
Laboratory 6: (Big Project)

AN ENHANCED PROCESSOR

Department of Electronics Page | 1

Digital Design Laboratory (Advanced Program)

OBJECTIVES

➢ The purpose of this lab is to learn how to connect simple input (switches) and output devices

(LEDs and 7-segment) to an FPGA chip and implement a circuit that uses these devices.

➢ Design an enhanced processor based on the simple processor in lab 5.

PREPARATION FOR LAB 6

➢ Finish all the lab from 1-5.

➢ Students have to do lab 6 individually, then write the report of this project. The report should

include all steps of your design: block diagram, waveform, RTL viewer, FSM,…

➢ When reporting to the instructors, you will answer random questions to prove you understand

the project.

REFERENCE

1. Intel FPGA training

Laboratory 6: (Big Project)

AN ENHANCED PROCESSOR

Department of Electronics Page | 2

Digital Design Laboratory (Advanced Program)

Requirement: You will extend the capability of the processor so that the external counter is no

longer needed, and so that the processor has the ability to perform read and write operations using

memory or other devices.

Instruction:

You will add three new types of instructions to the processor, as displayed in Table 1. The ld

(load) instruction loads data into register RX from the external memory address specified in

register RY. The st (store) instruction stores the data contained in register RX into the memory

address found in RY. Finally, the instruction mvnz (move if not zero) allows a mv operation to be

executed only under the condition that the current contents of register G are not equal to 0.

Figure 1: New instructions performed in the processor.

A reference schematic of the enhanced processor is given in Figure 1. In this figure, registers

R0 to R6 are the same as in Figure 1 of Laboratory 5, but register R7 has been changed to a counter.

This counter is used to provide the addresses in the memory from which the processor’s

instructions are read; in the preceding lab exercise, a counter external to the processor was used

for this purpose. We will refer to R7 as the processor’s program counter (PC), because this

terminology is common for real processors available in the industry. When the processor is reset,

PC is set to address 0. At the start of each instruction (in time step 0) the contents of PC are used

as an address to read an instruction from the memory. The instruction is stored in IR and the PC s

automatically incremented to point to the next instruction (in the case of mvi the PC provides the

address of the immediate data and is then incremented again).

The processor’s control unit increments PC by using the incr_PC signal, which is just an enable

on this counter. It is also possible to directly load an address into PC (R7) by having the processor

execute a mv or mvi instruction in which the destination register is specified as R7. In this case

Laboratory 6: (Big Project)

AN ENHANCED PROCESSOR

Department of Electronics Page | 3

Digital Design Laboratory (Advanced Program)

the control unit uses the signal R7in to perform a parallel load of the counter. In this way, the

processor can execute instructions at any address in memory, as opposed to only being able to

execute instructions that are stored in successive addresses. Similarly, the current contents of PC

can be copied into another register by using a mv instruction.

Figure 1: A reference schematic of the enhanced processor.

An example of code that uses the PC register to implement a loop is shown below, where the

text after the % on each line is just a comment. The instruction mv R5,R7 places into R5 the

address in memory of the instruction sub R4,R2. Then, the instruction mvnz R7,R5 causes the sub

instruction to be executed repeatedly until R4 becomes 0. This type of loop could be used in a

larger program as a way of creating a delay.

Laboratory 6: (Big Project)

AN ENHANCED PROCESSOR

Department of Electronics Page | 4

Digital Design Laboratory (Advanced Program)

mvi R2,#1

mvi R4,#10000000 % binary delay value

mv R5,R7 % save address of next instruction

sub R4,R2 % decrement delay count

mvnz R7,R5 % continue subtracting until delay count gets to 0

Figure 1 also shows two registers in the processor that are used for data transfers. The ADDR

register is used to send addresses to an external device, such as a memory module, and the DOUT

register is used by the processor to provide data that can be stored outside the processor. One use

of the ADDR register is for reading, or fetching, instructions from memory; when the processor

wants to fetch an instruction, the contents of PC (R7) are transferred across the bus and loaded into

ADDR. This address is provided to memory. In addition to fetching instructions,

the processor can read data at any address by using the ADDR register. Both data and instructions

are read into the processor on the DIN input port. The processor can write data for storage at an

external address by placing this address into the ADDR register, placing the data to be stored into

its DOUT register, and asserting the output of the W (write) flip-flop to 1.

Figure 2: Connecting the enhanced processor to a memory and output register.

Laboratory 6: (Big Project)

AN ENHANCED PROCESSOR

Department of Electronics Page | 5

Digital Design Laboratory (Advanced Program)

Figure 2 illustrates how the enhanced processor is connected to memory and other devices.

The memory unit in the figure supports both read and write operations and therefore has both

address and data inputs, as well as a write enable input. The memory also has a clock input, because

the address, data, and write enable inputs must be loaded into the memory on an active clock edge.

This type of memory unit is usually called a synchronous static random access memory

(synchronous SRAM). Figure 2 also includes a 9-bit register that can be used to store data from the

processor; this register might be connected to a set of LEDs to allow display of data on your DE-

10 board. To allow the processor to select either the memory unit or register when performing a

write operation, the circuit includes some logic gates that perform address decoding: if the upper

address lines are A8A7 = 00, then the memory module will be written at the address given on the

lower address lines. Figure 2 shows n lower address lines connected to the memory; for this

exercise a memory with 128 words is probably sufficient, which implies that n = 7 and the memory

address port is driven by A6…A0. For addresses in which A8A7 = 01, the data written by the

processor is loaded into the register whose outputs are called LEDs in Figure 2.

A diagram of the random access memory (RAM) module that we will implement is shown in

Figure 3. It contains 32 four-bit words (rows), which are accessed using a five-bit address port, a

four-bit data port, and a write control input.

(a) RAM organization

(b) RAM implementation

Figure 3: A 32 x 4 RAM module.

