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Abstract. Identifying fast and robust numerical solvers is a
critical issue that needs to be addressed in order to improve
projections of polar ice sheets evolving in a changing cli-
mate. This work evaluates the impact of using advanced nu-
merical solvers for transient ice-flow simulations conducted
with the JPL–UCI Ice Sheet System Model (ISSM). We iden-
tify optimal numerical solvers by testing a broad suite of
readily available solvers, ranging from direct sparse solvers
to preconditioned iterative methods, on the commonly used
Ice Sheet Model Intercomparison Project for Higher-Order
ice sheet Models benchmark tests. Three types of analyses
are considered: mass transport, horizontal stress balance, and
incompressibility. The results of the fastest solvers for each
analysis type are ranked based on their scalability across
mesh size and basal boundary conditions. We find that the
fastest iterative solvers are ∼ 1.5–100 times faster than the
default direct solver used in ISSM, with speed-ups improv-
ing rapidly with increased mesh resolution. We provide a set
of recommendations for users in search of efficient solvers
to use for transient ice-flow simulations, enabling higher-
resolution meshes and faster turnaround time. The end result
will be improved transient simulations for short-term, highly
resolved forward projections (10–100 year time scale) and
also improved long-term paleo-reconstructions using higher-
order representations of stresses in the ice. This analysis
will also enable a new generation of comprehensive uncer-
tainty quantification assessments of forward sea-level rise

projections, which rely heavily on ensemble or sampling ap-
proaches that are inherently expensive.

1 Introduction

Fast and efficient numerical simulations of ice flow are crit-
ical to understanding the role and impact of polar ice sheets
(Greenland Ice Sheet, GIS, and Antarctica Ice Sheet, AIS)
on sea-level rise in a changing climate. As reported in the
Intergovernmental Panel on Climate Change AR5 Synthe-
sis Report (Pachauri et al., 2014), “The ability to simulate
ocean thermal expansion, glaciers and ice sheets, and thus
sea level, has improved since the AR4, but significant chal-
lenges remain in representing the dynamics of the Greenland
and Antarctic ice sheets.” One of these challenges is the fact
that ice-sheet models (ISMs) need to resolve ice flow at high
spatial resolution (500 m to 1 km) in order to capture mass
transport through outlet glaciers. This is especially the case
for the GIS, which has a significant number of outlet glaciers
in the 5–10 km width range (Rignot et al., 2011; Morlighem
et al., 2014; Moon et al., 2015). This leads to transient ice-
flow simulations with highly resolved meshes, which in turn
reduces the time step prescribed by the Courant–Friedrichs–
Lewy (CFL) condition that is necessary to maintain con-
vergence and avoid developing numerical instabilities. This
combination of high spatial and temporal resolution implies
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that ISMs are faced with challenges involving both scalabil-
ity and speed.

The traditional approach to address this combined chal-
lenge is to solve a simplified set of equations for stress bal-
ance, relying on approximations to the stress tensor, which
drastically reduce the number of degrees of freedom (DOFs).
These approximations have been extensively documented in
the literature (Hindmarsh, 2004) and will not be described
in detail here. However, we provide a brief summary of the
characteristics of these models in order to relate the implica-
tions of our results in terms of solver efficiencies. The most
comprehensive system of equations for modeling stress bal-
ance in ice flow is the full Stokes model (Stokes, 1845),
which captures each component of the stress tensor, and is
hence the most complete physical description of stress equi-
librium. It comprises four DOFs (i.e., three velocity compo-
nents and pressure) that are solved on a 3-D mesh.

The higher-order formulation (HO, Blatter, 1995; Pattyn,
2003) uses the fewest assumptions to the stress tensor. This
model neglects horizontal gradients of vertical velocities by
assuming that these terms are negligible compared to ver-
tical gradients of horizontal velocities. In addition, bridg-
ing effects are neglected. The resulting model comprises
two DOFs for horizontal velocities that are solved on a 3-
D mesh. Subsequently, the vertical velocity is recovered us-
ing the incompressibility equation. The next simplified for-
mulation, the Shallow-Shelf or Shelfy-Stream Approxima-
tion (SSA, MacAyeal, 1989), arises from further assuming
that vertical shear is negligible. This results in a set of two
equations for the horizontal components of velocity that are
collapsed onto a 2-D mesh, where the vertical velocity is
recovered through the incompressibility equation. This is
one of the most efficient models used for fast-flowing ice
streams and ice shelves, where motion is dominated by slid-
ing (MacAyeal, 1989; Rommelaere, 1996; MacAyeal et al.,
1998).

Finally, for the interior of the ice sheet, ISMs rely on
the Shallow Ice Approximation (SIA, Hutter, 1983). In this
model, horizontal gradients of vertical velocity are neglected
compared to the vertical gradients of horizontal velocities
and only the components of vertical shear are included in the
deviatoric stress (i.e., σ ′xz and σ ′yz). This reduces the stress
balance equations to a simple analytical formula relating the
surface slope, ice thickness, and basal friction at the ice–
bedrock interface. It is computationally very efficient and has
been relied upon for long paleo-reconstructions of ice from
the Last Glacial Maximum (LGM) to present day (Payne and
Baldwin, 2000; Ritz et al., 1996; Huybrechts, 2004).

This list of model approximations is not exhaustive and
does not include hybrid approaches such as the L1L2 for-
mulation that mixes both SSA and SIA approximations. For
readers who are interested in this topic, a comprehensive
classification can be found in Hindmarsh (2004). Increas-
ingly though, simple approximations such as the SIA have
proven incapable of replicating observed velocity changes,

such as the rapid acceleration of the West Antarctic Ice Sheet
(Rignot, 2008) in the past two decades, or seasonal varia-
tions in surface velocities exhibited by GIS outlet glaciers
(Moon et al., 2015). In addition, they are unable to capture
ice-flow dynamics at resolutions compatible with most of the
GIS outlet glaciers and fast ice streams of the AIS. In this
context, the need for leveraging faster solvers within ISMs
using accurate ice-flow formulations is critical for improving
short-term projections of sea-level rise.

The Ice Sheet System Model (ISSM) framework relies on
a massively parallelized thermo-mechanical finite-element
ice-sheet model that was developed to simulate the evolution
of Greenland and Antarctica in a changing climate (Larour
et al., 2012). ISSM employs the full range of ice-flow ap-
proximations described above, and is therefore a good can-
didate for studying the efficiency of different solvers on ice-
flow models. By default, ISSM relies on a direct numerical
solver called the MUltifrontal Massively Parallel sparse di-
rect Solver (MUMPS, Amestoy et al., 2001, 2006) to solve
the system of algebraic equations resulting from the finite-
element discretization of the transient evolution of an ice
sheet (i.e., solving the discrete mass transport, momentum
balance, and thermal equations).

Using a direct parallel solver provides a robust and stable
numerical scheme. However, this approach tends to be slow
and memory-intensive for large problems, where the number
of DOFs approaches 100 000 or more. As noted by Larour
et al. (2012), the CPU time consumed by the default solver
(i.e., MUMPS) accounts for 95 % of the total solution time.
In addition, there are significant problems with scalability as-
sociated with the direct solver approach (Larour et al., 2012),
which have not been explored to date, which limits ISSM
from efficiently running large-scale, high-resolution projec-
tions for the GIS and AIS. In addition to MUMPS, ISSM
can also use numerical methods provided by the Portable Ex-
tensible Toolkit for Scientific Computations (PETSc, Balay
et al., 1997), including iterative methods combined with pre-
conditioning matrices that are well suited for ice-flow simu-
lations. In order to reduce the impact of the numerical solver
as the bottleneck on solution time, this study evaluates the
performance of using state-of-the-art numerical solvers for
transient ice-flow simulations. Our approach is to character-
ize the impact of using a suite of readily available PETSc
solvers to accelerate ISSM simulations involving higher-
order ice-flow formulations. Our goal is to identify fast and
scalable solvers that are stable across different basal sliding
conditions. Here, we conduct a comprehensive assessment of
numerical solvers using calibrated test cases from the well-
known Ice Sheet Model Intercomparison Project for Higher-
Order ice sheet Models (ISMIP-HOM) benchmark experi-
ments (Pattyn et al., 2008). Using these well-studied bench-
mark tests allows us to evaluate the performance of numerical
solvers for ice-flow simulations employing the HO formula-
tion in a repeatable manner.
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This work specifically focuses on this widely used formu-
lation, as it currently represents the most computationally
demanding model (short of full Stokes) capable of captur-
ing vertical as well as horizontal shear stresses necessary to
model an entire basin (Pattyn, 1996). The finite-element dis-
cretization of the full Stokes model leads to a well-studied
saddle point problem, which represents an active area of re-
search in geophysics (e.g., Benzi et al., 2005; Elman et al.,
2014). While recent work (e.g., Isaac et al., 2015) has shown
promising results, stable iterative full Stokes solvers are not
readily available and, in general, are significantly disruptive
to integrate in terms of their code base, which is the reason
we will not be considering them in this study.

The HO model represents the next, most complete formu-
lation and represents a significant computational bottleneck
compared to its 2-D and 1-D counterparts, which are signif-
icantly less demanding because of the drastic reduction in
the number of DOFs required for vertically collapsed 2-D
meshes (SSA) or local 1-D analytical formulations (SIA).
In contrast to the studies focused on specific, customized
solvers for approximate flow models (i.e., Brown et al., 2013;
Cornford et al., 2013; Tezaur et al., 2015; Tuminaro et al.,
2016), this work surveys a broad range of solvers for the HO
ice-flow model. While our analysis uses ISSM, our results
are relevant to other ice-flow models and frameworks that
use PETSc solvers.

The manuscript is structured as follows. In Sect. 2, we de-
scribe the ISMIP-HOM experiments that we consider and the
approach adopted for testing different numerical methods. In
Sect. 3, we summarize efficient baseline solvers for transient
simulations using the ISSM framework. In Sect. 4, we dis-
cuss the timing results from testing a wide range of solvers
which, in addition to enabling large-scale simulations, yield
significant speed-ups in solution time. We then conclude on
the scope of this study and summarize our findings.

2 Model and setup

In order to identify optimal numerical solvers for a broad
class of transient ice-flow simulations, we test a suite of
PETSc solvers on synthetic ice-flow experiments with vary-
ing basal sliding conditions. We consider the effectiveness of
competing solvers (in terms of speed) using the ISMIP-HOM
tests, since these experiments represent a suite of accepted
benchmark tests that are commonly used in the community
to validate higher-order (3-D) approximations of the stress
balance equations. We first use Experiment F of the ISMIP-
HOM tests to evaluate competing numerical solvers since it
entails a transient ice-flow simulation with two test cases in-
volving distinct basal sliding regimes. This transient simu-
lation allows us to independently test solvers on each analy-
sis component (mass transport, horizontal stress balance, and
incompressibility) underlying a transient simulation in ISSM
and evaluate the performance of competing solvers for mod-

els using different basal sliding conditions. Experiment F is
representative of the type of physics solved for in many sce-
narios of ice sheets retreating and advancing onto downward
or upward-sloping bedrocks. It is therefore wide-ranging in
terms of applicability and happens to be a commonly ac-
cepted benchmark experiment that is used by many ISMs.
However, since Experiment F specifies a constant viscosity
for ice, we also consider ISMIP-HOM Experiment A as it in-
cludes a nonlinear rheology for ice. While this is only a static
test, Experiment A allows us to evaluate the performance of
solvers applied to the horizontal stress balance equations for
simulations using a more physically realistic model of ice
rheology, albeit only for a nonsliding case. For testing the
impact of different basal sliding conditions on solver perfor-
mance, we refer to the results from Experiment F, which in-
cludes both sliding and no-slip basal conditions.

Experiment F consists of simulating the flow of a 3-D slab
of ice (10 km square, 1 km thick) over an inclined bed (3◦)
with a superposed Gaussian-shaped bump (100 m in height)
until the free surface geometry and velocities reach steady
state. Here, we run our transient simulation for 1500 years,
using 3-year time steps, in order to allow the free surface to
relax and reach a steady-state configuration. The prescribed
material law is a linear viscous rheology that results in a
constant effective viscosity for ice. In order to test different
friction parameterizations, Experiment F explores two test
cases of boundary conditions at the bedrock–ice interface:
(1) no-slip (frozen bed) and (2) viscous slip (sliding bed).
For both scenarios, we apply Dirichlet boundary conditions
for the velocities along the boundary and set the values to
zero. This is slightly different from using periodic boundary
conditions suggested by the ISMIP-HOM benchmark tests;
however, Dirichlet boundary conditions are more relevant to
boundary conditions generally used by modelers. Figure 1
displays the surface velocity and surface elevation results at
the end of the transient simulation using ISSM. These results
are consistent with typical steady-state profiles for Experi-
ment F, with slight differences near the boundaries affected
by using different boundary conditions.

Experiment A simulates the flow of a 3-D slab of ice
(80 km square, 1 km thick) over an inclined bed (0.5◦) with
sinusoidal bumps (500 m amplitude). This experiment as-
sumes that the ice is frozen to the bed (i.e., no-slip boundary
condition). While this test is prognostic in nature and does
not consider the time-evolution of the ice configuration, it
does include a nonlinear viscosity model for ice, which is
more realistic than the constant viscosity specified in Exper-
iment F. Similarly to Experiment F, we prescribe Dirichlet
boundary conditions for the velocities along the boundary
and set the value to zero.

Our approach for identifying efficient numerical methods
for each analysis component of the transient simulation in
ISSM is to independently test combinations of precondition-
ing matrices with iterative methods on the system of equa-
tions resulting from the finite-element discretization of the
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Figure 1. ISSM results for the ISMIP-HOM benchmark Experiment F transient simulation after 1500 years. Surface velocity (m a−1) and
steady-state surface elevation profile (m) along the central flowline are shown for the frozen and sliding bed cases.

stress-balance and mass-transport equations. Since we rely
on the HO formulation, the stress balance only solves the hor-
izontal stress balance and requires an additional step to solve
for the vertical velocities. Here, we use the incompressibility
equation and an L2 projection to solve for the vertical ve-
locities. We call these steps the horizontal velocity solution
and incompressibility solution, respectively. In addition, run-
ning a transient simulation implies a mass-transport module
which, combined with the velocity analyses, requires three
systems of equations to be solved at each time step.

For each system of equations, we test a wide range of
solvers including the default solver (MUMPS) and precondi-
tioned iterative methods provided by PETSc. When referring
to the solvers available through the PETSc interface, we rely
on the abbreviations used in the PETSc libraries by label-
ing a preconditioning matrix as a PC and an iterative method
as a KSP (Krylov subspace method). Here a precondition-
ing matrix improves the spectral properties of the problem
(i.e., the condition number) without altering the solution pro-
vided by the iterative method. Since the Jacobian of the sys-
tem of equations resulting from the finite-element discretiza-
tion of the horizontal stress balance is symmetric positive
definite, a wide range of iterative solvers and precondition-
ers are applicable and potentially efficient. For a complete
review of potential solvers we point to Benzi et al. (2005)
and Saad (2003). In the subsequent benchmark simulations,
10 PC matrices and 20 KSP iterative methods are tested in
unique solver combinations. Additionally, the effect of not
applying a preconditioning matrix to the iterative method is
tested for each KSP represented by PC= none. The solvers

tested for all analysis types are indicated by the permutations
of the KSP and PC methods listed in the headings of Fig. 4.
In an attempt to use the PETSc solvers in ISSM with mini-
mal invasiveness, we restrict the inclusion of KSPs and PCs
from the PETSc suite by only testing methods that naturally
fit the ISSM framework (i.e., without the need for customiza-
tion or specialization of the solver routine). Anticipating that
modelers may not tune the individual components in PETSc,
we test each method using default values to evaluate baseline
performance provided by each method natively.

The slab of ice in Experiment F is modeled using four
levels of mesh refinement. The smallest, coarsest-resolution
model consists of 2000 elements resulting from a 10×10×10
(x,y,z) grid of triangular prismatic 3-D elements. Three
larger models are produced by refining each direction of the
smallest model by a factor of 2, leading to 16 000-, 128 000-,
and 1 024 000-element models. Each model size is tested us-
ing four CPU cases: 250, 500, 1000, and 2000 elements per
CPU. Only the fastest timing results for simulations where
the solution passes three ISSM convergence tests (i.e., me-
chanical stress balance and convergence of the solution in
both a relative and absolute sense) at each time step, using
default tolerances, are included in the ranking results. All of
these simulations were performed on the NASA Advanced
Supercomputing Pleiades cluster (Westmere nodes: 2 six-
core Intel Xeon X5670 processors per node, 24 GB per node)
using ISSM version 4.2.5 and PETSc version 3.3.

To study the impact of using a nonlinear viscosity model
for ice on solver speed and convergence, we follow the same
methodology applied to Experiment F (i.e., same solvers, dis-
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Figure 2. Horizontal velocity analysis: timing results for the fastest solvers (top 10 %) tested on ISMIP-HOM Experiment F. The top (1 %)
timing results are distinguished using color-filled symbols. Both basal boundary conditions for Experiment F are shown: frozen bed (upper
half) and sliding bed (lower half). Each solver is represented by the combination of a preconditioner (horizontal rows) and a Krylov subspace
method (vertical columns) using PETSc abbreviations. Simulations are performed using four mesh sizes (denoted by the symbols in the
legend) and four CPU cases (denoted by the colors in the legend). Only the fastest CPU case (i.e., color) is displayed. Red shaded boxes
highlight solver combinations that rank among the fastest methods for all model sizes and both bed conditions (i.e., four symbols in the top
and bottom frame).
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cretization strategy, and CPU cases) and evaluate the perfor-
mance of solvers applied to the stress-balance equations for
Experiment A. However, we omit testing of the largest model
size (i.e., 1 024 000 elements) due to the intense computa-
tional resources necessary for this model size and the lim-
ited information gained by this prognostic test relative to the
more comprehensive transient model. Simulations of Exper-
iment A were performed more recently on the Pleiades clus-
ter using upgraded Broadwell nodes (two 14-core Intel Xeon
E5-2680v4 processors per node with 128 GB per node) with
ISSM version 4.11 and PETSc version 3.7. Updates to the
ISSM code from version 4.2.5 to version 4.11 have added
new capabilities that are not used in this study. The solution
methods and algorithms between these versions are the same,
and the results from this study apply to all intermediate ver-
sions that users may be working with.

3 Results

Since our primary interest is identifying fast, stable solvers
for transient ice-flow simulations, we first present the results
from Experiment F. Using the profiling features in ISSM, we
evaluate the timing results for each simulation (measured in
seconds), which consists of the CPU time associated with as-
sembling the stiffness matrix and load vector, solving the sys-
tem of equations, and updating the input from the solution.
Here, solving the system of equations represents the majority
of the reported CPU time. Since this study focuses on the rel-
ative performance of the tested solvers, the timing results for
different methods are directly comparable, as the additional
steps are consistent across the tested methods and do not
bias the results. Only the fastest results for each model size
for solving the horizontal velocity analysis (fastest 10 %),
the incompressibility analysis (fastest 5 %), and the mass-
transport analysis (fastest 5 %) are shown in Figs. 2–4, re-
spectively. These thresholds (i.e., 10, 5, and 5 %) are cho-
sen so as to exhibit clear trends in identifying the fastest and
most robust solvers. Here, we associate the robustness of a
solver (PC–KSP combination) in terms of efficiently solving
a given analysis across the wide range of model sizes and
both basal boundary conditions. This classification is differ-
ent from solvers that are optimal (i.e., fastest) for a specific
case, but it allows modelers to identify solvers that are fast
across the largest set of conditions, be it mesh size, number of
available CPUs, or basal sliding regime. Modelers interested
in optimal performance for a specific simulation should con-
sult Figs. 2–4 for each analysis component and use a solver
corresponding to a color-filled symbol (i.e., fastest 1 % re-
sult) closest to their model size, where the number of recom-
mended CPUs is specified by the color of the symbol.

For Experiment F, we highlight the most robust solvers in
Figs. 2–4 using red shaded boxes. Thus, a red shaded box
highlights a solver (PC–KSP combination) where all four
symbols (i.e., all tested mesh sizes) are among the fastest

methods for both basal boundary conditions, whereas color-
filled symbols identify the solvers that are among the fastest
timing results (top 1 %) for that mesh size and basal bound-
ary condition. The highlighted solvers from Figs. 2–4 may
be used as ISSM solver defaults for each analysis type of the
transient simulation (i.e., horizontal velocity, incompressibil-
ity, and mass transport). For the horizontal velocity solution,
the results in Fig. 2 show six highlighted solvers are robust
(i.e., four symbols displayed for both basal boundary condi-
tions). These results indicate that using a block Jacobi pre-
conditioner is well suited for this analysis type for both slid-
ing and frozen bed scenarios. For the incompressibility anal-
ysis, the highlighted solvers in Fig. 3 indicate that using a
variant of the Jacobi preconditioner (block Jacobi, Jacobi, or
point block Jacobi), in conjunction with the corresponding
KSPs yields the most robust results. For the mass-transport
analysis, the situation is more nuanced in terms of precondi-
tioners, but both the bcgs and bcgsl KSP solvers tend to be
robust across several preconditioners. Surprisingly, not us-
ing a preconditioner for the mass-transport analysis seems to
yield very fast and robust results when used in combination
with the lsqr and bcgs solvers, which was not expected.

Figures 5 and 6 plot the weak and strong scalability as-
sociated with solving Experiment F using the default ISSM
solver (MUMPS) and iterative solvers selected from the
highlighted solvers in Figs. 2–4 for each analysis type under-
lying the transient simulation. Specifically, we compare the
default solver results to a combined strategy that uses a point
block Jacobi preconditioner with a biconjugate gradient sta-
bilized iterative method to solve the mass-transport analysis
(PC= pbjacobi, KSP= bcgsl), a block Jacobi preconditioner
with a minimum residual iterative method to solve the hor-
izontal velocity analysis (PC= bjacobi, KSP=minres), and
a point block Jacobi preconditioner with a conjugate gradi-
ent iterative method applied to the normal equations to solve
the incompressibility analysis (PC= pbjacobi, KSP= cgne).
One issue that arose while carrying out the weak scalabil-
ity analysis was that simulations using MUMPS to solve the
largest model (i.e., 1 024 000 elements) experienced memory
and cluster issues for both sliding and frozen bed scenarios
(e.g., computational nodes restarting and general memory is-
sues). For these tests, we estimate the total time required to
solve the largest model with the MUMPS solver by linearly
extrapolating the total time from the number of iterations
completed during a 2 h and 8 h run. These estimated timing
results are displayed by diamond symbols in Fig. 5 for the
direct solver only.

In considering the magnitude of the slopes representing the
weak and strong scalability, we recall that our timing results
include routines outside of the solver procedure (i.e., assem-
bling the stiffness matrix, load vector, and updating the input
from the solution) that are not necessarily scalable. However,
the relative scalability (i.e., differences in slope) between
the preconditioned iterative methods and the direct solver
illustrates the differences in performance between these ap-
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Figure 3. Incompressibility analysis: timing results for the fastest solvers (top 5 %) tested on ISMIP-HOM Experiment F. The top (1 %)
timing results are distinguished using color-filled symbols. Red shaded boxes highlight solver combinations that rank among the fastest
methods for all model sizes and both bed conditions (i.e., four symbols in the top and bottom frame). See Fig. 2 for more details.

proaches. Optimal weak scalability for a solver implies a hor-
izontal slope in Fig. 5 and the ability to solve increasingly
refined models with a fixed ratio of elements per CPU in con-
stant time. Here, the slopes representing the weak scalability
of the preconditioned iterative solver for the frozen-bed and

sliding-bed configurations are 0.441 and 0.495, respectively.
Whereas the slopes for the direct solver are much larger at
1.124 and 1.165 for the frozen and sliding bed configura-
tions, respectively. For the largest model (i.e., 1 024 000 ele-
ments) the iterative solver is more than two orders of magni-
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Figure 4. Mass-transport analysis: timing results for the fastest solvers (top 5 %) tested on ISMIP-HOM Experiment F. The top (1 %) timing
results are distinguished using color-filled symbols. Red shaded boxes highlight solver combinations that rank among the fastest methods for
all model sizes and both bed conditions (i.e., four symbols in the top and bottom frame). See Fig. 2 for more details.
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and a point block Jacobi (pbjacobi) preconditioned conjugate gradient on the normal equations (cgne) for the incompressibility analysis.
These simulations are conducted using a constant ratio of 500 elements per CPU (except for the largest model with the direct solver) and
show the impact of increasing mesh size on simulation time (seconds). Ideal weak scaling is consistent with a horizontal slope. Timing results
include the CPU time associated with assembling the stiffness matrix and load vector, solving the system of equations, and updating the input
from the solution. See Fig. 2 for more details.

tude faster than the ISSM default solver: ∼ 57 h (estimated)
compared to ∼ 15 min. As Fig. 5 indicates, using a precon-
ditioned iterative method over the direct solver is increas-
ingly beneficial for larger model sizes. For very small mod-
els (i.e., 2000 elements), using MUMPS is marginally slower
(∼ 1.5 times) than the presented iterative methods. Optimal
strong scalability implies a slope equal to −1 in Fig. 6 and
the ability to solve a model with a fixed number of elements
faster by using more CPUs. The slopes in Fig. 6 representing
the strong scalability of the direct solver for the frozen and
sliding bed configurations are −0.332 and −0.399, respec-
tively. In comparison, the slopes for the combined iterative
solvers applied to the frozen and sliding bed configurations
are −0.897 and −0.911, respectively, clearly favoring these
solvers over the direct solver.

To show the impact of nonlinear viscosity on the efficiency
of the presented solvers, we plot the timing results for solv-
ing the stress balance equations in Experiment A (Fig. 7).
Figure 7 plots the fastest (top 15 %) timing results for each
mesh size, using the same symbols as the previous plots for
Experiment F, where color-filled symbols represent the over-
all fastest results (i.e., top 1 %) for each model size. In com-

paring our results to those attained using the default ISSM
solver (MUMPS), we plot the strong and weak scalability
(Fig. 8) for the direct solver and one of the fastest solvers
identified from Fig. 7 (KSP= cg, PC= bjacobi). Similar to
the results for Experiment F, the slopes of the weak scalabil-
ity (Fig. 8a) for the preconditioned iterative method (0.205)
is also much smaller (i.e., closer to optimal scalability) than
the direct solver (0.883). In comparing the strong scalabil-
ity of these solvers (Fig. 8b), the slope of the preconditioned
iterative method (−0.737) also indicates better performance
than the slope of the direct solver (−0.270).

4 Discussion

Solving the horizontal velocity analysis dominates the CPU
time needed to solve a transient simulation since this anal-
ysis involves more DOFs, and has a much higher condition
number, than the mass-transport and incompressibility anal-
yses. Our results, however, show that this bottleneck can be
significantly reduced for moderate-sized models (i.e., 16 000
to 128 000 elements) by using any of the highlighted solvers,
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which leads to significant speed-ups relative to the default
solver (i.e., ∼ 7.5–37 times faster). As Fig. 5 shows, using a
direct solver such as MUMPS is not recommended for tran-
sient simulations of models using more than 128 000 ele-
ments. This is both due to the significant speed-ups (more
than 10 times) achieved by using iterative solvers for tran-
sient simulations involving large models (more than 20 000
elements) and to the inherent memory restrictions associated
with using the direct solver that prevent massive transient
simulations (more than 1 000 000 elements).

Most of the limitations associated with using the default
solver on large models arise from the LU Factorization phase
in the MUMPS solver, which is not yet parallelized. This
could be remedied by switching on the out-of-core com-
putation capability for this decomposition, but this has not
been successfully tested yet and would potentially shift the
problem of memory limitations to disk space and read/write
speeds (the size of the matrices being significant). Further-
more, Fig. 5 indicates that the highlighted solvers are not
only capable of handling the largest model (1 024 000 ele-
ments), but the solution time is nearly equivalent to using the
default MUMPS solver on a significantly smaller model size
(i.e., ∼ 20 000 elements).

In evaluating the effect of using a nonlinear viscosity
model for ice on solver performance, we see that many of

the methods which efficiently solve the horizontal velocity
analysis for Experiment A (Fig. 7) are consistent with the
solvers highlighted for Experiment F (Fig. 2), which includes
a much simpler constant viscosity for ice. Specifically, we
see that the block Jacobi preconditioner (PC= bjacobi) is ef-
fective across a number of iterative methods for both bench-
mark experiments. While this comparison only extends up
to model sizes of 128 000 elements, we see from the plot of
weak scalability (Fig. 8a) that using the iterative solver re-
sults in speed-ups ranging from ∼ 1.2 to 19 times faster than
those using the default solver for model sizes increasing from
2000 to 128 000 elements.

In practice, users may experience issues with numerical
convergence when applying some of the iterative methods
presented in Figs. 2–4 for their particular application. In
these instances using the ISSM default solver (MUMPS)
provides a stable solution strategy. Furthermore, since solv-
ing the horizontal velocity analysis is the most CPU-time-
intensive stage of the transient simulation process, using a
direct solver for the other analysis types and relying on Fig. 2
to select an optimal solver for the horizontal velocity analysis
may provide the best balance between stability and speed.

While the relative rankings of the tested solvers pre-
sented in this work are specific to the ISMIP-HOM experi-
ments, applying these methods to simulations using realistic
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Figure 7. Horizontal velocity analysis: timing results for the fastest solvers (top 15 %) tested on ISMIP-HOM Experiment A. The top (1 %)
timing results are distinguished using color-filled symbols. See Fig. 2 for more details.

model parameterizations (e.g., data-driven boundary condi-
tions, anisotropic meshes, and complex geometries) also re-
sults in significant speed-ups compared to the default solver,
though these computations are not shown here. We acknowl-
edge that in relation to using synthetic test cases, real-world
model parameterizations may affect the convergence and rel-

ative performance of the iterative solvers tested in this work.
However, since any of the highlighted solvers are signifi-
cantly more efficient than using a direct solver, our results
provide a useful starting point for modelers looking for effi-
cient methods to use for specific ice-flow simulations.
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We recommend that future refinement of these results in-
clude customization of the PETSc components, which can
lead to significant performance gains over the default values,
and include more realistic geometries with varying degrees
of anisotropy. Finally, it should be noted that the presented
optimal solvers do not require a supercomputer and may be
used with fewer CPUs than the number indicated by the sym-
bol color in Figs. 2–4. Indeed, the highlighted iterative meth-
ods may provide speed-ups (compared to using MUMPS)
larger than Fig. 5 indicates when using computers with lim-
ited memory.

5 Conclusions

The results presented herein offer guidance for selecting fast
and robust numerical solvers for transient ice-flow simula-
tions across a broad range of model sizes and basal bound-
ary conditions. Here, the highlighted solvers offer signifi-
cant speed-ups (∼ 1.5–100 times faster) relative to the de-
fault solver (MUMPS). Furthermore, the highlighted solvers
enable large-scale, high-resolution transient simulations that
were previously too large to run with the default solver in
ISSM. These combined benefits are consistent with results
across a broad range of computational disciplines, which also
show that iterative solvers are significantly more efficient
than direct solvers for solving sparse linear systems as the
number of DOFs becomes large. While modelers may pre-
fer to use a direct solver as a stable strategy, the significant
performance gains attained using the preconditioned iterative

methods highlighted in this study provide a compelling case
to consider. Here, taking the time to find an efficient solver is
strongly recommended for computationally demanding sim-
ulations involving high-resolution meshes, as well as for un-
certainty quantification studies or parameter studies entailing
repeated simulations.

6 Code availability

The results from this work are reproducible using ISSM (ver-
sions 4.2.5–4.11) with the corresponding PETSc solvers used
for each analysis type. The current version of ISSM is avail-
able for download at https://issm.jpl.nasa.gov, and previous
versions are available from the svn repository. The mod-
els for simulating these ISMIP-HOM experiments are doc-
umented on the website and included in the test directory of
the download.
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