a package.

13.2.2 ×

O6.5 Alternatively, the producer might
store the certificate as a separate
part in the package, might embed it
within the Digital Signature XML
Signature part itself, or might not
include it in the package if certificate
data is known or can be obtained
from a local or remote certificate
store.

13.2.3 ×

O6.6 The producer might sign the part
holding the certificate.

13.2.3 ×

O6.7 Producers might share Digital
Signature Certificate parts by using
the same certificate to create more
than one signature.

13.2.3 ×

O6.8 The format designer might permit
one or more application-defined
Object elements. If allowed by the
format designer, format producers
can create one or more application-
defined Object elements.

13.2.4.14 × ×

O6.9 Format designers and producers
might not apply package-specific
restrictions regarding URIs and
Transform elements to application-
defined Object element.

13.2.4.14 × ×

Annex H

 125

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

O6.10
Format designers might permit
producers to sign individual
relationships in a package or the
Relationships part as a whole.

13.2.4.23 × ×

O6.11 The package implementer might
create relationships XML that
contains content from several
namespaces, along with versioning
instructions as defined in Part 3,
“Markup Compatibility and
Extensibility”.

13.2.4.24 ×

O6.12 Format designers might specify an
application-defined package part
format that allows for the
embedding of versioned or
extended content that might not be
fully understood by all present and
future implementations. Producers
might create such embedded
versioned or extended content and
consumers might encounter such
content.

13.6.2 × × ×

H.7 Pack URI

Table H–15. Pack URI conformance requirements

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M7.1 The authority component contains an
embedded URI that points to a
package. The authority component
shall not reference a package
embedded in another package. The
package implementer shall create an
embedded URI that meets the
requirements defined in RFC 3986 for a
valid URI.

B.1 ×

ECMA-376 Part 2

126

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M7.2 The optional path component identifies
a particular part within the package.
The package implementer shall only
create path components that conform
to the part naming rules. When the
path component is missing, the
resource identified by the pack URI is
the package as a whole.

B.1 ×

M7.3 The package implementer shall
consider pack URIs equivalent if:
The scheme components are octet-by-
octet identical after they are both
converted to lowercase; and
The URIs, decoded as described in §B.2
from the authority components are
equivalent (the equivalency rules by
scheme, as per RFC 3986); and
The path components are equivalent
when compared as case-insensitive
ASCII strings.

B.4 ×

M7.4 The package implementer shall not
create an authority component with an
unescaped colon (:) character.

B.1 ×

Table H–16. Pack URI optional requirements

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

O7.1 Consumer applications, based on the
obsolete URI specification RFC 2396,
might tolerate the presence of an
unescaped colon character in an
authority component.

B.1 ×

End of informative text.

Annex I

 127

Annex I.
(informative)

Differences Between ECMA-376:2012 and
ECMA-376:2006

This annex is informative.

This annex documents the syntactic differences between the versions of the Open Packaging Specification

defined in ECMA-376:2012 and ECMA-376:2006.

I.1 XML Elements

The following XML elements are included in ECMA-376:2012 but are not included in ECMA-376:2006:

 The value element (in the Core Properties Part schema in §D.2)

The following XML elements are included in ECMA-376:2006 but are not included in ECMA-376:2012:

 The contentType element (in the Core Properties Part schema in §D.2)

I.2 XML Attributes

No changes.

I.3 XML Enumeration Values

No changes.

I.4 XML Simple Types

No changes.

End of informative text.

ECMA-376 Part 2

128

Annex J.
(informative)

Index

This annex is informative.

access
local .. 92
networked .. 92

access style ... 5, 27, 93
authority ... 67
base URI .. 5
behavior .. 5

implementation-defined 5
unspecified ... 5

byte ... 5
communication style 5, 27, 94
conformance class .. 2

OPC ... 2
consumer .. 5, 92
content type ... 5, 17
content types .. 1
content types stream ... 5, 28
core properties ... 1
device ... 5, 92
digital signature .. 1
direct access consumption 93
format consumer .. 5
format designer .. 5
format producer ... 5
fragment ... 67
growth hint ... 6
id 6
IEC ... See International Electrotechnical Commission
interleaved ordering ... 6
International Electrotechnical Commission 11
layout style ... 6, 27, 93
local access ... 6
logical item name ... 6, 33
networked access ... 6
Office Open XML.. viii
ordering

interleaved .. 27, 94
simple ... 27, 93

pack URI .. 6, 14
package ... 1, 6, 14
package implementer ...6
package model .. 1, 6
package relationship ...6
part ... 1, 6, 14
part name ... 6, 14
path .. 67
pchar .. 67
pct-encoded characters ... 67
physical mapping ..1
physical model .. 6, 27
physical package format 7, 27
piece ... 7, 35
pipe ... 7, 27, 92
producer ... 7, 92
query .. 67
random access .. 7, 94
relationship ... 7, 20
relationship part .. 20
relationship type ...7
relationships part ..7
relative reference ...5
reserved character ... 67
resource ... 67
scheme ... 67
segment ... 67
sequential delivery ... 7, 94
signature policy ...7
simple ordering ...7
simultaneous creation and consumption 7, 93
source part ..7
stream ... 7, 14
streaming consumption 7, 93

Annex J

 129

streaming creation ... 8, 93
sub-delims .. 67
target part .. 8
thumbnail ... 1, 8, 46, 114
Unicode strings ... 65
unique identifier ... 8

unreserved characters ... 67
XIP archive ... 37
XSD ..8
ZIP archive...8
ZIP item ... 8, 37

End of informative text.

	Table of Contents
	Foreword
	Introduction
	1. Scope
	2. Conformance
	3. Normative References
	4. Terms and Definitions
	5. Notational Conventions
	5.1 Document Conventions
	5.2 Diagram Notes

	6. Acronyms and Abbreviations
	7. General Description
	8. Overview
	9. Package Model
	9.1 Parts
	9.1.1 Part Names
	9.1.1.1 Part Name Syntax
	9.1.1.1.1 Part IRI Syntax
	9.1.1.1.2 Part URI Syntax

	9.1.1.2 Part IRI and Part URI Mapping
	9.1.1.3 Part Name Equivalence
	9.1.1.3.1 Part IRI Equivalence
	9.1.1.3.2 Part Name Equivalence

	9.1.1.4 Part Naming

	9.1.2 Content Types
	9.1.3 Growth Hint
	9.1.4 XML Usage

	9.2 Part Addressing
	9.2.1 Relative References

	9.3 Relationships
	9.3.1 Relationships Part
	9.3.2 Relationship Markup
	9.3.2.1 Relationships Element
	9.3.2.2 Relationship Element

	9.3.3 Representing Relationships
	9.3.4 Support for Versioning and Extensibility

	10. Physical Package
	10.1 Physical Mapping Guidelines
	10.1.1 Mapped Components
	10.1.2 Mapping Content Types
	10.1.2.1 Identifying the Part Content Type
	10.1.2.2 Content Types Stream Markup
	10.1.2.2.1 Types Element
	10.1.2.2.2 Default Element
	10.1.2.2.3 Override Element
	10.1.2.2.4 Content Types Stream Markup Example

	10.1.2.3 Setting the Content Type of a Part
	10.1.2.4 Getting the Content Type of a Part
	10.1.2.5 Support for Versioning and Extensibility

	10.1.3 Mapping Part Names to Physical Package Item Names
	10.1.3.1 Logical Item Names
	10.1.3.2 Mapping Part Names to Logical Item Names
	10.1.3.3 Mapping Logical Item Names and Physical Package Item Names
	10.1.3.4 Mapping Logical Item Names to Part Names

	10.1.4 Interleaving

	10.2 Mapping to a ZIP Archive
	10.2.1 Mapping Part Data
	10.2.2 ZIP Item Names
	10.2.3 Mapping Part Names to ZIP Item Names
	10.2.4 Mapping ZIP Item Names to Part Names
	10.2.5 ZIP Package Limitations
	10.2.6 Mapping Part Content Type
	10.2.7 Mapping the Growth Hint
	10.2.8 Late Detection of ZIP Items Unfit for Streaming Consumption
	10.2.9 ZIP Format Clarifications for Packages

	11. Core Properties
	11.1 Core Properties Part
	11.2 Location of Core Properties Part
	11.3 Support for Versioning and Extensibility
	11.4 Schema Restrictions for Core Properties

	12. Thumbnails
	12.1 Thumbnail Parts

	13. Digital Signatures
	13.1 Choosing Content to Sign
	13.2 Digital Signature Parts
	13.2.1 Digital Signature Origin Part
	13.2.2 Digital Signature XML Signature Part
	13.2.3 Digital Signature Certificate Part
	13.2.4 Digital Signature Markup
	13.2.4.1 Modifications to the XML Digital Signature Specification
	13.2.4.2 Signature Element
	13.2.4.3 SignedInfo Element
	13.2.4.4 CanonicalizationMethod Element
	13.2.4.5 SignatureMethod Element
	13.2.4.6 Reference Element
	13.2.4.6.1 Usage of <Reference> Element as <Manifest> Child Element

	13.2.4.7 Transforms Element
	13.2.4.8 Transform Element
	13.2.4.9 DigestMethod Element
	13.2.4.10 DigestValue Element
	13.2.4.11 SignatureValue Element
	13.2.4.12 Object Element
	13.2.4.13 Package-Specific Object Element
	13.2.4.14 Application-Defined Object Element
	13.2.4.15 KeyInfo Element
	13.2.4.16 Manifest Element
	13.2.4.17 SignatureProperties Element
	13.2.4.18 SignatureProperty Element
	13.2.4.19 SignatureTime Element
	13.2.4.20 Format Element
	13.2.4.21 Value Element
	13.2.4.22 RelationshipReference Element
	13.2.4.23 RelationshipsGroupReference Element
	13.2.4.24 Relationships Transform Algorithm

	13.3 Digital Signature Example
	13.4 Generating Signatures
	13.5 Validating Signatures
	13.5.1 Signature Validation and Streaming Consumption

	13.6 Support for Versioning and Extensibility
	13.6.1 Using Relationship Types
	13.6.2 Markup Compatibility Namespace for Package Digital Signatures

	Annex A. (normative) Resolving Unicode Strings to Part Names
	A.1 Creating an IRI from a Unicode String
	A.2 Creating a URI from an IRI
	A.3 Resolving a Relative Reference to a Part Name
	A.4 String Conversion Examples

	Annex B. (normative) Pack URI
	B.1 Pack URI Scheme
	B.2 Resolving a Pack URI to a Resource
	B.3 Composing a Pack URI
	B.4 Equivalence

	Annex C. (normative) ZIP Appnote.txt Clarifications
	C.1 Archive File Header Consistency
	C.2 Data Descriptor Signature
	C.3 Table Key

	Annex D. (normative) Schemas - W3C XML Schema
	D.1 Content Types Stream
	D.2 Core Properties Part
	D.3 Digital Signature XML Signature Markup
	D.4 Relationships Part

	Annex E. (informative) Schemas - RELAX NG
	E.1 Content Types Stream
	E.2 Core Properties Part
	E.3 Digital Signature XML Signature Markup
	E.4 Relationships Part
	E.5 Additional Resources
	E.5.1 XML
	E.5.2 XML Digital Signature Core

	Annex F. (normative) Standard Namespaces and Content Types
	Annex G. (informative) Physical Model Design Considerations
	G.1 Access Styles
	G.1.1 Direct Access Consumption
	G.1.2 Streaming Consumption
	G.1.3 Streaming Creation
	G.1.4 Simultaneous Creation and Consumption

	G.2 Layout Styles
	G.2.1 Simple Ordering
	G.2.2 Interleaved Ordering

	G.3 Communication Styles
	G.3.1 Sequential Delivery
	G.3.2 Random Access

	Annex H. (informative) Guidelines for Meeting Conformance
	H.1 Package Model
	H.2 Physical Packages
	H.3 ZIP Physical Mapping
	H.4 Core Properties
	H.5 Thumbnail
	H.6 Digital Signatures
	H.7 Pack URI

	Annex I. (informative) Differences Between ECMA-376:2012 and ECMA-376:2006
	I.1 XML Elements
	I.2 XML Attributes
	I.3 XML Enumeration Values
	I.4 XML Simple Types

	Annex J. (informative) Index
	Ecma Standard 2nd page with registered logo 2012.pdf
	OLE_LINK6
	OLE_LINK7
	DDHeadingPage1
	DDOrganization
	LibEnteteISO
	LIBTypeTitreISO
	DDTITLE4
	DDTITLE3
	DDTITLE2
	DDTITLE1
	DDDocLanguage
	DDWorkDocDate
	DDDocStage
	DDOrganization3
	DDOrganization1
	DDBASEYEAR
	DDAmno
	DDDocSubType
	DDDocType
	DDWorkDocNo
	DDpubYear
	DDRefNoPart
	DDRefGen
	DDRefNum
	DDSCSecr
	DDSecr
	DDSCTitle
	DDTCTitle
	DDWGNum
	DDSCNum
	DDTCNum
	LIBLANG
	libH2NAME
	libH1NAME
	LibDesc
	LibDescD
	LibDescE
	LibDescF
	NATSubVer
	CENSubVer
	ISOSubVer
	LIBVerMSDN
	LIBStageCode
	LibRpl
	LibICS
	LIBFIL
	LIBEnFileName
	LIBFrFileName
	LIBDeFileName
	LIBNatFileName
	LIBFileOld
	LIBTypeTitre
	LIBTypeTitreCEN
	LIBTypeTitreNAT
	LibFileEnTete
	LibEntete
	LibEnteteCEN
	LibEnteteNAT
	LIBASynchro
	LIBASynchroVF
	LIBASynchroVE
	LIBASynchroVD
	LIBPATENT
	DDEditionNo
	OLE_LINK5

