Laplacian eigenfunctions

October 2022

1 Basics

General solution of Helmholtz equation $\left(\nabla^{2} f+k^{2} f=0\right)$ in spherical polar coordinates

$$
\begin{equation*}
f(\mathbf{r})=\sum_{l=0}^{\infty} \sum_{m=-l}^{l}\left[a_{l m} j_{l}(k r)+b_{l m} y_{l}(k r)\right] Y_{l m}(\hat{r}) \tag{1}
\end{equation*}
$$

1.1 Inside a sphere $r \leq r_{c}$ with homogeneous Dirichlet BCs

$$
\begin{equation*}
f(\mathbf{r})=\sum_{j=1}^{\infty} \sum_{m=-l}^{l} \sum_{n=0}^{\infty} a_{j l m} j_{l}\left(k_{j l} r\right) Y_{l m}(\hat{r})+b_{j l m} y_{k}\left(k_{j l} r\right) Y_{l m}(\hat{r}) \tag{2}
\end{equation*}
$$

where $k_{j l}=z_{j l} / r_{c}$ and $z_{j l}$ is the j th zero of $j_{l}(z)$. When $f(\mathbf{r})$ is finite at the origin, the $\left\{b_{j l m}\right\}$ are zero.

1.2 Inside a spherical shell $r_{1} \leq r \leq r_{2}$ with homogeneous Dirichlet BCs

The boundary conditions yield the system

$$
\begin{equation*}
j_{l}\left(k r_{1}\right)+c y_{l}\left(k r_{1}\right)=0 j_{l}\left(k r_{2}\right)+c y_{l}\left(k r_{2}\right)=0 \tag{3}
\end{equation*}
$$

which has solutions for discrete values of k and c. After finding these values (numerically, I assume), one obtains new radial functions

$$
\begin{equation*}
R_{j l}(r)=j_{l}\left(k_{j l} r\right)+c_{j l} y_{l}\left(k_{j l} r\right) \tag{4}
\end{equation*}
$$

such that the solution is

$$
f(r)=\sum_{j=1}^{\infty} \sum_{m=-l}^{l} \sum_{n=0}^{\infty} d_{j l m} R_{j l}(r) Y_{l m}(\hat{r})
$$

