Using Motion Primitives in Probabilistic
Sample-Based Planning for Humanoid Robots

Kris Hauser!, Timothy Bretl', Kensuke Harada?, and Jean-Claude Latombe!

1 Computer Science Department, Stanford University
{khauser,tbretl}@stanford.edu and latombe@cs.stanford.edu

2 National Institute of Advanced Industrial Science and Technology (AIST)
kensuke.harada®@aist.go. jp

Abstract. This paper presents a method of computing efficient and natural-looking
motions for humanoid robots walking on varied terrain. It uses a small set of high-
quality motion primitives (such as a fixed gait on flat ground) that have been generated
offline. But rather than restrict motion to these primitives, it uses them to derive
a sampling strategy for a probabilistic, sample-based planner. Results in simulation
on several different terrains demonstrate a reduction in planning time and a marked
increase in motion quality.

1 Introduction

In this paper we present a method of planning efficient and natural-looking mo-
tions for humanoid robots on varied terrain. One thing that makes this problem
difficult is that although humanoids have many degrees of freedom (DOF), we do
not know in advance which of these DOF are actually useful, nor which contacts
may be needed. On easy terrain like flat ground or stairs of fixed height, the
motion of a humanoid is lightly constrained, most of its DOF are redundant,
and only feet need contact the ground. On hard terrain like steep rock or urban
rubble, the motion of a humanoid is highly constrained, most of its DOF are es-
sential, and additional contacts (hands, knees, shoulders) might be required for
balance. On varied terrain, the number of relevant DOF and the types of required
contacts may change from step to step.

Consequently, planners that simplify the problem by considering a subset
of the robot’s DOF work well on easy terrain, but are not flexible enough to
handle varied terrain. For example, one strategy for a humanoid on mostly flat
ground is to precompute a library of feasible steps [22]. Each step is a continuous
trajectory that places one foot in a new location relative to the other. Motions are
constructed as a sequence of these steps. Because this only requires searching a
graph, rather than a high-dimensional configuration space, it can be done quickly.
More importantly, because the steps are precomputed, the resulting motion is
efficient and robust, and looks natural. However, when the ground is not flat —
in particular, when hands are required for balance — this approach may not be
able to find a feasible motion.

S. Akella et al. (Eds.): Algorithmic Foundation of Robotics VII, STAR 47, pp. 5072008.
springerlink.com (© Springer-Verlag Berlin Heidelberg 2008

508 K. Hauser et al.

Conversely, planners that consider all of the robot’s DOF work well on hard
terrain, but do not generate efficient or natural-looking motions (when this is
possible) on varied terrain. For example, one strategy for a humanoid on severely
uneven ground (based on earlier work for a free-climbing robot [5]) begins by
identifying a number of potentially useful contacts [16]. Each mapping of hands
or feet to contacts is a stance, associated with a (possibly empty) set of feasi-
ble configurations that satisfy all motion constraints. The robot can take a step
from one stance to another if they differ by a single contact and if they share
a feasible configuration, called a transition. The planner proceeds in two stages:
first, it generates a candidate sequence of contacts by finding transitions between
stances; then, it refines this sequence into a feasible, continuous trajectory by
finding paths between subsequent transitions. Probabilistic, sample-based algo-
rithms are used to find both transitions and paths. This approach is fast on
irregular and steep terrain, because in this situation the robot’s motion is most
constrained just as it makes or breaks a contact. But when the ground is flat, this
approach takes longer than the one of [22], and may generate needless motions
of the arms or other DOF that are not required for balance. These motions are
hard to eliminate in post-processing.

Rather than select one approach or the other, our planner combines the
strengths of both. First, we generate a small set of high-quality motion prim-
ites (similar to [22]), that might include a single step on flat ground, or an
arm movement that places a hand on a wall for balance. Here, these primitives
are produced by a lengthy off-line precomputation, but they might also be de-
signed by hand or even captured or learned from examples of human motion.
We record each motion primitive as a nominal path through the robot’s con-
figuration space (a joint-angle trajectory). Then, we use the two-stage strategy
of [BL[16] to plan motions of the humanoid on-the-fly. But instead of sampling
across all of configuration space to find transitions between stances and paths be-
tween transitions, we sample in a growing distribution around the nominal path
associated with a chosen motion primitive. Although still preliminary, our sim-
ulation results demonstrate a reduction in planning time and a marked increase
in motion qualityﬁ for a humanoid walking on varied terrain.

2 Related Work

Motion primitives and other types of maneuvers have been applied widely to
robotics and digital animation. Four general strategies have been used:

Record and playback. This strategy restricts motion to a library of maneuvers.
Natural-looking humanoid locomotion on mostly flat ground can be planned as
a sequence of precomputed feasible steps [22]. Robust helicopter flight can be
planned as a sequence of feedfoward control strategies (learned by observing

! Exactly how motion quality should be measured is an open question, beyond the
scope of this paper. Here, we define quality as inversely proportional to a linear
combination of path length and sum-squared distance from an upright posture.

Using Motion Primitives in Probabilistic Sample-Based Planning 509

skilled human operators) to move between trim states [I0,1T,12}[31]. Robotic
juggling can be planned as a sequence of feedback control strategies [§]. The
motion of peg-climbing robots can be planned as a sequence of actions like
“grab the nearest peg” [3]. In these applications, a reasonably small library of
maneuvers is sufficient to achieve most desired motions. For humanoid robots
on varied terrain, such a library may grow to impractical size.

Warp, blend, or transform. Widely used for digital animation, this strategy also
restricts motion to a library of maneuvers, but allows these maneuvers to be
superimposed or transformed to better fit the task at hand. For example, cap-
tured motions of human actors can be “warped” to allow characters to reach
different footfalls [40] or “retargetted” to control characters of different mor-
phologies [I3]. Of course, for a digital character it is most important to look
good while for a humanoid robot it is most important to satisfy hard motion
constraints. So although some techniques have been proposed to transform ma-
neuvers while maintaining physical constraints [34l39], this strategy seems better
suited for animation than robotics.

Model reduction. This strategy plans overall motion first, following this mo-
tion with a concatenation of primitives. For example, another way to generate
natural-looking humanoid locomotion on flat ground is to approximate the robot
as a cylinder, plan a 2-D collision-free path of this cylinder, and follow this path
with a fixed gait [2TL[19,[32,20]. A similar method is used to plan the motion
of nonholonomic wheeled vehicles [24)23]. A related strategy plans the motion
of key points on a robot or digital actor (such as the center of mass or related
ground reference points [33]), tracking these points with an operational space
controller [38]. These approaches work well when it does not matter much where
a robot or digital actor contacts its environment. When the choice of contact
location is critical, as is often the case for humanoids on varied terrain, it makes
more sense to compute a sequence of footfalls first.

Bias inverse kinematic solutions. Like model reduction, this strategy first plans
the motion of key points on a robot or digital actor, such as the location of hands
or feet. But instead of a fixed controller, a search algorithm is used to compute
a pose of the robot or actor at each instant that tracks these points (an inverse
kinematic solution). One approach is to choose an inverse kinematic solution
according to a probability density function learned from high-quality example
motions [41L[T528,29]. The set of examples give the resulting pose a particular
“style.” In fact, we take a similar approach in this paper, planning steps for a
humanoid by sampling waypoints in a growing distribution around high-quality
nominal paths.

3 Background

Our planner extends a similar one for humanoid robots [16], which was based on
earlier work for a free-climbing robot [5]. Here, we summarize our basic approach
and describe the limitations we address by using motion primitives.

510 K. Hauser et al.

Fig. 1. (a) The humanoid robot HRP-2 [18]. (b) Example of varied terrain.

3.1 Motion Constraints

We consider the humanoid HRP-2 (Fig. [[(a)). A configuration q consists of 6
parameters defining the position and orientation of the torso and a list of 30
revolute joint angles. The set of all such ¢ is the configuration space, denoted Q,
of dimensionality 36. We consider terrain that might include a mixture of flat,
sloped, or rocky ground (Fig. . We assume that this terrain and all robot
links are perfectly rigid. We also assume that we are given in advance a set
of links (such as hands, feet, or knees) that are allowed to touch the terrain.
We call the placement of a link on the terrain a contact, and fix the position
and orientation of the link while the contact is maintained. We call a set of
simultaneous contacts a stance, denoted by o. Consider a stance o with n > 1
contacts. The feasible space F, is the set of all feasible configurations of the
robot at . To be in F,, a configuration ¢ must satisfy several constraints:

Contact. The n contacts form a linkage with multiple closed-loop chains, so ¢
must satisfy inverse kinematic equations. Let Q, C Q be the set of all configu-
rations ¢ that satisfy these equations. This set is a possibly empty sub-manifold
of Q of dimensionality 36 — 6n, which we call the stance manifold.

Equilibrium. To balance at a fixed stance o, HRP-2 must apply forces at contacts
in ¢ that compensate for gravity without slip. For valid forces to exist, HRP-2’s
center of mass (CM) must lie above its support polygon. On varied terrain, this
polygon does not always correspond to the base of HRP-2’s feet [7L[5,[6]. So
we model each contact as a set of frictional points, and compute the support
polygon as in [I6L[6]. When the cM lies above this polygon, we also check that
joint torques achieving the required contact forces are within bounds.

Collision. In addition to satisfying joint angle limits, the robot must avoid col-
lision with the environment (except at contacts) and with itself [T4,[37].

3.2 Motion Planning

We assume HRP-2 moves from one place to another by taking a sequence of
steps. Each step is a continuous motion at a fixed stance that ends by making

Using Motion Primitives in Probabilistic Sample-Based Planning 511

or breaking a single contact. In particular, suppose the robot begins at a config-
uration q € F, at a stance o. A single step from ¢ consists of three parts: first,
a contact that is made or broken to move from ¢ to a new stance ¢’; second, a
configuration ¢’ € F, N F,, which we call a transition, that is feasible at both o
and ¢’; third, a feasible path in F, from ¢ to ¢'.

Following the approach of [T6l[], we make these three choices hierarchically.
To find a contact, we randomly sample potential placements of the robot’s links
in the terrain (or select a placement in o to release). We use heuristics to de-
cide which placement is most likely to lead toward the goal. To find a transition
given ¢’, we randomly sample configurations in Q, (or in Q, if o C ¢’) and
reject them if they are not in F, N F,. We use the combination of a bounding-
volume technique similar to [9] and an iterative Newton-Raphson method to sam-
ple configurations in Q, (which has zero measure in Q). To find a path given ¢/,
we use a variant of the probabilistic roadmap (PRM) algorithm called sSBL [36].
This algorithm is bidirectional (growing trees, as in [25], from both ¢ and ¢’) and
lazy (delaying the creation of local paths until a candidate sequence of milestones
is found).

3.3 Current Limitations

Our search strategy postpones finding one-step paths (a costly computation)
until after finding transitions and contacts [16,5]. It works well for HRP-2 on
irregular and steep terrain because in this situation, the robot’s motion is most
constrained just as it makes or breaks a contact. In particular, we have observed
in our experiments that if ¢ € F, NF, and ¢’ € F, N F,» exist, then a path
between ¢ and ¢’ in F, likely also exists.

However, because we randomly sample each transition and use PRM to plan
each one-step path, the motions we generate are feasible (given an accurate
terrain model) but not necessarily high-quality. For example, when HRP-2 walks
on terrain that is not irregular and steep, its motion is lightly constrained. Each
step we generate might contain strange or erratic motions of the arms and legs.
These motions are difficult to eliminate in post-processing.

Also, because we randomly sample each contact, we might end up trying
difficult steps when simpler ones would have led to the goal as well. For example,
the robot might reach a stance o associated with a feasible space F, containing
a narrow passage. With only a small perturbation of the contacts at o, this
narrow passage is likely to disappear [I7]. So although additional steps might
still be possible, they would be easier to compute if we had made a better choice
of contacts at o.

4 Generating Motion Primitives

We address the limitations of our planner by using a library of motion primitives.
Each primitive is a single step of very high quality. In this section, we describe
how we generate primitives. In the following section, we will describe how they
guide our selection of paths, transitions, and contacts.

512 K. Hauser et al.

=

(b)

Fig. 2. Two primitives on flat ground, to (a) place a foot and (b) remove a foot. The
support polygon — here, just the convex hull of supporting feet — is shaded blue.

Currently, it is the responsibility of the user to decide which primitives to
include in the library. First, we need to identify a small but representative set
of steps to be learned and to specify start and goal stances (differing by a single
contact) for each one. These steps should be both important (often repeated)
and broadly applicable (similar to a wide variety of other steps). For example,
we might choose to include several consecutive steps on flat ground, each placing
or removing a foot (Fig. 2]). Next, we need to define a weighted set of criteria to
judge the quality of each step. For example, we might choose to minimize path
length, torque, energy, or the amount of deviation from an upright posture.
Finally, we need to decide whether to accept or reject a candidate primitive,
because we are not guaranteed that our optimization criteria correspond to our
aesthetic notion of what is “natural.”

It is the responsibility of the planner to actually compute each primitive.
First, we generate an initial trajectory between the given start and goal stances
by randomly sampling a feasible transition and creating a path to reach it us-
ing PRM, as in [I6,[5]. Then, we optimize this trajectory with respect to the
given objective function using a standard nonlinear optimization package [26].
This entire process is an off-line precomputation; several hours were required to
generate the two example primitives in Fig.

The generation of motion primitives has not been the main focus of our work
(this paper concerns their application to planning), so many improvements may
be possible. For example, we expect better results to be obtained by using the
method of optimization proposed by [4]. Likewise, we might use a learned clas-
sifier to decide (without supervision) whether candidate primitives look natural,
as in [35]. Finally, we might automate the selection of primitives to include in our
library by learning a statistical model of importance (similar to location-based

Using Motion Primitives in Probabilistic Sample-Based Planning 513

activity recognition [27]) or applicability after perturbation (similar to PRM plan-
ning with model uncertainty [30]).
We record each primitive in our library as a nominal path

u:te0,1] —u(t) € Q

in configuration space that does one of two things:

e Adds a contact. For some o and ¢’ such that ¢ C ¢/, u is a feasible path
in F, from u(0) € Fy to u(l) € Fp N Fyr.

e Remowves a contact. For some o and ¢’ such that o D ¢/, u is a feasible path
in F, from u(0) € Fy to u(l) € Fp N Fyr.

We will denote the start and goal stances for each primitive u by o, and o,
respectively. In general, u will only define a feasible step between o, and o/,, but
we will see in the next section that it can still be used to help guide our choice
of path, transition, and contact to reach other stances.

5 Using Primitives for Planning

We use motion primitives to help our planner generate each step. We do this
at three levels: finding a path (given a transition and a final stance), finding a
transition (given only the final stance), and finding a contact (in order to define
the final stance). In each case, first we transform the primitive to better match
the step we are trying to plan, then we apply the transformed primitive to bias
the sampling strategy used by our planner.

5.1 Finding Paths

Consider the robot at an initial configuration ginitia1 € F, at an initial stance o.
Assume that we are given a final stance ¢’ and a transition gana € Fp N For
(recall ganal is a configuration feasible at both o and ¢’). Also assume that we
are given an appropriate primitive u C Q (as described in Section [). We want
to use u to guide our search for a path from @initial t0 ¢final in F,. As before,
we use SBL (a variant of PRM) to grow trees from root configurations [36]. But
rather than root these trees only at ginitial and ganal, we root them at additional
configurations (similar to [I]) sampled according to the primitive .

Transforming the primitive to match Qinitiar 0nd Gfinai- Although we assume u
is similar to the step we are trying to plan, it will not be identical. So first, we
transform u so that it starts at ginitia1 and ends at gana. We have chosen to use
an affine transformation of the form

u(t) = A(u(t) — u(0)) + Ginitial (1)

that maps the straight-line segment between 4 (0) and u(1) to the segment be-
tween Ginitial and @fnal- In other words,

514 K. Hauser et al.

nominal path u

med path @

Gfinal

(d)

Fig. 3. Using a primitive to guide path planning. (a) Transforming a motion primitive
to start at ginitia and end at gana. (b) Sampling root milestones in F, near equally
spaced waypoints along 4. (¢) Growing trees to connect neighboring roots. (d) The
resulting path, which if possible is close to 4 (dotted).

4(0) = A (u(0) — u(0)) + Ginitial (1) = A (u(1) — u(0)) + Ginitial
= 0+ Ginitial = (Qfinal — Ginitial) + Ginitial
= (initial = (final

In particular, we select A closest to the identity matrix, minimizing

mjn Z(A” — 61’]')2 such that A (u(l) — U(O)) = (final — (initial
i,

where 6;; = 1 if ¢ = j and 0 otherwise. We compute A in closed form as

((gfinat — Gimitiar) — (u(1) = u(0))) (u(1) = u(0))"
lu(1) = u(0)|3
We can visualize this transformation as in Fig. First, u is translated to

start at ginitial. Then, the farther we move along u (the more we increase t), the
closer 4 is pushed toward the segment from @initial tO ¢final-

A=T+

Using Motion Primitives in Probabilistic Sample-Based Planning 515

Sampling root milestones. Let q1,...,q, be configurations evenly distributed
along 4 from ginitial 10 ¢ana (Fig. . Foreachi =1,...,n, we test if ¢; € F,.
If so, we add ¢; as a root milestone in our roadmap. If not, we repeatedly sample
other configurations in a growing neighborhood of ¢; until we find some feasi-
ble ¢; € F,, which we add as a root instead of ¢;.

Connecting neighboring roots with sampled trees. For i =1,...,n — 1, we check
if the root milestone ¢; can be connected to its neighbor ¢;41 with a feasible local
path (as in [I6]). If not, we add the pair of roots (g;,gi+1) to a list R. Then,
we apply PRM to grow trees between every pair in R. For example, in Fig.
we add (g2,¢3) and (gs4,¢5) to R and grow trees to connect both go with g3
and g4 with gs. We process all trees in parallel. So at every iteration, for each
pair (¢;, gi+1) € R, we first add m milestones to the trees at both ¢; and ¢;41 (in
our experiments, we set m = 5). Then, we find the configurations ¢ connected
to g; and ¢’ connected to ¢;11 that are closest. If ¢ and ¢’ can be connected
by a local path, we remove (¢;, gi+1) from R. When we connect all neighboring
roots, we return the resulting path; if this does not happen after a fixed number of
iterations, we return failure. Just like our original implementation, this approach
will find a path between ¢initial and ¢anal Whenever one exists (given enough
time). However, since we seed our roadmap with milestones that are close to u,
we expect the resulting motion to be similar (and of similar quality) to this
primitive whenever possible (Fig. , deviating significantly from it only when
necessary.

5.2 Finding Transitions

Again consider the robot at a configuration giniia € Fo at a stance o. But now,
assume that we are only given a final stance ¢/, so we use a primitive u to guide
our search for a transition before we plan a path to reach it.

Transforming the primitive to match o and o’. Since we do not know ggpal,
we can not use the same transformation (I) that we used for planning paths.
Instead, we choose a rigid-body transformation of the form

a(t) = Au(t) + b (2)

that maps the nominal stances o, and o, (associated with the primitive u) as
closely as possible to the stances o and o’.

Recall that a stance consists of several contacts, each placing a link of the
robot on the terrain. If we model the surface of the terrain and all robot links as
a triangular mesh, then we can define the location of each placement by a finite
number of points r; € R3. For example, the face-face contact between a foot and
the ground might be defined by the vertices 71, 2, and r3 of a triangle. We
consider these points to be attached to the robot, so if the foot is placed against
a different face in the terrain, the points ri, r2, and 3 move in R® but remain
in the same location relative to the foot. We will use these points to define our
mapping between stances.

In particular, let 7; € R3 for i = 1,...,m be the set of all points defining the
contacts in both o, and o/, and let s; € R? for i = 1,...,m be the set of all

516 K. Hauser et al.

points defining the contacts in both o and ¢’. (We assume u has been chosen so
that both sets have the same number of points.) Then we choose the rotation
matrix A and translation b in ([2) that minimize

i Ari +b— si|5-
min > [l Ari +b = 5|3
K3

We can compute A and b in closed form [2]. But, we only consider rotations A
about the gravity vector to avoid tilting the robot into an unstable orientation.

Sampling a transition. As before, we sample configurations ¢ € Q,, keeping
them if ¢ € F, N F,s. But rather than sample configurations completely at ran-
dom, we sample them in a growing neighborhood of 4(1). We expect a well-chosen
transition to further improve the quality of the path to reach it.

5.3 Finding Contacts

Once more, consider the robot at a configuration giitia1 € F» and a stance o.
But now, assume we are given neither a final stance nor a transition, but only a
primitive u. If u removes a robot link from the terrain, we immediately generate
a final stance ¢’ by removing the corresponding contact from o. But if u places
a link in the terrain, we use it to guide our search for a new contact.

Transforming the primitive to match o. We use the same transformation () to
construct @ as for finding transitions. But here, we compute A and b to map
only o, to o, since we do not know ¢’. We use this transformation to adjust
the placement of the new contact given by u. Let r; € R3 for i =1,...,m be
the set of points defining this contact. Then the transformed contact is given
by 7, = Ar; +bfori=1,...,m.

Sampling a contact. We define a sphere of radius 0, centered at (1/m)) . 7;.
We increase ¢ until the intersection of this sphere with the terrain is non-empty
(initially, we set 6 approximately the size of HRP-2’s foot). We randomly sample
a placement of the points 7; on the surface of the terrain inside the sphere, by
first sampling a position of their centroid s € R? on the surface, then sampling a
rotation of 7; about the surface normal at s. We check that the contact defined
by this placement has similar properties (normal vector, friction coefficient) to
the contact defined by u. If so, we add it to o to form o’. If not, we reject it and
sample another placement.

5.4 Deciding Which Primitive to Use

It only remains to decide which primitive u should be used, given an initial
stance o and configuration ginitia;- We have experimented with a variety of heuris-
tics. For example, we might pick the primitive that most closely matches o,
with o (in other words, that minimizes the error in a transformation of the
form ([@)). Likewise, we might pick the primitive that most closely matches o/,
with the actual terrain. However, the best approach is still not clear, and this
issue remains an important area for future work.

Using Motion Primitives in Probabilistic Sample-Based Planning 517

6 Results

An example of climbing a single stair. With each additional part of a step that
we compute using a primitive, we add to the quality of the result. For example,
consider the motion of HRP-2 in Fig. @l to climb a single stair of height 0.3m (just
below the knee). This motion was planned from scratch, by randomly sampling
contacts and transitions and by using PRM to generate paths. The robot does
not look natural — its arm and leg motions are erratic, and its step over the
stair is needlessly long. To improve this motion, we applied the two primitives
shown in Fig. [(steps on flat ground). Fig. [shows the result of using these
primitives to plan each path. Some erratic leg motions are eliminated, such as
the backward movement of the leg in the second frame. The erratic arm motions
remain, however, because the transition in the fourth frame is the same (still
randomly sampled). Fig. [6 shows the result of using primitives to adjust this
transition as well as to plan paths, eliminating most of the erratic arm motions.
Finally, Fig. [0 shows the result of using primitives to select contacts well as
plan transitions and paths. The chosen contact resulted in a much easier step,
eliminating the extreme lean in the fifth frame.

Planning time and motion quality for stairs of different heights. In our exper-
iments, we have observed that planning time remains low and motion quality
remains high even when we use a primitive to plan a step that is quite different.
For example, we adapted the same two primitives in Fig. 2] to stairs of height
0.2m and 0.4m as well as 0.3m. Fig. [§ shows the results, averaged over five runs.
Quality is measured by an objective function that penalizes both path length
and deviations from an upright posture (lower values indicate higher quality).
For comparison, we report the minimum objective value achieved after a lengthy
off-line optimization. These results demonstrate that our use of primitives pro-
vides a modest reduction in planning time but significantly improves motion
quality. Note also that both time and quality degrade gracefully as the step we
are planning deviates further from the primitive.

A wvariety of other examples. We have tested our planner in many other example
environments. Fig. [l shows HRP-2 on uneven terrain (using the primitives in
Fig.[2), in which the highest and lowest point differ by 0.5m. Fig. [0 shows HRP-2
climbing a ladder with rungs that have non-uniform spacing and that deviate
from horizontal by up to 15°. The primitives for this example were generated on
a ladder with horizontal, uniformly spaced rungs. Fig. [[1l shows HRP-2 making
several sideways steps among boulders, using the hands for support. Here, the
primitives were generated by stepping sideways on flat ground while pushing
against a vertical wall. Fig. [[2] shows HRP-2 traversing very rough terrain with
slopes up to 40°. This motion was generated with a larger set of primitives
(including steps of several heights, a pivot step, and a high step using the hand
for support). In all of these examples, contacts were sampled on-the-fly (using
motion primitives), not placed by hand. Planning for the first three examples
took about one minute on a 1.8 GHz pc. The fourth took example about eight
minutes.

518 K. Hauser et al.

tehfzd

Fig. 4. Stair step planned entirely from scratch

teeszd

Fig. 5. Primitives guide path planning, reducing unnecessary leg motions

ARY S

Fig. 6. Primitives guide transition sampling, reducing unnecessary arm motions

LL8SLS

Fig. 7. Primitives guide the choice of contact, resulting in an easier step

Using Motion Primitives in Probabilistic Sample-Based Planning 519

Stair | From scratch |[Adapt primitive| Optimal
height|Time|Objective| Time| Objective
0.2m | 8.61 5.03 5.42
0.3m | 10.3 | 4.67 |4.08
0.4m | 12.2 5.15

objective
3.04 2.19
2.31 2.17
10.8 3.27 2.55

Fig. 8. Planning time and objective function values for stair steps, averaged over 5
runs

et D

AR

Fig. 9. A planar walking primitive adapted to slightly uneven terrain

Fig. 10. A ladder climbing primitive adapted to a new ladder with uneven rungs

520 K. Hauser et al.

Fig. 11. A side-step primitive using the hands for support, adapted to a terrain with
large boulders. Hand support is necessary because the robot must walk on a highly
sloped boulder.

Fig. 12. A motion on steep and uneven terrain generated from a set of several primi-
tives. A hand is being used for support in the third configuration.

7 Conclusion

In this paper we described a method of computing efficient and natural-looking
motions for humanoids walking on varied terrain. We used a set of motion primi-
tives, generated offline, to derive a sampling strategy for a probabilistic, sample-
based planner. Our experimental results on several different examples demon-
strated a reduction in planning time and a marked increase in motion quality.
However, much work remains to be done. For example, our heuristics for decid-
ing which primitives to generate and for choosing primitives appropriate to each
step could be improved. One might even consider the use of several primitives
concurrently, or the use of a primitive that encodes several steps rather than just
a single step. Finally, even though primitives increase motion quality, a better
method of post-processing would improve our results.

Using Motion Primitives in Probabilistic Sample-Based Planning 521

Acknowledgments. This work was partially supported by NSF grant 0412884.
K. Hauser is supported by a Thomas V. Jones Stanford Graduate Fellowship.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. Akinc, M., Bekris, K.E., Chen, B.Y., Ladd, A.M., Plaku, E., Kavraki, L.E.: Prob-

abilistic roadmaps of trees for parallel computation of multiple query roadmaps.
In: Int. Symp. Rob. Res., Siena, Italy (2003)

Arun, K., Huang, T., Blostein, S.: Least-squares fitting of two 3-d point sets. IEEE
Trans. Pattern Anal. Machine Intell. 9(5), 698-700 (1987)

Bevly, D., Farritor, S., Dubowsky, S.: Action module planning and its application
to an experimental climbing robot. In: IEEE Int. Conf. Rob. Aut., pp. 4009-4014
(2000)

Bobrow, J., Martin, B., Sohl, G., Wang, E., Park, F., Kim, J.: Optimal robot
motions for physical criteria. J. of Robotic Systems 18(12), 785-795 (2001)

Bretl, T.: Motion planning of multi-limbed robots subject to equilibrium con-
straints: The free-climbing robot problem. Int. J. Rob. Res. 25(4), 317-342 (2006)

. Bretl, T., Lall, S.: A fast and adaptive test of static equilibrium for legged robots.

In: IEEE Int. Conf. Rob. Aut., Orlando (2006)

Bretl, T., Latombe, J.-C., Rock, S.: Toward autonomous free-climbing robots. In:
Int. Symp. Rob. Res., Siena, Italy (2003)

Burridge, R., Rizzi, A., Koditschek, D.: Sequential composition of dynamically
dexterous robot behaviors. Int. J. Rob. Res. 18(6), 534-555 (1999)

Cortés, J., Siméon, T., Laumond, J.-P.: A random loop generator for planning the
motions of closed kinematic chains using prm methods. In: IEEE Int. Conf. Rob.
Aut., Washington (2002)

Frazzoli, E., Dahleh, M.A., Feron, E.: Maneuver-based motion planning for non-
linear systems with symmetries. IEEE Trans. Robot. 25(1), 116-129 (2002)
Frazzoli, E., Dahleh, M.A., Feron, E.: Real-time motion planning for agile au-
tonomous vehicles. ATAA J. of Guidance, Control, and Dynamics 25(1), 116-129
(2002)

Gavrilets, V., Frazzoli, E., Mettler, B., Peidmonte, M., Feron, E.: Aggressive ma-
neuvering of small autonomous helicopters: A human-centered approach. Int. J.
Rob. Res. 20(10), 795-807 (2001)

Gleicher, M.: Retargetting motion to new characters. In: SIGGRAPH, pp. 33-42
(1998)

Gottschalk, S., Lin, M., Manocha, D.: OBB-tree: A hierarchical structure for rapid
interference detection. In: ACM SIGGRAPH, pp. 171-180 (1996)

Grochow, K., Martin, S.L., Hertzmann, A., Popovié¢, Z.: Style-based inverse kine-
matics. ACM Trans. Graph. 23(3), 522-531 (2004)

Hauser, K., Bretl, T., Latombe, J.-C.: Non-gaited humanoid locomotion planning.
In: Humanoids, Tsukuba, Japan (2005)

Hsu, D., Latombe, J., Kurniawati, H.: On the probabilistic foundations of proba-
bilistic roadmap planning. In: Int. Symp. Rob. Res., San Francisco (2005)
Kaneko, K., Kanehiro, F., Kajita, S., Hirukawa, H., Kawasaki, T., Hirata, M.,
Akachi, K., Isozumi, T.: Humanoid robot HRP-2. In: IEEE Int. Conf. Rob. Aut.,
New Orleans, pp. 1083-1090 (2004)

Kovar, L., Gleicher, M., Pighin, F.: Motion graphs. In: SIGGRAPH, San Antonio,
Texas, pp. 473-482 (2002)

522

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

K. Hauser et al.

Kron, T., Shin, S.Y.: Motion modeling for on-line locomotion synthesis. In: Eu-
rographics/ACM SIGGRAPH Symposium on Computer Animation, Los Angeles,
pp. 29-38 (2005)

Kuffner Jr., J.J.: Autonomous Agents for Real-Time Animation. PhD thesis, Stan-
ford University (1999)

Kuffner Jr., J.J., Nishiwaki, K., Kagami, S., Inaba, M., Inoue, H.: Motion planning
for humanoid robots. In: Int. Symp. Rob. Res., Siena, Italy (2003)

Laumond, J., Jacobs, P., Taix, M., Murray, R.: A motion planner for nonholonomic
mobile robots. IEEE Trans. Robot. Automat. 10(5), 577-593 (1994)

Laumond, J.-P.: Finding collision-free smooth trajectories for a non-holonomic mo-
bile robot. In: International Joint Conference on Artificial Intelligence (IJCAI), pp.
1120-1123 (1987)

LaValle, S.M., Kuffner Jr., J.J.: Rapidly-exploring random trees: progress and
prospects. In: WAFR (2000)

Lawrence, C., Zhou, J., Tits, A.: User’s guide for CFSQP version 2.5: A C code
for solving (large scale) constrained nonlinear (minimax) optimization problems,
generating iterates satisfying all inequality constraints. Technical Report TR-94-
16r1, 20742, Institute for Systems Research, University of Maryland, College Park,
MD (1997)

Liao, L., Fox, D., Kautz, H.: Location-based activity recognition. In: Advances in
Neural Information Processing Systems (2005)

Liu, C.K., Hertzmann, A., Popovié¢, Z.: Learning physics-based motion style with
nonlinear inverse optimization. ACM Trans. Graph. 24(3), 1071-1081 (2005)
Meredith, M., Maddock, S.: Adapting motion capture data using weighted real-
time inverse kinematics. Comput. Entertain. 3(1) (2005)

Missiuro, P.E., Roy, N.: Adapting probabilistic roadmaps to handle uncertain
maps. In: IEEE Int. Conf. Rob. Aut., Orlando (2006)

Ng, A.Y., Kim, H.J., Jordan, M., Sastry, S.: Autonomous helicopter flight via
reinforcement learning. In: Neural Information Processing Systems 16 (2004)
Pettré, J., Laumond, J.-P., Siméon, T.: A 2-stages locomotion planner for digital
actors. In: Eurographics/SIGGRAPH Symp. Comp. Anim. (2003)

Popovic, M.B., Goswami, A., Herr, H.: Ground reference points in legged loco-
motion: Definitions, biological trajectories and control implications. Int. J. Rob.
Res. 24(12), 1013-1032 (2005)

Popovié, Z., Witkin, A.: Physically based motion transformation. In: SIGGRAPH,
pp. 11-20 (1999)

Ren, L., Patrick, A., Efros, A.A., Hodgins, J.K., Rehg, J.M.: A data-driven ap-
proach to quantifying natural human motion. ACM Trans. Graph. 24(3), 1090—
1097 (2005)

Sanchez, G., Latombe, J.-C.: On delaying collision checking in PRM planning:
Application to multi-robot coordination. Int. J. of Rob. Res. 21(1), 5-26 (2002)
Schwarzer, F., Saha, M., Latombe, J.-C.: Exact collision checking of robot paths.
In: WAFR, Nice, France (December 2002)

Sentis, L., Khatib, O.: Synthesis of whole-body behaviors through hierarchical
control of behavioral primitives. Int. J. Humanoid Robotics 2(4), 505-518 (2005)
Shin, H.J., Lee, J., Shin, S.Y., Gleicher, M.: Computer puppetry: An importance-
based approach. ACM Trans. Graph. 20(2), 67-94 (2001)

Witkin, A., Popovié, Z.: Motion warping. In: SIGGRAPH, Los Angeles, CA, pp.
105-108 (1995)

Yamane, K., Kuffner, J.J., Hodgins, J.K.: Synthesizing animations of human ma-
nipulation tasks. ACM Trans. Graph. 23(3), 532-539 (2004)

	Using Motion Primitives in Probabilistic Sample-Based Planning for Humanoid Robots
	Introduction
	Related Work
	Background
	Motion Constraints
	Motion Planning
	Current Limitations

	Generating Motion Primitives
	Using Primitives for Planning
	Finding Paths
	Finding Transitions
	Finding Contacts
	Deciding Which Primitive to Use

	Results
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

