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Dynamic Locomotion through Online Nonlinear
Motion Optimization for Quadrupedal Robots

C. Dario Bellicoso, Fabian Jenelten, Christian Gehring, Marco Hutter

Abstract—This paper presents a realtime motion planning and
control method which enables a quadrupedal robot to execute
dynamic gaits including trot, pace and dynamic lateral walk, as
well as gaits with full flight phases such as jumping, pronking
and running trot. The proposed method also enables smooth
transitions between these gaits. Our approach relies on an
online ZMP based motion planner which continuously updates
the reference motion trajectory as a function of the contact
schedule and the state of the robot. The reference footholds
for each leg are obtained by solving a separate optimization
problem. The resulting optimized motion plans are tracked by
a hierarchical whole-body controller. Our framework has been
tested in simulation and on ANYmal, a fully torque-controllable
quadrupedal robot, both in simulation and on the actual robot.

Index Terms—Legged Robots, Optimization and Optimal Con-
trol

I. INTRODUCTION

ROBOTIC locomotion is a complex problem that involves
a multi-body system interacting with the environment

through multiple contact points.It becomes even more demand-
ing when locomotion is executed in an unknown environment
and under the presence of external disturbances. While an-
imals have shown to be able to skillfully cope with these
limitations, their robotic counterparts are still struggling to
robustly locomote out of lab environments. Our goal is to
have robots which are capable of safely executing dynamic
locomotion over unstructured terrain. This would turn out to
be extremely helpful in search and rescue scenarios, where
tasks are carried out in an unpredictable environment and
fast and stable locomotion can be essential. The capability
of executing different kinds of gaits makes legged robots
even more adaptable to different scenarios. A static walk
might be the only option where careful stepping is the most
critical requirement; running might be necessary if speed is
the decisive factor for a successful mission; dynamic lateral
walk might be the most energy efficient option at relatively low
speeds. From these considerations, it emerges that the desired
skills of a walking robot include not only the ability to execute
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Fig. 1. ANYmal, a torque-controllable quadrupedal robot, executes a squat
jump. The motion is computed by solving a nonlinear optimization problem
which ensures dynamically stable plans.

dynamic gaits but also the ability to switch between the gaits.
Although robots are not yet fully capable of autonomous
locomotion in such environments, the past years have shown
that both the academia and the industry are taking big steps
in the development of tools and methods which would allow
this.

The Cheetah 2 [18], a quadrupedal robot developed at MIT,
has demonstrated its agile skills by jumping over unexpected
obstacles using a fast online Model Predictive Controller
(MPC). The IIT HyQ [20] quadruped has shown walking
using a creeping gait [16] over stepping stones [23]. In [22],
the trajectory optimization framework is exploited to execute
dynamic gaits such as trotting and pacing. Agile and dynamic
skills have been demonstrated by the Boston Dynamics robots,
including the quadrupedal robot Spot and the more recent Spot
Mini, which additionally sports a robot arm for manipulation
tasks. However, very little is known about the methods which
enable such remarkable capabilities.

In [5], agile running motions have been demonstrated on the
humanoid robot Toro [6]. Although the targeted robot platform
is topologically different (i.e. humanoid versus quadruped), the
problem formulation introduced there (e.g. parametrization of
the motion with quintic splines; dynamic model used when in
full flight phase) shares many similarities with ours. While
impressive in the results, their approach is focused on the
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planning and execution of running gaits on flat terrain or on
stepping stones. We demonstrate, on the other hand, a single
framework which deals with a larger variety of gaits, from a
static walk up to a running trot and pace.

Over the past few years, ANYmal [12] (see Fig.1) has shown
its ability to walk [1], trot [10] and climb over stairs [7]. In
our previous work [2], we have advanced the capabilities of
ANYmal by demonstrating dynamic lateral walking, pacing
and gait transitions between these gaits. The method relied on
a simplified and linearized Zero-Moment Point (ZMP, [21])
model to generate planar Center of Mass (CoM) motion plans,
which were executed in an MPC-like fashion, relying on
a hierarchical whole-body controller to track the reference
motion. That approach, while novel, presented limitations both
in the variety of gaits that could be produced and tracked, and
in the simple approach which allowed us to switch between
those gaits.

In this paper, we discuss our approach to overcome those
limitations. First, we discuss the solution to an optimization
problem which is solved online to generate motion plans
for dynamic gaits such as trotting, walking, and pacing,
as well as for more agile maneuvers such as jumping and
running trot or pace; second, we introduce a separate online
optimization problem which computes reference footholds;
finally, we discuss a gait switching algorithm which allows us
to switch between any of the gaits that are discussed in this
paper. We show the results of our approach both in a simulated
environment and on the quadrupedal robot ANYmal.

The frequency at which a motion plan is computed can
vary depending on the type of gait and on the optimization
parameters. As shown in our experiments, the optimization
can be evaluated at more than 100Hz. The motion plans are
tracked by a whole-body controller which runs at an update
frequency of 400Hz.

II. MODEL FORMULATION

The model of a walking robot can be described as a free-
floating base B to which limbs are attached. The motion of
the entire system can be described w.r.t. a fixed inertial frame
I . The position of the Base w.r.t. the inertial frame is written
as IrIB ∈ R3. The orientation qIB ∈ SO(3) of the Base
w.r.t. the inertial frame is parametrized using Hamiltonian unit
quaternions. The limb joint angles are stacked in the vector
qj ∈ Rnj . We write the generalized coordinates vector q and
the generalized velocities vector u as

q =

IrIBqIB
qj

 ∈ SE(3)× Rnj , u =

 IvB
BωIB

q̇j

 ∈ Rnu , (1)

where nu = 6 + nj , IvB and BωIB are the linear and
angular velocity of the Base w.r.t. the inertial frame expressed
respectively in the I and B frame. The equations of motion of
mechanical systems which are in contact with the environment
can be written as M(q)u̇ + h(q,u) = ST τ + JTs λ, where
M(q) ∈ Rnu×nu is the mass matrix and h(q,u) ∈ Rnu
is the vector of Coriolis, centrifugal and gravity terms. The
selection matrix S =

[
0nτ×(nu−nτ ) Inτ×nτ

]
selects which

Degrees of Freedom (DoFs) are actuated. If all limb joints are

actuated, then nτ = nj . The vector of constraint forces λ is
mapped to the joint space torques through the support Jacobian
Js ∈ R3nc×nu , which is obtained by stacking the constraint
Jacobians as Js =

[
JTC1

· · · JTCnc
]T

, with nc the number
of limbs in contact.

III. MOTION OPTIMIZATION

Our motion planning framework consists of two main mod-
ules, namely a CoM motion planner and a foothold generator,
both of which are separately solving an optimization problem.
The computation is carried out in parallel to the the main
control loop, such that it does not interrupt the whole-body
motion tracking controller. Motion plans for the swing feet are
obtained by generating splines through the current position of
the foot and its reference optimized foothold.

The motion plans are computed in the Plan frame P , which
is located at the footprint center projected onto the local terrain
along the terrain normal. The footprint is represented by the
location of the feet of the robot. The orientation of the Plan
frame is such that it is parallel to the local estimation of
the terrain from the contact points[9], while its yaw angle is
computed s.t. the x axis is aligned with the reference high-level
velocity. The latter is generated from an external source, e.g.
an operator device or a high-level navigation planner. The Plan
frame allows the optimization parameters (e.g. weights relative
to a specific coordinate to the CoM) to be independent of the
inertial frame and to be properly defined w.r.t. the desired
direction of motion.

To drive locomotion to the reference speed, footholds are
generated (section III-C) for all legs such that the robot can
achieve the desired high-level velocity on average. This infor-
mation, together with the contact schedule (i.e. the predefined
lift-off and touch-down timings for each leg), is used to
generate a sequence of support polygons (section III-D) which
are sent to the motion plan optimizer (section III-A). This in
turn will produce position, velocity and acceleration profiles
for the whole-body center of mass. Fig.2 depicts an overview
of the entire motion planning and tracking framework.

We build on our previous work [2] which described how
to produce a motion plan for the x and y coordinates of the
Center of Mass (CoM) which can be tracked by a quadrupedal
robot. In that case, the reference height of the CoM was set to a
user-specified value and tracked by the controller. To optimize
for gaits which include full flight phases, the optimizer must
know how to produce motion plans which will be projected to
contact forces which produce jumping motions. To do this, we
include the z coordinate of the CoM in the optimization, such
that we optimize for the position, velocity and acceleration of
the CoM of the system. This has important implications on the
problem formulation. First, the dimension of the optimization
problem is increased. Then, by dropping the assumption that
the z component of the center of mass acceleration p̈CoM
is zero, constraints on the ZMP model become nonlinear.
Although the method described in this paper is more complex
(thus, more computationally expensive) than the one that we
build on, we are still capable of computing the plans online and
executing them in a MPC-like fashion, i.e. we continuously
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Fig. 2. An overview of the planning and control architecture described in
this paper.

run the motion optimizer initialized with the most recent state
of the robot to update the motion plan that is tracked by the
whole-body motion controller.

A. Problem formulation

We describe each coordinate of the CoM motion plan as
a sequence of quintic splines. As it will be explained in
detail in the following sections, the motion plan that we are
optimizing is described over a sequence of support polygons
which depend on the type of gait that is being executed. In our
implementation, for each component of the CoM there is at
least one spline for each support polygon. Two splines are used
for full flight phases. The motion of one of the coordinates of
the CoM, for example the x component, can be described by

the i-th spline as

x(t) = αxi5t
5 + αxi4t

4 + αxi3t
3 + αxi2t

2 + αxi1t+ αxi0

=
[
t5 t4 t3 t2 t 1

]
·
[
αxi5 αxi4 αxi3 αxi2 αxi1 αxi0

]T
= ηT (t)αxi ,

(2)

with t ∈ [t̄, t̄ + ∆ti], where t̄ is the sum of time durations
of all splines up to the (i − 1)-th one, and ∆ti is the time
duration of the i-th spline.

Using the notation introduced, we can compactly write
velocity and acceleration as

ẋ(t) = η̇T (t)αxi ẍ(t) = η̈T (t)αxi , (3)

where we have used the time vectors

η̇(t) =
[
5t4 4t3 3t2 2t 1 0

]T
η̈(t) =

[
20t3 12t2 6t 2 0 0

]T
.

(4)

Similar considerations can be carried out for the y and z com-
ponents of the CoM. The vector of optimization parameters is
then defined as α =

[
αT0 · · ·αTi · · ·αTns

]T
, with 3ns the total

number of splines and αi =
[
αx Ti αy Ti αz Ti

]T
. By also

defining

T(t) =

ηT (t) 0 0
0 ηT (t) 0
0 0 ηT (t)

 , (5)

we can easily write the CoM position pCoM (t) = T(t)αi,
where pCoM ∈ R3. Velocity and acceleration vectors can
be written as ṗCoM (t) = Ṫ(t)αi and p̈CoM (t) = T̈(t)αi
respectively.

B. Center of mass optimization

Due to the nature of the constraints that will be described in
the following sections, we formulate the motion planning al-
gorithm as a nonlinear optimization problem which minimizes
a generic cost function f(ξ) subject to equality and inequality
constraints c(ξ) ≤ 0 and h(ξ) = 0. To numerically solve
the optimization problem, we use the Sequential Quadratic
Programming (SQP) algorithm [17], which requires the com-
putation of Jacobians and Hessians of the constraints and the
cost function. The optimization, continuously re-evaluated as
soon as the previous one is completed, provides a motion plan
over a time horizon of τ seconds, where τ is the periodicity of
the locomotion gait (e.g. walk or trot) that is being optimized
for.

In the following, we describe each single contribution to
the cost function and the setup of all constraints used in our
formulation.

1) Cost function: As done in [23] and [2], we minimize
the acceleration of the entire motion plan. To do this, we set
a quadratic cost computed for spline segment as

Qacc
k =


(400/7)∆t7k 40∆t6k 24∆t5k 10∆t4k

40∆t6k 28.8∆t5k 18∆t4k 8∆t3k
24∆t5k 18∆t4k 12∆t3k 6∆t2k 04×2

10∆t4k 8∆t3k 6∆t2k 4∆tk
02×4 02×2


(6)
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Fig. 3. The top view of a motion plan computed for a pace (both lateral
legs simultaneously swinging). The blue curve is the desired CoM position,
the yellow curve the resulting ZMP position, and the pink curve is the path
regularizer. The support polygon sequence is numbered from 1 to 4.

and cacck = 0, with ∆tk the time duration of the k-th spline
segment in seconds. As explained in [13], the Hessian matrix
Qacc
k in eq.(6) is obtained by squaring and integrating the

acceleration of the CoM over the time duration of the k-th
spline. Qacc

k is added as a sub-matrix to the Hessian of the
overall cost function.

Soft constraints are set to impose constraints on the initial
and final state of the whole motion plan. The initial accelera-
tion is read from that of the previous optimization. The final
desired position is computed as a function of the reference
high-level linear velocity vref and the z-component of the
angular velocity ωref and the optimization horizon τ . We
assume that these are constant over the optimization horizon
(which is a valid assumption if they change at a much slower
rate than the optimization update frequency), hence we can
compute the final position as

pfinal = pinit + R(τ ω̂z)(τvref ), (7)

where the second term is the rotation of a position vector
computed as a velocity dependent offset vector and ω̂z =[
0 0 ωrefz

]T
.

External disturbances and continuous updates of the motion
plan can cause a drift of the floating base of the robot w.r.t. the
reference footholds over time. For this reason, we minimize the
deviation between the motion plan w.r.t. to a path regularizer
π (see Fig.3) which represents a high-level approximation of
the motion plan. The initial position of π is computed as
the footprint center averaged over the optimization horizon
τ , where it is assumed that the feet are either in contact or
move with a constant velocity. The final position is computed
through the reference high-level velocity as in (7). We set the
initial velocity equal to the reference velocity vref , and the
final one to be aligned with the predicted torso orientation at
the end of the motion plan. The initial and final accelerations
of π are set to zero. The initial and final height of π are set
to a user specified reference value.

Typically, the motion plan shows large deviations w.r.t. the
path regularizer. Overshoots in the vertical direction can cause
violation of kinematic limits in the legs. To limit this issue,
we bound overshoots along the z axis by adding a cost in the
form λlinεz + λquadε

2
z and augmenting our formulation with

the constraints

pzCoM (t)− πz(t) ≤ εz
pzCoM (t)− πz(t) ≥ −εz

εz ≥ 0,

(8)

where ε is a slack variable which is added to the vector
of optimization variables ξ. Due to the time dependency,
the trajectory needs to be sampled where each sample point
introduces two additional inequality constraints.

2) Equality constraints: To ensure that each pair of adjacent
splines is connected, we set junction constraints. Using the
notation introduced in section III-A, we write the junction
constraints for the x coordinate between the k-th and (k+1)-th
spline as [

η(tfk)T −η(0)T

η̇(tfk)T −η̇(0)T

] [
αxk
αxk+1

]
= 0, (9)

with tfk representing the duration in seconds of spline sk.
Similarly, (9) can be written for the y and z coordinates.

Junction conditions are formulated differently if two spline
segments are connected through a full flight phase. In this case,
the dynamics of the CoM are described by p̈CoM = g, where
g is the gravity acceleration vector. Integrating the dynamics
yields

ṗ(t) = gt+ ṗCoM (0)

p(t) =
1

2
gt2 + ṗCoM (0)t+ pCoM (0).

(10)

The constraints at touch down can be written as a function of
the spline coefficients as

T̈(0)αi+1 = g

Ṫ(0)αi+1 = gtf + Ṫ(ti)αi

T(0)αi+1 =
1

2
gt2f +

[
Ṫ(ti)tf + T(ti)

]
αi

(11)

with ti indicating the duration of the i spline. Similar replace-
ments can be found for initial and final conditions if the first
or the last support polygon corresponds to a full flight phase.

3) Inequality constraints: As shown in [19], the ZMP
position pZMP w.r.t. the origin of the plan frame O is
described by

pZMP =
n×Mgi

O

nTFgi
, (12)

where Mgi
O and Fgi are the components of the so-called

gravito-inertial wrench[4], which are computed as

Mgi
O = m · pCoM × (g − p̈CoM )− L̇

Fgi = m · g − Ṗ,
(13)

with m being the mass and P and L the linear and angular
momentum at the CoM. In the following, we will approximate
L̇ = 0 as we do not optimize for rotations and their derivatives.

To ensure dynamic stability of the planned motions, we
constrain the ZMP to always lie in the support polygon. To
do this, we write constraints in the form

hZMP = dTpZMP + r ≥ 0, (14)
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Fig. 4. A motion plan computed for a running trot, which includes a full
flight phase. The computed motion plan (shown in close-up) sets vertical
accelerations which cause the robot to jump.

where dT =
[
p q 0

]
and r are the coefficients which

describe an edges that belongs to the support polygon. Sub-
stituting (12) into (14) we get

dTS(n)Mgi
O + rnTFgi

=dTS(n)S(pCoM )(g − p̈CoM ) + rnT (g − p̈CoM ) ≥ 0
(15)

where S(a) is a skew symmetric matrix computed such that
S(a)b = a× b.

Using (15), we compute the gradient ∇hZMP of (14) w.r.t.
the position and acceleration of the com pCoM , p̈CoM by
writing

∇hZMP =

[
Γ · (p̈CoM − g)
−Γ · pCoM − rn

]
(16)

with Γ = S
(
ST (n)d

)
, and the Hessian ∇2hZMP as

∇2hZMP =

[
0 ΓT

−ΓT 0

]
, (17)

The Hessian in (17) is anti-symmetric, hence it drops out from
the optimization.

We soften the inequality constraints of the initial nineq
samples, with nineq a tuning parameter set by the user. To
achieve this, we add slack variables εineq to the optimization
parameters ξ. The formulation is modified by adding the
cost λlinεineq + λquadε

2
ineq and appending the constraints

cineq ≥ −εineq, εineq ≥ 0, where cineq are the first nineq
constraints described in (15). From a physical point of view
the relaxation amounts to a variable sized support polygon that
cannot be smaller than the nominal one.

4) Assigning a new plan: When a new motion plan is
obtained and sent to the controller, it is important to properly
append it to the previously executed plan. To do this, we
first store the computation time tc that was necessary for the
solver to optimize. We use this as an initial guess to search for
the position in the motion plan that is closest to the current
measured one, such that the transition to the new plan is a
smooth one. To do this, we solve a line search by writing

t = arg min W||p(t)− pmeas||22 (18)

where W is a diagonal positive definite weighting matrix and
pmeas is the measured CoM position after completing the
optimization. We use a Newton method with a back-tracing
line search algorithm that usually converges within 3 iterations
and leads to an average correction of 20% of the initial spline
time guess. During experiments with ANYmal, it has been
found that a line search significantly increases the control
performance.

C. Foothold optimization

In our previous works ( [10], [2]) we have computed ref-
erence footholds using a linear inverted pendulum model [10]
which predicts the next foothold as a function of the measured
and desired velocity of the torso. This method has shown
to add robustness to the real system in case of external
disturbances or deviation from the reference motion. However,
we wish to embed it into a framework which allows us to take
into account different contributions to the computation of the
footholds, as well as to set constraints on the final result. For
this reason, we set up a Quadratic Programming (QP) problem
as

min.
ξ

1

2
ξTQξ + cT ξ s. t. Dξ ≤ f . (19)

where ξ ∈ R2nfeet is a vector of x and y components of
footholds pf i, with i = 1, . . . , nfeet, and nfeet = 4 the total
number of feet. Similarly to what is done for the CoM motion
planner, we optimize in parallel to the main control loop. Thus
we update the foothold plan whenever a new optimization is
ready. In the following we describe each contribution to the
cost function in (19) as well as the constraints which appear
in it.

1) Cost function: A user-defined default foot position can
be assigned which is relative to a default standing configu-
ration. This can be interpreted as a regularization term in the
foothold optimization. To track these default foothold locations
pref i, we add

Qdef i = Wdef , cdef i = −WT
defpref i (20)

to the cost function described in (19). The choice of the
default footholds will influence how wide the footprint will
be when all legs are in contact with the environment. While
this can make a trotting gait more robust to disturbances, it
will produce wider lateral motions in slower walking gaits.
In practice, the default foothold location that worked reliably
during our experiments on ANYmal was computed as the
vertical projection of the hips to the terrain.

To track on average high-level velocities which drive the
whole locomotion framework, we penalize deviations from
foothold locations. These are computed assuming that a con-
stant velocity is achieved over the duration of the optimization
horizon. To avoid jumps in the reference footholds, we addi-
tionally set a cost to the distance between the current solution
and the previously computed one.

Finally, we add to the cost a stabilizing term which is a
function of the inverted pendulum model as described in [10],
which computes the k-th foothold as w(vref − vhipk)

√
h/g,

with w a positive scalar weight, vref the high level reference
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velocity, vhipk the linear velocity of the k-th hip, h the height
of the k-th hip from the ground and g the gravity acceleration
constant.

2) Inequality constraints: To avoid computing footholds
which would violate the kinematic extension of the legs, we
exploit the QP setup by adding inequality constraints on the
feasible location of each foothold. We do this by considering
the maximum leg extension lmax and the measured height
of each hip hi. By projecting the hip location on the terrain
h0, we set inequalities describing a polygon which has np
vertices equally distributed around h0. The distance between
each vertex and the hip projection to the terrain is computed
as
√
l2max − h2i .

D. Support polygon sequence

The method used to generate a sequence of support poly-
gons is similar to the one presented in [2]. Each gait is
described by a contact schedule, which in turn defines lift-off
and touch-down events for each leg over a complete gait stride.
Between each pair of events, a support polygon is defined
by the convex hull of the location of the expected contact
points, as well as its time duration in seconds. The edges
of each support polygon are used to generate the inequality
constraints for the ZMP location, such that the optimized
motion is dynamically stable.

E. Gait Switching

To fully exploit the capability of executing different gaits,
we have developed a gait switching algorithm which enables
the locomotion framework to safely and quickly switch from
a currently active gait to a desired gait. The software allows
the latter to be selected by the operator.

As described in section III, the motion optimization horizon
is computed as the time duration of the active gait. Hence, by
changing the contact schedule at the end of the current stride,
we avoid jumps in the solution of the optimization. To properly
append a new contact schedule to the current one, we first try
to connect the active gait with the desired one by selecting lift-
off events from the former and combine them with touch-down
events from the latter. This can fail for several reasons: there
are no overlapping swing phases across active and desired gait
at the transition; a new phase event is detected (a foot touch-
down or lift-off) that neither corresponds to the active nor the
desired gait; or the swing phases would become numerically
too large or small at the transition. In case of a failure, the
transition is obtained by adding a full stance phase between
the gait transitions. Additionally, each gait has its own stride
duration which is updated in the vicinity of a transition.

The transition is seen by the optimizer as a change of
the incoming sequence of support polygons. This allows the
adaption of the body trajectory to the desired gait before the
switch occurs.

IV. CONTROL

To track the reference motion plan we use a Whole-Body
Controller (WBC) which relies on the Hierarchical Optimiza-
tion [2] (HO) framework to optimize for the generalized

TABLE I
THE LIST OF PRIORITIZED TASKS USED TO CONTROL THE ROBOT AND

TRACK THE MOTION PLANS. PRIORITY 1 IS THE HIGHEST.

Priority Task
1 Floating base equations of motion
2 Torque limits

Friction cone and λ modulation
3 No motion at the contact points
4 Center of mass linear motion

Center of mass angular motion
Swing leg motion tracking

5 Contact force minimization

Flying Trot

Flying Pace

Pronking

1 2 3

1 2 3

1 2 3

Fig. 5. The motion planner is capable of generating motions for gaits which
include full flight phases, such as flying trot, flying pace and pronking.

accelerations u̇d ∈ Rnu and contact forces λd ∈ R3nc , where
nu is the dimension of the generalized velocity vector u,
and nc is the number of feet that are in contact with the
environment. Table I summarizes the list of tasks, together
with their priorities in the control hierarchy, which are used in
our controller. Each of these tasks, which specifies equality
or inequality constraints on the optimal solution, is solved
as a QP problem. From the optimal solution u̇∗ and λ∗, we
compute the control torques τ as

τ = Mju̇
∗ + hj − JTsjλ

∗, (21)

where Mj , hj and Jsj are, respectively, the rows of the
mass matrix, velocity dependent terms and support Jacobian
(described in section II) relative to the actuated joints.

V. RESULTS

The framework described in the previous sections was tested
in simulation and on the real hardware. A video demonstrating
the capabilities of our approach, as well as the experiments
discussed in this section, can be found online1.

1https://youtu.be/wQpLzoEzsx8
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Fig. 6. The desired contact forces for the left hind leg of ANYmal over two
strides of a trotting gait computed by the motion controller.

A. Simulation

We have tested our approach by executing the motion
plans in the robot simulation toolbox Gazebo. Fig.5 depicts
snapshots of the execution of a flying trot, a flying pace and a
pronking gait, while Fig.6 show the contact forces computed
by the whole-body controller while trotting forwards. The
optimized motions are tracked by a hierarchical whole-body
controller, as discussed in section IV. The user can steer the
robot in any desired direction by using an operator device
(e.g. a joystick). A graphical user interaction module has been
designed to allow to trigger a switch between the available
gaits.

B. Experiments

Our experiments were conducted on ANYmal [12], an accu-
rately torque-controllable quadrupedal robot. Control signals
are generated in a 400Hz control loop which runs on the
robot’s on-board computer (Intel i7-7600U, 2.7 - 3.5GHz, dual
core 64-bit) together with state estimation [3]. For modeling
and computation of kinematics and dynamics, we use the
open-source Rigid Body Dynamics Library [15] (RBDL),
which is a C++ implementation of the algorithms described in
[8]. To solve the nonlinear optimization problem described in
section III, we use a custom library which implements the SQP
framework, which solves the nonlinear program by iterating
through a sequence of Quadratic Programming (QP) problems.
Each QP is numerically solved using the QuadProg++ [14]
library, an off-the-shelf open source QP solver which imple-
ments the Goldfarb-Idnani active-set method [11]. To test the
capability of producing full flight phases, we have tested a
squat jump (see Fig.8) and a pronking gait (see Fig.9) on
ANYmal. To execute the squat jump, the optimizer plans a
motion that initially lowers the torso to build up speed and
finally jump. The gait switching module has been tested by
commanding an online switch between a trot and a dynamic
lateral walk which exhibits full swing phase (see Fig.7) overlap
between each pair of successive swing legs.

VI. CONCLUSIONS AND FUTURE WORK

We have shown that by extending our previous results by
optimizing for the full center of mass position, as well as

LF

LH

RF

RH

Fig. 7. The gait pattern of a dynamic lateral walk which exhibits swing phase
overlap over each pair of successive swing leg. The dark regions represent
stance phases.

Fig. 8. A sequence demonstrating a squat jump executed on ANYmal.
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Fig. 9. The x and z components of the center of mass motion generated to
execute a pronking gait. The reference motion is in red, while the measured
one is depicted in blue.
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Fig. 10. Comparison of the average computation time needed to optimize for
different gaits in our current and previous work. The 2D model used in [2]
leads to linear ZMP constraints and the resulting optimization can be handled
with a simpler QP solver. The full 3D model accounts for the z component
of CoM and, due to nonlinear stability constraints, is solved with a more
computationally demanding SQP. This, however, allows to vastly increase the
variety of gaits that can be executed.

parallelizing the optimization of footholds, we are now capable
of executing a broader range of gaits, including trotting,
dynamic lateral walk, jumping in place and pronking. To
execute transitions between them, we rely on a dedicated
gait switching module. The motion optimization relies on a
Sequential Quadratic Programming framework to solve the
nonlinear ZMP constraints. Although more complex and more
computationally demanding than our previous work, we are
still able to produce motion plans online and execute them
in an MPC-like fashion. This means that we are able to
continuously plan online using the most recent state of the
robot while we track the currently available motion plan.
Fig.10 summarizes the computation time needed to optimize
the torso motion for different gaits. A hierarchical whole-body
controller tracks the motion plans and provides disturbance
rejection. The natural continuation of this work will be to
augment the framework with perception of the environment.
This will allow to add additional constraints on the foothold
selection. Additionally, this would allow to compute surface
normals which would improve the robustness of the optimized
motion plans over rough terrain.
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