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Abstract— This work deals with the kinematic control of
Centauro, a highly redundant, hybrid wheeled-legged robot
designed at Istituto Italiano di Tecnologia (IIT). Given its full
wheeled mobility as allowed by its four independently steerable
wheels, the choice of some local frame (in addition to the
global world) is required in order to express tasks that are
naturally defined in a robot-centric fashion. In this work, we
show that trivially selecting such a frame as the robot trunk
leads to sub-optimal results in terms of motion capabilities; as
main contribution, we therefore propose a comparative analysis
among three different choices of local frame, and demonstrate
that in order to retain all advantages from the whole-body
control domain, the kinematic model of the robot must be
augmented with an additional virtual frame, which proves to
be a useful choice of local frame, enabling e.g. the automatic
adaptation of the trunk posture under constraint activation.
The resulting Cartesian controller is finally validated by means
of an extensive experimental session on the real hardware.

I. INTRODUCTION

At the time of writing, the robotic technology is mature
enough for performing useful work in a reliable way inside
simple environments. On the other hand, operation inside
unstructured scenarios is essentially dominated by overly-
simplified machines, such as small tracked vehicles, which
trade simplicity of their control (and reliability) for a lack of
flexibility in the tasks that they are able to accomplish. The
Centauro robot [1] (Figure 1), i.e. the main target platform
of this work, has been designed with the aim to take a step
forward in the direction of versatility, combining powerful
manipulation capabilities with a more reliable quadrupedal
hybrid wheeled-legged locomotion concept. Because of its
peculiar kinematic structure, Centauro provides significant
flexibility in terms of motion control: thanks to the actively
steerable wheels, in-place manipulation and stepping motions
can be combined with modulations of the support polygon,
and driving motions of the whole robot. Broadly speaking, a
motion controller which completely exploits the aforemen-
tioned kinematic capabilities should provide full control of
any task of interest (e.g. gaze, pose control of the trunk, end-
effectors, wheels, . . . ) both with respect to a global world
frame, and with respect to a local frame, depending on the
nature of the specific task at hand. Notice that up to this
point, the notion of local frame is left rather unspecified, and
is just to be regarded as some frame which moves rigidly
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Fig. 1. Kinematics of the Centauro robot. Each of its four legs is actuated
by six motors: the first four provide control over the wheel position and pitch
orientation, whereas the last two joints permit to rotate the wheel about both
its spinning and steering axes. Centauro is also equipped with a humanoid
upper body, that is made of two arms of seven degrees-of-freedom each,
plus a yaw joint connecting the trunk of the robot to its torso. Finally, a
stereo camera is mounted on the neck; two motors actuate the camera about
its pan and tilt axes.

with the robot support polygon; it will however be a key
concept in this work.

Existing works on similar platforms (see e.g. [2]) circum-
vent this aspect by carefully crafting of all end-effectors
desired poses with respect to (w.r.t.) the robot trunk frame
such that the robot performs a desired (local or global)
task; then, such poses are tracked by a chain-based inverse-
kinematics solver. Despite the ability of such a strategy
to generate the required motions, it is the authors’ belief
that significant advantages can be obtained by employing
a floating-base formulation for the robot model, and by
exploiting techniques from the whole-body control domain.
The most prominent advantage lies in the structural enforce-
ment of the required relationships between frames directly
through the task matrices (relative Jacobians), which makes
the controller less reliant on feedback gains, more robust in
the presence of constraint, and permits to directly specify
reference values for each task in their natural coordinate
frame.

When applying such concepts to the motion control prob-
lem of the Centauro robot, the key question naturally arises
of which frame should play the role of local frame. Intuition
suggests that such a frame should “travel with the robot”,
and a natural choice would be to select the trunk frame.



However, it will be shown in this work how this choice falls
short of exploiting the versatility of our target platform. The
key observation in our work is that, if a standard floating
base model is employed, such a frame does not actually
exist: in order for the robot to fully exploit its kinematic
potential in a whole-body manner, additional degrees-of-
freedom must be added to the robot kinematic model. The use
of additional, fictitious degrees-of-freedom has already been
exploited in robotics. Beside being extensively used in order
to model floating-base systems in a uniform way w.r.t. fixed
based manipulators, such a notion has received attention in
specific domains such as robotic grasping [3]–[5], and orbital
manipulation [6]. Inspired by such works, we propose to
extend this concept in the field of wheeled locomotion, to
provide a choice of local frame which permits to completely
exploit the robot kinematic capabilities; to the best of the
authors’ knowledge has not been attempted before.

In addition to [2], other works have previously addressed
the motion control problem of articulated wheeled robots.
In [7], which targets the same robotic platform of this
work, the authors analyze a wheel-ground contact model
under toroidal wheel shape assumptions, and then present a
controller for driving motion and support polygon regulation;
the work of [8] integrates wheeled contacts into the torque-
based controller for the ANYmal robot, yielding effective
compliant adaptation to terrain roughness. However, both
approaches are not concerned with manipulation capabilities.
In [9], a trajectory optimization based approach to the design
and control of wheeled-legged robots is discussed; even
though impressive, highly-dynamic motions are generated,
the proposed strategy is too costly for online (e.g. receding
horizon) applications. Finally, applications on the stabiliza-
tion of active suspensions rovers are presented in [10], [11],
with an emphasis on terrain adaptation capabilities and tip-
over avoidance in rough terrains.

In this work, we propose a Cartesian control framework
that permits the full control of the Centauro robot in an online
fashion as specified in terms of a list of motion requirements
to be defined in Section III. These requirements specify
desired relationships between frames, which we manage to
enforce by writing suitable relative Cartesian tasks inside a
floating-base formulation. To achieve this, a novel kinematic
model of the robot must be introduced, allowing to define
a local reference frame which is completely decoupled from
the waist frame. As main advantage, the additional degrees
of freedom can be exploited by the whole-body solver with
the benefit of enabling automatic adaptation of the trunk pose
when a constraint on some chain is activated.

II. BACKGROUND ON CARTESIAN CONTROL

The aim of this section is to introduce the mathematical
notation which is used throughout the paper, and to provide
background knowledge on the modeling and Cartesian con-
trol of highly redundant mechanical systems as the Centauro
robot.

A. Kinematic modeling

Being Centauro a legged robot, its configuration space is
given not only by its actuated joint positions, but also by
the pose of one of its links, which is called the floating
base. Although such a link can be chosen arbitrarily, it is
a natural choice to select the trunk as the floating base.
Consequently, let q ∈ Rn denote the full configuration
vector for the robot. We obtain such a vector by joining the
actuated joint configuration vector qa ∈ Rna with a minimal
representation1 of the floating base pose qfb ∈ R6, as follows:

q =

[
qfb
qa

]
. (1)

Then, let x denote a Cartesian task of interest (e.g. the
pose of one of the robot links), which is dependent on
the robot configuration though some non-linear mapping
f : Rn → Rm:

x = f(q); (2)

by differentiating (2), the task velocity can be computed as

ẋ = J(q)q̇ (3)

where J ∈ Rm×n is the task Jacobian matrix. Notice that,
with an abuse of notation, we identify the quantity ẋ with
the task velocity twist

ẋ =

[
v
ω

]
, (4)

so that J is the geometric Jacobian.

B. Hierarchical inverse kinematics

Given some desired task velocity ẋd, the required joint-
space velocity that permits to achieve it is given by the inver-
sion of the differential kinematics equation (3). Whenever the
robot is redundant w.r.t. the given task, i.e. n > m, pseudo-
inverse based solutions can be employed (see e.g. [12]),
allowing to optimize a low-priority objective in the null-
space of the main task. Furthermore, when the desired value
xref is available directly at the task level, good tracking
performance can be achieved with the following proportional
law2

ẋd = ẋref + λ (xref − x) , (5)

where λ is a positive-definite matrix gain.
However, when the robot is hyper-redundant w.r.t. the

single task (i.e. n � m) as it is the case for multi-
chained platforms like Centauro, many tasks are usually
simultaneously defined (e.g. manipulation, balancing, ground
contact, gazing, ...). Such simple strategies are unable to
properly cope with a multi-task scenario; indeed, avoiding
unpredictable conflicts between multiple objectives usually
requires the definition of more than two priority levels.

1For the sake of simplicity, we use here a minimal representation of a
rigid body orientation (e.g. Euler angles). A quaternion-based formulation
can be employed whenever a singularity free representation is required.

2To keep the notation clean, we use the minus “-” operator to indicate
a task-space error; the reader should however be aware that errors on the
SO(3) manifold require special care, see e.g. [13].



TABLE I
COMPARISON BETWEEN DIFFERENT PROPOSED STRATEGIES FOR THE

MOTION CONTROL OF THE CENTAURO ROBOT (R = ROLL AXIS,
P = PITCH AXIS).

Local frame \ Motion M1 M2 M3 M4

Trunk frame X 7 X X
Horizontal trunk frame X R,P X X
Virtual frame X X X X

Hierarchical inverse kinematics (HIK) schemes have been
explored in the literature, as done e.g. in [14], where an
approach based on null-space projectors is presented. The
present work builds on a quadratic programming (QP) based
formulation of the HIK problem (HQP) [15], which has the
advantage of also handling inequality constraints.

III. CONTROLLER DESIGN

As mentioned in the introductory section, a complete
motion controller for a hybrid wheeled-legged robot such as
Centauro must provide the freedom to combine local tasks
with global tasks. We now detail this rather generic statement
into a list of motion requirements, which different controller
designs will then be compared against. According to such a
list, the Centauro robot should be able to:

M1: move as a whole w.r.t. a global world frame by
appropriately steering and rolling the wheels (driving
motion);

M2: while driving, adjust the trunk pose w.r.t. a local frame
(e.g. to lift one foot);

M3: while driving, reshape the support polygon by shifting
the wheels position w.r.t. a local frame (e.g. to pass
through a narrow passage);

M4: perform a manipulation task w.r.t. to either a local or
global world frame, while shifting the support polygon
using the wheels (e.g. to improve stability);

In the course of this section, we incrementally build our
proposed approach to the motion controller design, that is
presented in Section III-C, starting from the naive strategy
of Section III-A. Results of each iteration, as compared to
the defined motion requirements, are summarized in Table I,
and a thorough discussion on the advantages given by our
contribution is presented in Section III-D. Note that our re-
sults still hold, even in the case that the target platform is not
equipped with independently steerable wheels, provided that
a higher-level planning stage properly takes into account the
specific system under-actuation when generating reference
signals [16]. However, for the sake of this presentation, we
will assume that the robot wheels can be steered and rolled
in a way such that their slippage (i.e. the relative velocity
between the contact point and the ground) is zero, whenever
this is physically feasible. An algorithmic way to ensure this
behavior will be presented in Section IV.

A. Trunk-based control

A first approach to the wheeled motion control of Centauro
is to combine relative Cartesian tasks between the four
wheels and the trunk, with another one controlling the trunk
pose w.r.t. a global world frame.

Relative control between frames can be enforced at the
Jacobian level as follows. First, let the label “d” denote
the distal frame, and “b” the base frame; then, the relative
velocity twist between the two is given by the following
expression: {

vrel = vd −
(
vb + ωb × pbd

)
ωrel = ωd − ωb

, (6)

where the cross-product term in (6) takes into account the
motion of the distal frame as seen from the base frame. In
matrix form, equation (6) reads

ẋrel =

[
I3×3 03×3 −I3×3 S(pbd)
03×3 I3×3 03×3 −I3×3

] [
ẋd
ẋb

]
, (7)

where S ∈ R3×3 is the skew-symmetric matrix such that
S(a)b = a × b ∀a, b ∈ R3. Introducing the distal and
base Jacobians w.r.t. the world frame Jd and Jb, such that
ẋd = Jd q̇ and ẋb = Jb q̇, the relative Jacobian is given by

Jrel =

[
I3×3 03×3 −I3×3 S(pbd)
03×3 I3×3 03×3 −I3×3

] [
Jd
Jb

]
. (8)

According to the math-of-tasks formalism defined in [17],
a possible stack-of-task implementing this solution is the
following:

(∑
i

TrunkT [XYZ]
Wheeli

+World TTrunk

)
/(

[-]THands +
∑
i

WorldT [RPY]
Anklei

)
/

(TPosture)

 <<
(
C Pos.

Lims
+ C Vel.

Lims

)
; (9)

in the previous equation, ATB denotes a Cartesian task of the
frame B relative to the frame A. The base frame for end-
effectors is left unspecified, as it is dynamically changed
from trunk to world depending on the task. Finally, the plus
operator “+” indicates aggregation between tasks, whereas
the slash “ / ” sets the left hand side task at a higher priority
w.r.t. the right hand side task, while the << symbol is used
to specify constraints.

With such a stack, and also assuming that some controller
continuously steers and spins each wheel so that it does not
slip, the robot base can be conveniently moved around the
world frame by just setting its desired Cartesian velocity or
pose. Moreover, the robot support polygon can be reshaped
by simply setting appropriate desired poses of the wheels
w.r.t. the base. However, this scheme cannot handle any roll
or pitch motion commanded to the base; indeed, when the
base is commanded e.g. to roll as depicted in Figure 2,
the imposed relative task causes the wheels to follow such
a motion, leading to wheel-ground contact break. Under
such circumstance, we obtain a physically unfeasible robot
motion.



Fig. 2. Kinematic behavior of the Centauro robot while a rolling motion
is commanded to it base. The Cartesian pose of the wheels is controlled
w.r.t. to the trunk frame (trunk-based control). The obtained motion is not
physically feasible.

B. Horizontal frame-based control

In order to adapt the scheme of Section III-A so that it
can handle rolling and pitching of the base without breaking
contact with the ground, we need to introduce a special frame
of reference, which we call horizontal trunk frame (HF), with
the following three properties:

1) the horizontal trunk frame origin coincides with the
trunk frame origin;

2) the projection on the horizontal plane of the trunk
frame forward axis (x-axis) coincides with the pro-
jection of the horizontal trunk frame forward axis;

3) the horizontal trunk frame vertical axis (z-axis) coin-
cides with the world frame vertical axis.

This idea is inspired by [18], in which a similar frame was
adopted in the context of quadrupedal trotting. The reason
why such a frame is a good candidate to act as the robot
local frame lies in the fact that its pose matches the trunk
pose for what concerns its position and heading, while being
unaffected by rolling or pitching of the base. Thanks to this
property, using the horizontal trunk frame as base frame for
the wheels tasks can solve the contact-braking issue of the
trunk-based approach; as it is shown in Figure 3, when the
base is commanded to follow the same rolling motion as in
Section III-A, the horizontal frame does not move, and the
wheel-ground contact is retained.

In order to implement the required Cartesian task w.r.t. the
horizontal trunk frame, it is enough to compute its Jacobian,
and then apply (8). In order to do so, let us observe that
such a frame coincides with the trunk frame, except that it
does not move about its roll and pitch axes. Consequently,
its jacobian Jh is given by the following expression:

Jh = diag(1, 1, 0, 0, 0, 1)Jtrunk. (10)

A possible stack of task leveraging the horizontal frame is
given in the following equation:

(∑
i

HFT [XYZ]
Wheeli

+World T [XY,Yaw]
HF

)
/(

HFT [Z,RP]
Trunk +[-] THands +

∑
i

WorldT [RPY]
Anklei

)
/

(TPosture)

 <<
(
C Pos.

Lims
+ C Vel.

Lims

)
.

(11)

Fig. 3. Kinematic behavior of the Centauro robot while a rolling motion is
commanded to it base. The Cartesian pose of the wheels is controlled w.r.t.
to a horizontal frame that is attached to the trunk (horizontal frame-based
control).

C. Virtual local frame

As we observed in Section III-B, the Cartesian controller
based on the horizontal trunk frame manages to improve
the motion capabilities, by introducing a base frame for
the wheels that is partially decoupled from the trunk link.
However, it is unable to achieve local control of the trunk
along the coupled directions, namely x, y, and yaw axes.
Such commands result in the whole robot rolling in the given
direction w.r.t. the world frame, whereas our desired outcome
is a local adjustment of the trunk.

In order to achieve the complete decoupling between the
local frame and the trunk frame, we propose to inject addi-
tional degrees of freedom in the robot model, between the
robot trunk and a newly introduced virtual frame (VF) which,
intuitively speaking, can be interpreted as an additional world
frame which travels with the robot. The configuration vector
for the Centauro robot is thus changed w.r.t. (1), as follows:

q =

qfb
qv
qa

 , (12)

with qv ∈ R6 being a minimal representation of the virtual
frame pose w.r.t. the trunk frame. A pictorial representation
of the resulting kinematic model is given in Figure 4.

This virtual frame of reference can then be used as base
frame for both the wheels and the trunk tasks. Indeed, having
introduced six additional degrees-of-freedom between the
trunk and the virtual frame (red chain in Figure 4), full local
control of the robot waist can be achieved, whereas the global
motion of the robot is obtained by means of a Cartesian task
for the virtual frame w.r.t. the world, as described by the
following stack of tasks:

(∑
i

VFT [XYZ]
Wheeli

+World TVF

)
/(

VFTTrunk +
[-] THands +

∑
i

WorldT [RPY]
Anklei

)
/

(TPosture)

 <<
(
C Pos.

Lims
+ C Vel.

Lims

)
.

(13)

D. Discussion

As it has been shown in Section III-C, full local control
of the trunk can be achieved by augmenting the kinematic
model with an additional virtual chain. A controller based on



Fig. 4. Augmented kinematic model for a wheeled-legged quadruped. A
virtual local frame (dark red) is introduced in order to achieve full local
control of the trunk frame. An additional virtual chain (light red) is used to
connect such a frame to the robot, so that full decoupling can be obtained.

such formulation can fully exploit the platform flexibility, by
adding the ability to shift the trunk w.r.t. the support polygon
about all axes. Furthermore, having defined a local frame
which is decoupled from the robot trunk enables taking full
advantage of our whole-body prioritized control framework.
By relaxing the local trunk task VFTTrunk (i.e. putting it at low
priority, or removing some of its degrees of freedom from the
IK problem), the solver can adapt its posture to accommodate
for more extreme desired poses of the wheels or of the
end-effectors; in other words, local trunk adjustments are
managed automatically by the solver. For instance, whenever
a wheel (or a hand) is commanded to a local pose which
exceeds its own workspace, an adaptation of the trunk pose
will be required. Because the first two strategies employ the
trunk itself as local frame, they are unable to provide such
an adaptation; on the other hand, the virtual-frame based
approach has enough degrees of freedom between the local
frame and the trunk frame to provide the required trunk
adaptation and accomplish the task, as it will be exemplified
in Section V (see Figure 9). Having adopted a whole-body
floating base formulation, we gained the ability to freely mix
local adjustments with global control, by setting the base
frame of each task to be the virtual frame or the global
world, respectively. Notice how chain based formulations,
as e.g. the IK used in [2], need to explicitly reason about
desired poses for wheels and end-effectors w.r.t. the trunk
frame in order to achieve some task that is natively defined
w.r.t. the world frame; for instance, a pitching motion for
the base can be obtained by changing the length of front and
rear legs. Such poses must be tracked accurately (high λ as
in (5)), and activation of a constraint on one chain is not
taken into account on other chains, thus hindering automatic
adaptations as in Figure 9. On the contrary, our controller
allows the user to directly specify the desired task in its

native coordinate system, while the solver takes care of the
correct relationships between all relevant frames.

IV. PURE ROLLING CONDITION

For the sake of simplicity, previous discussion has ne-
glected the problem of guaranteeing the pure rolling of each
wheel on the ground surface. However, such matter is of
paramount importance, since the planned motion can be
accurately transferred to the hardware only if the relevant
contact conditions are not violated. In the case of a wheeled
robot, we need to ensure a zero-slippage condition, which
means that the contact point of each wheel must have zero
velocity w.r.t. the ground:

vC = JC q̇ = 0, (14)

where JC ∈ R3×n is the contact Jacobian, i.e. the Jacobian
of a point pC which instantaneously moves with the wheel,
but is always located at the contact point. If we let pw denote
the center of the wheel, R the wheel radius, and nC the
outward normal to the contact surface, then such a point is
given by the following equation:

pC = pw −RnC . (15)

A. Steering control

To gain further insight on how to effectively enforce the
pure rolling constraint, we single out the contribution of the
wheel joints, as in the equation below:

vC = vw +R q̇wia, (16)

where all quantities are conveniently expressed w.r.t. the
local frame, such that they are time-invariant for a constant
motion in local coordinates. The meaning of the symbols
in (16) is as follows: q̇w is the angular velocity of the
wheel about its spinning axis, vw represents the absolute
velocity of the wheel’s center, and ia is the direction of the
ankle frame x-axis. Such a frame is defined as depicted in
Figure 5: the x-axis points along the wheel forward direction,
the z-axis coincides with the steering joint axis, and the
y-axis completes the right-handed frame. Furthermore, we
will assume vw to be constant.

With the aim to control the contact velocity to zero, we
first compute its variation as follows:

v̇C = R q̈wia +R q̇w (ωa × ia) +��>
0

v̇w ; (17)

moreover, since the ankle frame angular velocity ωa is given
by the steering joint rotation, we set ωa = q̇s ka, with
q̇s denoting the steering joint velocity, and ka being the
direction of the steering axis; this yields

v̇C = R q̈wia.+R q̇w q̇s ja. (18)

It can be noticed that the rate of change of contact velocity is
given by two terms: a forward acceleration component in the
direction ia, which can be controlled to zero by appropriately
spinning the wheel joint, and a lateral component in the
direction ja which is also influenced by the steering joint
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Fig. 5. Structure and reference frames for the Centauro wheel complex.

speed. In principle, the lateral contact velocity can be made
to vanish by enforcing the following first order dynamics

ja · [v̇C + kCvC ] = 0, kC > 0, (19)

which can be done with a suitable choice of the steering
joint velocity. Substituting (18) in (19) and solving for q̇s
gives rise to the steering control law given by the following
expression3:

q̇s = kC
ja · vC
R q̇w

, (20)

where the scalar gain kC controls the speed of convergence.
Finally, note that the forward component is continuously
canceled by the contact task (14).

B. Dealing with joint limits

Under the assumption that the steering joint can spin
continuously, (20) provides a feasible solution to the wheel
steering problem. However, this is not the case for our
Centauro robot: its steering motors are indeed characterized
by hard stops, that prevent the cables connecting the wheel
to the robot from excessive twisting. Equation (20) is a
local law, in the sense that it has no knowledge about
whether the commanded motion will eventually lead to a
constraint violation. For this reason, the presence of joint
limits demands a different approach to be followed.

More specifically, we note that in order for vC to be
zero, a necessary condition is that velocity of the wheel
center be parallel to the wheel forward direction, so that the
two terms in (16) can cancel out. Clearly, such a condition
admits two solutions, which can be obtained by adding or
subtracting 180 degrees. Steering angle candidates can be
computed by the following argument: we first consider the
angle ϑ between vC expressed in the ankle frame and the
direction ia; such an angle represents a steering error and,
as such, can be added to the current steering angle in order

3Equation (20) can be regularized around q̇w = 0 by replacing 1
q̇w

with

a term such as q̇w
q̇2w+ε

for some ε > 0.

to obtain the correct ones:{
q
(1)
s = qs + ϑ

q
(2)
s = wrap[−π,π]

(
q
(1)
s + π

) , (21)

If the steering joint range spans more than 180 degrees, then
at least one between q(1)s and q(2)s will not violate the limits.
Finally, in order to obtain an as smooth trajectory as possible
for the steering joint, whenever both solutions are valid, we
select the one that is the closest to the current value.

C. Integration into a stack of tasks

To enforce the pure rolling condition into a stack of
tasks, we define two tasks, TSteering and TRolling, to separately
handle steering (21) and slippage control (14). Such tasks
must be integrated into the Cartesian control problems (9),
(11), and (13) by placing them at the appropriate priority
level. To this aim, we observe that the rolling task must
have lower priority than the wheel position task VFT [XYZ]

Wheel ,
so that the wheel center is free to translate despite the
steering angle not being numerically equal to its optimal
value; hence, one possibility is to place it at the second
priority level. Conversely, steering tasks should be placed at
highest priority, so that the steering angle is not affected by
the ankle orientation task WorldT [RPY]

Ankle . The reader will notice
how these considerations are of heuristic nature, as they
originate from intuition and experience; indeed, selecting
an optimal hierarchy requires to assign (i) a priority level
and (ii) a weight to each task, which results in a strongly
non-linear, combinatorial complexity problem, which is also
task-specific. The interested reader may refer to [19] for a
possible approach to hierarchy learning.

V. EXPERIMENTS

The proposed control algorithm was implemented inside
the CartesI/O framework [20], that is a ROS-based library for
online Cartesian control with real-time (RT) support. Under
the hood of CartesI/O, the OpenSoT library [17] implements
the math of tasks in the C++ language through operator
overloading; the corresponding stack-of-tasks of the iHQP
problem is then set up and solved by OpenSoT in a RT-
safe way, leveraging off-the-shelf QP solvers. The Centauro
robot is powered by the XBotCore middleware [21], which
allows for mixed RT (through the development of real-time
plugins) and non-RT control (via ROS integration). Because
the whole framework is parametrized in terms of a standard
URDF-based description of the robot, implementation of the
virtual-frame concept only required to provide an augmented
URDF model with appropriate additional joints and links.

To validate the proposed control scheme against our
motion requirements (M1) − (M4), and most notably in
terms of transferability to the hardware, an extensive set of
experiments has been designed and performed. The stack of
tasks employed for the experimental sessions is based on
(13), adding further tasks for steering and slippage control,
as discussed in Section IV-C. Solving the cascaded QPs of
the iHQP formulation required on average t̄cpu = 3.4 ms,
with a standard deviation of σcpu = 0.17 ms. The reader is



encouraged to check out the accompanying video, which is
also available at https://youtu.be/uIaAGrhMbuY.

A first experiment consists of a single run where the
robot performs a driving motion (M1) while simultaneously
adjusting the support polygon (see Figure 6) from a starting
squared shape, to a narrower configuration, and then to a
wider one (M2). Afterwards, local adjustments while driving

Fig. 6. Support polygon shape modulation while performing a driving
motion with forward speed of v = 0.05 ms−1.

(Figure 7) are validated with a sequence of lateral, sagittal,
and rotation adjustments (M3). Finally, the robot stops to

Fig. 7. Trunk motion w.r.t. the virtual frame in right, forward, and clockwise
direction.

perform a simulated manipulation task in world coordinates
(Figure 8), which consists in reaching a high position; the
trunk task VFTTrunk is deactivated in order for the trunk to
adapt to the end-effectors desired pose. Then, while the end-
effectors are kept fixed w.r.t. the global world frame, the
support polygon is adjusted by sending suitable references
to the virtual frame (M4).

In order to validate the ability of the proposed controller
to deal with constraint activation in a whole-body fashion,
we command the rear-right wheel to lift from the ground
(Figure 9), after having adjusted the trunk position in order
to avoid the robot to fall. The commanded position cannot
be reached by only moving the rear-right leg, due to the hip
pitch joint reaching its hard stop. In such a scenario, where
chain-based solvers would be bound to fail, our strategy is
able to automatically adapt the trunk position (which is set
to have lower priority than the wheel) in order to complete
the task. A quantitative assessment is given in Figure 10,
where the virtual frame based scheme achieves close to zero
wheel position error at the apex of the commanded trajectory
(mid point of the red shaded area). Notice how, because end-
effectors are being controlled w.r.t. the local frame, the arms

compensate for the trunk motion in order to keep the end-
effectors in position. This further highlights the benefits of
a whole-body approach.

The effectiveness of our proposed steering strategy is
assessed in Figure 11, which shows a time history of each
wheel slippage velocity, i.e. the relative velocity between
each wheel contact point the the ground. It can be noticed
how such values are moderately close to zero, resulting in
a good fulfillment of the desired contact condition. Short
spikes in the slippage profile indicate fast steering maneuvers
to align each wheel to the correct direction given by (21).
Longer spikes are instead due to the switching between
the two solutions in (21), that is necessary due to hard
stops in the steering joints. Nevertheless, our simple steering
strategy is sufficient for a smooth transition from a kinematic
model to the real hardware, as it can be assessed in the
accompanying video.

VI. CONCLUSION AND FUTURE WORKS

The present work has introduced a novel methodology
for the Cartesian control of hybrid wheeled-legged robots.
A comparison with other approaches has been discussed,
leading to two conclusions; first, a local frame of reference
for the robot is to be selected with care; indeed, the trivial
solution does not permit to achieve the complete control of
the platform, as given by the set of motion requirements
(M1)−(M4). Second, only by adding further virtual degrees
of freedom to the kinematic model it is possible to achieve
a fully decoupled control of the trunk frame w.r.t. to the
local frame. Such a choice allows to mix tasks that are
naturally defined in local coordinated with tasks that are
defined in global coordinates, while taking full advantage
of a whole-body floating base formulation. Finally, steering
strategies have been proposed and analyzed, and a thorough
experimental validation has been carried out.

Future work will address the application of the proposed
method to a trunk stabilizer with terrain adaptation capabil-
ities, which will enable the Centauro robot to locomote on
non-flat surfaces.
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