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Abstract— Hybrid driving-stepping locomotion is an effective
approach for navigating in a variety of environments. Long,
sufficiently even distances can be quickly covered by driving
while obstacles can be overcome by stepping. Our quadruped
robot Momaro, with steerable pairs of wheels located at the end
of each of its compliant legs, allows such locomotion. Planning
respective paths attracted only little attention so far.

We propose a navigation planning method which generates
hybrid locomotion paths. The planner chooses driving mode
whenever possible and takes into account the detailed robot
footprint. If steps are required, the planner includes those.
To accelerate planning, steps are planned first as abstract
manoeuvres and are expanded afterwards into detailed motion
sequences. Our method ensures at all times that the robot stays
stable. Experiments show that the proposed planner is capable
of providing paths in feasible time, even for challenging terrain.

I. INTRODUCTION

Hybrid driving-stepping locomotion enables robots to tra-
verse a wide variety of terrain types. Application domains,
such as search and rescue and delivery services, pose con-
siderable navigation challenges for robots due to non-flat
grounds. Sufficiently flat terrain can be traversed by driving,
which is fast, efficient and safe, regarding the robot stability.
However, driving traversability is limited to moderate slopes
and height differences and obstacle-free paths. Stepping
locomotion requires only adequate footholds and, hence,
enables mobility in cases where driving is unfeasible. But
stepping is also slower and decreases the robot stability.

Most mobile ground robots use either driving locomotion
or stepping locomotion, and there exist path planning meth-
ods for both such locomotion modes independently [1]–[7].
Our mobile manipulation robot Momaro [8] (see Fig. 1),
however, supports both locomotion types due to its four
legs ending in steerable pairs of wheels. This unique design
allows omnidirectional driving on sufficiently flat terrain and
stepping to overcome obstacles. In contrast to purely walking
robots, Momaro is able to change its configuration of ground
contact points (which we will refer to as its footprint) under
load without lifting a foot. This enables motion sequences
for stepping that have large stability margins. Multiple plat-
forms that are capable of driving-stepping locomotion have
been developed [9]–[13], but planning which combines the
advantages of both locomotion types was addressed for none
of these.
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Fig. 1. Our hybrid wheeled-legged mobile manipulation robot Momaro is
capable of omnidirectional driving (left) and stepping (right).

In our previous work with Momaro [14], we demon-
strated semi-autonomous driving, 2D (x, y) path planning
and execution in a Mars-like environment accompanied by
manipulation tasks. In this work, we extend the driving path
planning method to incorporate the robot orientation θ and
its detailed footprint in order to increase driving flexibility.
We improve the path quality by introducing an orientation
cost term.

In addition, we demonstrated stepping over a wooden
bar obstacle, climbing stairs, and egressing a car with Mo-
maro at the DARPA Robotics Challenge (DRC) [15]. All
of the DRC tasks were performed via teleoperation based
on pre-defined motion sequences. Teleoperation depends on
a good data connection between the operator station and
robot and generates a high cognitive load for the operators.
Autonomous locomotion is desirable to relieve the operators
and to increase speed and safety.

We extend the locomotion planner to generate stepping
motions. Driving in difficult terrain and stepping require a
high planning resolution which increases planning times. To
keep the search space feasible, we first generate abstract steps
that we later expand to detailed motion sequences.
To summarize, the main contributions in this paper are:
• a three-dimensional (x, y, θ) driving path planning

method allowing driving in constrained uneven environ-
ments by consideration of the detailed robot footprint,

• the introduction of orientation costs, favoring a pre-
ferred driving direction to align the robot with the path,

• a hierarchical step planner, which generates detailed
manoeuvres to perform individual steps under the con-
straint to always keep the robot statically stable, and

• application of anytime planning to quickly find paths
with bounded suboptimality.

We demonstrate our approach in simulation and with
the real robot and systematically evaluate the effect of our
acceleration methods. The results indicate that our planner
provides paths in feasible time even for challenging tasks.
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II. RELATED WORK

Path planning in unstructured terrain has been addressed
by many works. The considered systems provide either
purely wheeled/tracked locomotion or are able to traverse
terrain by walking. Planning is often done with either
grid-based searches, such as A* [16], or sampling-based
approaches, such as RRT [17]. Despite the application of
similar planning methods, these two locomotion modes differ
in many aspects.

Driving is fast and energy efficient on sufficiently flat
terrain, which makes it suitable for traversing longer dis-
tances. When supported by three or more wheels, the robot
is generally statically stable. Planning of drivable paths in
unstructured environments is heavily dependent on the de-
grees of freedom (DoF) of the platform. Simple robot designs
offer longitudinal and rotational movements with a constant
robot shape [18], [19]. For search and rescue scenarios, some
robots were extended by tracked flippers [1], [2], [3]. These
allow the robots to climb stairs and thus increase capabilities
but also planning complexity due to additional shape shifting
DoFs. Flipper positions are often not considered by the initial
navigation path planning and are adjusted to the terrain in
a second planning step. Platforms which offer omnidirec-
tional locomotion increase the path planning search space
by another dimension [4]. Driving is restricted, however, by
terrain characteristics such as height differences and slopes
which makes it not suitable for very rough terrain and for
overcoming obstacles.

Legged locomotion is capable of traversing more difficult
terrain since it only requires isolated feasible footholds. The
drawback of this locomotion mode is, that motion planning
is much more complex. Since legs are lifted from the ground
repeatedly, the robot also has to constantly ensure that it re-
mains stable. Due to the high motion complexity of stepping,
path planning is often performed in at least two hierarchical
levels [5], [6], [7]. A coarse planning algorithm identifies
feasible footholds or areas for feasible steps. Detailed motion
planning is done in a second step to connect these footholds.
Navigation towards the goal is either included in the coarse
planning or realized in a higher-level planner.

Since both locomotion modes have complementary advan-
tages, it is promising to combine those. Halme et al. [9] and
Takahaashi et al. [10] developed quadruped robots with legs
ending in wheels. Control mechanisms to overcome obstacles
are presented, but locomotion planning is not addressed. The
hybrid locomotion robots HUBO [11] and CHIMP [12] were
used by the winning and the third best teams at the DARPA
Robotics Challenge. HUBO provides legged and wheeled
locomotion, but needs to shift its shape to switch between
those. Thus, hybrid locomotion, which combines advantages
of both locomotion types, is not possible. CHIMP provides
bipedal and quadruped hybrid locomotion. However, hybrid
locomotion planning is not presented. Finally, a bipedal
robot, capable of driving and walking, and a respective
planning algorithm is presented by Hashimoto et al. [13].
Depending on the terrain, it either chooses walking or driving

Fig. 2. Hybrid locomotion system structure: The hybrid path planner
searches an abstract path from start to goal pose. The step motion generator
expands this abstract path to a detailed path which can be executed by the
robot. A neighbour client provides neighbour states to the planner. Both, this
neighbour client and the step motion generator, request pose costs from the
cost client which generates costs out of the 2D height map. The resulting
path is executed by a controller.

mode. A combination of both, which might bring further
advantages, is not considered. Recently, Boston Dynamics
introduced its biped platform Handle1 with legs ending in
wheels. It demonstrated manoeuvres which require very good
dynamic control but path planning was not presented.

Our approach combines both locomotion modes in a single
planning algorithm and thus has many benefits of both.

III. HARDWARE

We use our quadruped robot platform Momaro [8]
(see Fig. 1) with articulated legs ending in directly-driven
360° steerable pairs of wheels. Those offer omnidirectional
driving and the possibility to change the robot footprint under
load which neither can be done by pure driving nor by pure
walking robots and enables novel movement strategies.

Each leg consists of three pitch joints which allow leg
movements in the sagittal plane. Lateral leg movements are
possible only passively. Legs show compliant behaviour due
to their elastic carbon composite links, which work as a
passive suspension system on rough terrain. Moreover, soft
foam-filled wheels compensate small terrain irregularities.

A continuously rotating Velodyne Puck 3D laser scanner
with spherical field-of-view at the robot head and an IMU
provide measurements for terrain perception.

IV. ENVIRONMENT REPRESENTATION

An overview of the planning system structure is given
in Fig. 2. Range measurements from the 3D laser scan-
ner are used for mapping and localization by utilizing a
multiresolution surfel map [20]. Input to the planner are
a 2D height map and the start and goal robot poses. A
robot pose ~r = (rx, ry, rθ, ~f1, ..., ~f4) includes the robot base
position rx, ry and orientation rθ and the foot positions
~fj = (fj,x, fj,y) in map coordinates. The grid resolution is
set to 2.5 cm with 64 possible orientations at each position.

1https://youtu.be/-7xvqQeoA8c
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Fig. 3. Driving cost computation: a) Simulated scenario in which the
robot stands in front of a ramp, a small and a tall pole. b) Foot costs.
Yellow areas are not traversable by driving, olive areas are unknown.
c) Body costs. The robot can take the small pole between its legs while the
tall pole generates costs for lifting the robot body. Costs are shown for the
current robot orientation. d) Pose costs combine body costs and foot costs
at their respective positions.

The cost client computes pose cost values from the height
map for a robot pose as follows: From the height map, local
unsigned height differences 4H are computed to generate
the foot specific cost

CF(cj) = 1 + k1 ·
∑

ci∈map
4H(ci) · w(ci) (1)

where k1 = 100 and

w(ci) =


∞ if ‖ci − cj‖<rF ∧4H(ci)>0.05,

1− ‖ci−cj‖
rN

if ‖ci − cj‖<rN,

0 otherwise
(2)

for a map cell cj in which the foot ~fj is located. Foot
costs are assigned an infinite value if untraversable height
differences > 0.05 m occur in a surrounding of the size of
a foot (rF = 0.12 m). In a neighbourhood of greater size
(rN = 0.3 m), height differences are accumulated weighted
by their distance to cj . Foot costs are defined to be 1 in
flat surroundings and increase if challenging terrain occurs.
CF includes traversability information and describes the
surrounding of each foot position (see Fig. 3).

The robot shape allows obstacles to pass between the robot
legs. However, if obstacles are too high they might collide
with the robot base. The base cost

CB(~r) = 1+k2 ·max(Hmax,uB−HB, 0)+k3 ·4Hmax,F, (3)

where k2 = 1 and k3 = 0.5 compares the maximum terrain
height under the robot body Hmax,uB with the body height
HB and assigns additional costs if the space is not sufficient.
In addition, the height difference between the lowest and

Fig. 4. Driving locomotion neighbour states can either be found by
straight moves with fixed orientation within a 16-neighbourhood (l.) or by
orientation changes on a fixed position (r.). Grid and orientation resolution
are enlarged for better visualization.

highest foot 4Hmax,F generates costs since this is a measure
for the terrain slope under the robot. Again, the basic cost is
1 which increases for challenging terrain. The robot base is
estimated by two circles of 0.25 m radius to avoid expensive
detailed collision checking.

All cost values are combined into the pose cost

C(~r) = k4 ·max
j

(CF(~fj))+k5 ·
4∑
j=1

CF(~fj)+k6 ·CB(~r), (4)

where k4 = 0.1, k5 = 0.1 and k6 = 0.5. Pose costs are
defined to be 1 on flat terrain where both, foot and body
costs, induce 50% of the pose costs. We want to consider
the terrain under all four wheels but want to prefer a pose
with four slightly challenging contact points over a pose with
three non-challenging and one very difficult contact point.
Hence, it is neither sufficient to sum up all individual foot
costs nor to just take the maximum. A weighted sum of both,
however, achieves the desired functionality.

V. PATH PLANNING

Path planning is done in a hybrid planner, which prefers
the driving mode and considers steps only if necessary. It
is realized through an A*-search on a pose grid. The used
heuristic combines the Euclidean distance with orientation
differences. For each pose, the path planning neighbour client
provides feasible neighbouring poses (see Fig. 2). Driving
neighbours can be found within a 16-neighbourhood and by
turning on the spot to the next discrete orientation (Fig. 4).

As illustrated in Fig. 5, additional stepping manoeuvres
are added, if a foot ~fj is
• close to an obstacle(
∃c ∈ map

(
CF(c) =∞∧

∥∥∥c− ~fj

∥∥∥ < 0.1 m
))

,
• a feasible foothold ch with CF(ch) <∞ can be found

in front of the foot in its sagittal plane that respects a
maximum leg length,

• the height difference to the foothold is small
(|H(~fj)−H(ch)| ≤ 0.3m), and

• the distance between the two feet on the “non-stepping”
robot side is > 0.5 m to guarantee a safe stand while
stepping.

A step is represented as an additional possible neighbouring
pose for the planner.

The step which is considered by the planner at this level
is an abstract step. We define an abstract step to be the direct
transition from a pre-step pose to an after-step pose. It does
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Fig. 5. Criteria to add steps to the hybrid planner: a) A foot is close to
an obstacle, b) a feasible foothold can be found, c) the height difference
to overcome is ≤ 0.3 m and d) the distance between the feet on the “non-
stepping” robot side is > 0.5 m. Grey areas show an elevated platform.

Fig. 6. Manoeuvres which extend the driving planner to a hybrid
locomotion planner, visualized on a height map: a) Abstract steps, b)
longitudinal base shifts, c) driving a pair of wheels at one front foot forward,
and d) driving a pair of wheels at any foot back to its neutral position.

not describe the motion sequence to perform the step and
needs to be expanded to be stable and executable by the
robot. An abstract step is visualized in Fig. 6a.

Each step is assigned a cost value

CS = k7 · Lstep + k8 · (CF (ch)− 1) + k9 · 4Hstep, (5)

where k7 = 0.5, k8 = 0.1 and k9 = 2.3 which includes the step
length Lstep, the foot specific terrain difficulty costs of the
foothold to step in ch, and the maximum height difference
4Hstep. If multiple end positions for a step exist, only the
cheapest solution is returned to the search algorithm.

Further manoeuvres are required to navigate in cluttered
environments. We define the footprint shown in Fig. 5a to
be the neutral footprint. It provides high robot stability at
a small footprint size, and is the preferred configuration for
driving.

If both front feet are positioned in front of their neutral
position, the robot may perform a longitudinal base shift
manoeuvre. The base is shifted forward relatively to the feet
until one of the front feet reaches its neutral position or
a maximum leg length is reached for one of the rear legs
(see Fig. 6b). Base shifts of length LBS using the average
discovered base costs CB,avg and k10 = 0.5 carry the cost

CBS = k10 · LBS · CB,avg. (6)

If a rear foot is close to an obstacle, the pair of wheels at
each front foot may be driven forward while keeping ground
contact (Fig. 6c) which is a preparation for a rear foot step.
If the robot footprint is not neutral, it may drive a single pair
of wheels to their neutral position (Fig. 6d). A single foot
movement of length LFM using the average discovered foot
costs CF,avg and k11 = 0.125 carries the cost

CFM = k11 · LFM · CF,avg. (7)

Since driving is faster and safer than stepping, we want
the planner to consider drivable detours of acceptable length

Fig. 7. Step-related manoeuvre costs are weighted such that the planner
just prefers taking a 1.5 m detour over a ramp (blue path) instead of stepping
up (red path) to an elevated platform.

instead of including steps in the plan. We define that, when
the robot stands in front of an 0.2 m elevated platform, it
should prefer a 1.5 m long detour over a ramp instead of
stepping up to this platform (Fig. 7). This can be achieved
by increasing the costs of stepping-related manoeuvres by a
certain factor.

VI. STEP MOTION GENERATION

The result of the A* search is a cost-optimal abstract
path which lacks executable motion sequences for steps
and information about foot heights. The resulting path is
expanded during step motion generation. It finds stable robot
positions for steps and adds leg height information to the
path. Again, costs are obtained from the cost client.

A. Robot Stabilization

Abstract steps only describe the start and goal poses for a
stepping manoeuvre. An executable transition between these
poses is a motion sequence which keeps the robot stable at all
times. Such a motion sequence is generated for each abstract
step in the path. Due to the compliant leg design of our robot,
we have no information about the exact position of the feet
but have to estimate it from actuator feedback. Hence, we
limit stability considerations to static stability. Since actuator
speeds are slow, dynamic effects can be neglected. Stability
estimation while stepping is done on the support triangle
which is spanned by the horizontal position of the remaining
three feet with ground contact (Fig. 8). If the horizontal
robot center of mass (CoM) projection is inside the support
triangle, the robot pose is stable. The closer the CoM is to
the support triangle centroid (STC), the greater the stability.

Lateral alignment of the CoM and STC is done by base roll
motions (Fig. 8), which are rotations around the longitudinal
axis. These are achieved by changing the leg lengths on one
side of the robot. The resulting angle between the wheel
axes and ground is compensated by the compliant legs and
the soft-foam filled wheels. Roll manoeuvre parametrization
is described in Sec. VI-B.

Longitudinal alignment of the CoM and STC is done
by driving the remaining pair of wheels on the stepping
side (e.g., the rear left foot if the front left foot is step-
ping) towards the robot center (Fig. 8). If this does not
suffice because the motion is hindered by obstacles, the
remaining longitudinal alignment is done by shifting the
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Fig. 8. To find a stable position for stepping, the robot CoM (red dot) needs
to be aligned with the STC (green dot). Lateral alignment is done by base
rolling. Longitudinal alignment is either done by a) driving the remaining
pair of wheels on the stepping side towards the center or b) by shifting the
robot base.

robot base. The longitudinal CoM position is also affected
by the robot base pitch angle which is described in the
next subsection. The presented motions generate a stable
robot configuration which allows the desired step to be
performed. After stepping, the robot reverses its base roll,
foot displacement, and base shift manoeuvres to get back to
its nominal configuration.

B. Leg Heights

Each robot pose is assigned an individual height for each
leg, which describes the vertical position of a foot relative
to the robot base. When driving with neutral footprint, a low
leg height of 0.27 m is chosen, which provides a low CoM
and good controllability through reduced leg compliance
(see Fig. 1 left). A larger ground clearance is chosen for
manoeuvres other than driving to provide great freedom for
leg movements (see Fig. 1 right). In this case, the base height
is determined by the highest foot. A soft constraint is applied
that the leg height should be at least 0.45 m. At the same
time, a hard constraint from the mechanical system is that
none of the legs exceeds its maximum leg length. The height
of each individual foot can be read from the 2D height map.
The robot base pitching angle is set to be 70% of the ground
slope, as can be seen in Fig. 19. This pitching value provides
a good compromise between sufficient ground clearance for
all four legs and a good CoM position.

As described before, base roll manoeuvres are used to
shift the robot CoM laterally. Due to the soft-foam filled
wheels, we can estimate the center of rotation R(y′rot, z

′
rot)

between the two wheels (Fig. 9). In addition, the center of
mass position C(y′CoM, z

′
CoM), the angle

α = arctan
(
y′rot − y′CoM

z′CoM − z′rot

)
(8)

between ~RC and the vertical axis and the desired lat-
eral center of mass position y′CoM,des are given. Using∥∥∥ ~RC∥∥∥ =

∥∥∥ ~RCdes

∥∥∥ we compute the desired angle between
~RCdes and the vertical axis

αdes = arcsin

y′rot − y′CoM,des∥∥∥ ~RC∥∥∥
 (9)

Fig. 9. Momaro’s lower body in back view. Lateral CoM shifts can be
achieved by changing leg length on one side which rolls the robot.

and consequently using the footprint width b we compute the
desired leg height difference

4hleg = b · tan(α− αdes). (10)

This leg height difference is added to both legs on the
respective side to induce a base roll manoeuvre. Fig. 10
shows how Momaro steps up an elevated platform, using
the described motion sequences.

VII. PATH PLANNING EXTENSIONS

Due to the fine position and orientation resolution, the
search space which is considered for path planning is large.
Moreover, we want the planner to consider several detours
before taking a step, which further increases planning times.
We present methods to accelerate planning and to improve
the resulting path quality. Their individual effects are inves-
tigated during evaluation.

A. Robot Orientation Cost

Although our robot is capable of omnidirectional driving,
there are multiple reasons to prefer driving forward. Since
the sensor setup is not only used for navigation, but also
for manipulation, it is designed to provide best measurement
results for the area in front of the robot. The required width
clearance is minimal when driving in a longitudinal direction,
which is helpful in narrow sections such as doors. The same
applies to driving backwards. Driving straight backwards
requires a smaller clearance than driving diagonal backwards.
Finally, our leg design restricts us to perform steps in the
longitudinal direction. Thus, when approaching areas where
stepping is required, a suitable orientation is helpful. We
address this desire of preferring special orientations by mul-
tiplying neighbour costs during A* search by the individual
factor k4θ, as described in Fig. 11.

B. ARA*

To obtain feasible paths quickly, we extend the A* algo-
rithm to an Anytime Repairing A* (ARA*) [21]. Its initial
search provides solutions with bounded suboptimality by
giving the heuristic a weight > 1. The result quality is
then improved by decreasing the heuristic weight stepwise
down to 1, if the given planning time is not exhausted yet.
ARA* recycles the representations it generated previously to
accelerate replanning.
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Fig. 10. Momaro stepping up an elevated platform. a) It arrives at the platform in low driving position, b) stands up, c) rolls its base to the left to shift
its CoM laterally, d) drives its rear right pair of wheels forward to reach a stable stepping configuration. e) It then steps with its front right foot, f) drives
its rear right pair of wheels back and g) rolls back its base to reach the configuration it had before the step. The remaining steps follow a similar motion
sequence which is shown in less details. Subsequently, h) Momaro steps with its front left foot. i) It then drives forward and j) shifts its base forward
before k) doing a step with the rear left and l) rear right foot. n) When the robot stands on the platform, o) it lowers its base to continue driving.

Fig. 11. For a difference between robot orientation and driving direction
4θ the cost factor k4θ is computed which expresses the desire to drive
forward. It is 1 within an orientation step of 2π/60 and increases up to
k12. When driving backward, there is a desire to drive straight backwards
since the required clearance is smaller.

Fig. 12. Adressing ARA* preferences of long moves. a) For larger heuristic
weights, the ARA* algorithm prefers those driving manoeuvres which bring
the robot as close to the goal as possible which leads to undesired paths
(black arrows). b) To obtain the desired behaviour (blue line) we extend the
driving neighbourhood by the four red manoeuvres.

When planning with higher weighted heuristics, the plan-
ner prefers those driving manoeuvres that bring it as close to
the goal as possible. This leads to the undesired effect that
resulting paths mainly consist of those driving manoeuvres
which go two cells in one direction and one cell in an
orthogonal direction, as can be seen in Fig. 12 a. To prevent
this behaviour, we extend the driving neighbourhood size
from 16 to 20, as shown in Fig. 12 b.

VIII. PLAN EXECUTION

We utilize the control framework described by Schwarz
et al. [15]. Input for omnidirectional driving is a velocity
command ~w = (vx′ , vy′ , ω) with horizontal linear velocities
vx′ and vy′ in robot coordinates and a rotational velocity ω
around the vertical robot axis. We obtain ~w by computing a
B-spline through the next five driving poses and aim towards
a pose ~p = (px, py, pθ) on this B-spline in front of the robot.

For manoeuvres which require leg movement, the input to
the control framework are 2D (x′, z′) foot poses which can
be directly derived from the resulting path.

IX. EXPERIMENTS

We evaluate our path planning method and the presented
extensions in the Gazebo simulation environment2. Experi-
ments are done on one core of a 2.6 GHz Intel i7-6700HQ
processor using 16 GB of memory. A video of the experi-
ments is available online3.

In a first scenario, the robot stands in a corridor in front of
an elevated platform and some cluttered obstacles. It needs
to find a way to a goal pose on this platform as can be
seen in Fig. 13. We compare the performance of the planner
for different values of k12 in Fig. 14. The parameter k12 is
defined in Fig. 11. All shown path costs are the costs the path
would have in the plain A* planner to keep them comparable.
It can be seen that an increasing robot orientation cost
factor decreases the difference between robot orientation and
driving direction. This can also be observed in Fig. 16.
Moreover, planning is accelerated for higher values (≥ 2)
of k12, while path costs increase only slightly.

In addition, we evaluate the ARA* approach in the
same scenario. We choose exponentially decaying heuristic

2http://www.gazebosim.org
3https://www.ais.uni-bonn.de/videos/IROS_2017_

Klamt/
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Fig. 13. Gazebo scenario to compare planner variants. Momaro stands in
front of an elevated platform, cluttered with obstacles and has to reach a
pose on this platform.

Fig. 14. Comparison between the original A* planner (k12 = 1) and the
modification with robot orientation cost factor.

weights, starting at 3.0 while k12 = 2. The performance
results are shown in Fig. 15 and a path can be seen in Fig. 16.
ARA* provides its first result in 32 ms, and this is 31%
more costly than the optimal solution. A solution with only
2% higher costs is found in ~10 s which is sufficiently
fast compared to the required execution times. Planning
paths using an optimal heuristic weight takes infeasibly long
(> 100 s). Searching optimal results takes longer than in
the plain A* variant because higher heuristic weights are
considered first and the neighbourhood size changed from 16
to 20. It can be seen that the effect of the robot orientation
cost factor increases with decreasing heuristic weights.

To demonstrate the capabilities of our planner, we present
a second experiment in which Momaro has to climb a
staircase which is blocked by obstacles (Fig. 17). Tracked
vehicles would have great difficulties to overcome this. Our
robot climbs the stairs and then drives sideways while taking
the obstacle between its legs. Our planner finds a first path
with heuristic weight of 3.0 in 1.02 s. Fig. 19 shows Momaro
on the staircase and visualizes how the robot base adapts its
pitch angle to the terrain slope.

Fig. 15. Performance and result quality of the ARA* algorithm where
k12 = 2.

Fig. 16. Resulting paths of our planner in different settings on a foot cost
map. Yellow areas are not traversable by driving. Blue paths show the robot
center position, arrows show the orientation. Blue rectangles show used
footholds. Red lines represent front foot steps, green lines represent rear
foot steps. a) Result of the plain A* algorithm, b) orientation differences
are considered (k12 = 2), c) first result of the ARA* algorithm using a
heuristic weight of 3.0.
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Fig. 17. Challenging scenario to demonstrate the planner capabilities. A
staircase with obstacles on it requires a combination of stepping and driving
sideways.

Fig. 18. Planner output for the staircase scenario on a foot cost map using
a heuristic weight of 3. The blue path shows the robot center position.
Arrows show the robot orientation. Blue squares show used footholds. Red
lines represent front foot steps, green lines represent rear foot steps.

X. CONCLUSION

In this paper, we presented a hybrid locomotion planning
approach which combines driving and stepping in a single
planner. It provides paths with bounded suboptimality in
feasible time and is capable of path planning in challenging
environments. Due to the high dimensionality of the search
space and the desire to consider detours instead of stepping,
finding optimal solutions may take considerable time. We
address this by using an anytime approach with larger heuris-
tic weights. The planned paths are executed by our mobile
manipulation robot Momaro. Experiments demonstrated that
our method generates paths for challenging terrain, which
could not be traversed by driving or stepping alone.
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