Get Next Line

Reading a line from a fd is way too tedious

Summary:
This project is about programming a function that returns a line
read from a file descriptor.

Version: 11




Contents

11

111

1A%

Goals

Common Instructions
Mandatory part
Bonus part

Submission and peer-evaluation




Chapter 1
Goals

This project will not only allow you to add a very convenient function to your collection,
but it will also make you learn a highly interesting new concept in C programming: static

variables.




Chapter 11

Common Instructions

e Your project must be written in C.

e Your project must be written in accordance with the Norm. If you have bonus
files/functions, they are included in the norm check and you will receive a 0 if there
is a norm error inside.

e Your functions should not quit unexpectedly (segmentation fault, bus error, double
free, etc) apart from undefined behaviors. If this happens, your project will be
considered non functional and will receive a 0 during the evaluation.

e All heap allocated memory space must be properly freed when necessary. No leaks
will be tolerated.

e If the subject requires it, you must submit a Makefile which will compile your
source files to the required output with the flags -Wall, -Wextra and -Werror, use
cc, and your Makefile must not relink.

e Your Makefile must at least contain the rules $(NAME), all, clean, fclean and
re.

e To turn in bonuses to your project, you must include a rule bonus to your Makefile,
which will add all the various headers, librairies or functions that are forbidden on
the main part of the project. Bonuses must be in a different file bonus.{c/h} if
the subject does not specify anything else. Mandatory and bonus part evaluation
is done separately.

e If your project allows you to use your libft, you must copy its sources and its
associated Makefile in a 1ibft folder with its associated Makefile. Your project’s
Makefile must compile the library by using its Makefile, then compile the project.

e We encourage you to create test programs for your project even though this work
won’t have to be submitted and won’t be graded. It will give you a chance
to easily test your work and your peers’ work. You will find those tests especially
useful during your defence. Indeed, during defence, you are free to use your tests
and/or the tests of the peer you are evaluating.

e Submit your work to your assigned git repository. Only the work in the git reposi-
tory will be graded. If Deepthought is assigned to grade your work, it will be done




Get Next Line

Reading a line from a fd is way too tedious

after your peer-evaluations. If an error happens in any section of your work during
Deepthought’s grading, the evaluation will stop.




Chapter 111

Mandatory part

Function name get_next_line

Prototype char *get next_line(int fd);

Turn in files get next_line.c, get_next_line utils.c,
get_next_line.h

Parameters fd: The file descriptor to read from

Return value Read line: correct behavior
NULL: there is nothing else to read, or an error
occurred

External functs. read, malloc, free

Description Write a function that returns a line read from a
file descriptor

e Repeated calls (e.g., using a loop) to your get_next_line() function should let
you read the text file pointed to by the file descriptor, one line at a time.

e Your function should return the line that was read.
If there is nothing else to read or if an error occurred, it should return NULL.

e Make sure that your function works as expected both when reading a file and when
reading from the standard input.

e Please note that the returned line should include the terminating \n character,
except if the end of file was reached and does not end with a \n character.

e Your header file get next_line.h must at least contain the prototype of the
get_next _line() function.

e Add all the helper functions you need in the get_next_line utils.c file.

A good start would be to know what a static variable is.



https://en.wikipedia.org/wiki/Static_variable

Get Next Line Reading a line from a fd is way too tedious

e Because you will have to read files in get_next_line(), add this option to your
compiler call: -D BUFFER_SIZE=n
It will define the buffer size for read ().
The buffer size value will be modified by your peer-evaluators and the Moulinette
in order to test your code.

We must be able to compile this project with and without the -D
BUFFER_SIZE flag in addition to the usual flags. You can choose the

default value of your choice.

e You will compile your code as follows (a buffer size of 42 is used as an example):
cc -Wall -Wextra -Werror -D BUFFER_SIZE=42 <files>.c

e We consider that get_next_line() has an undefined behavior if the file pointed to
by the file descriptor changed since the last call whereas read() didn’t reach the
end of file.

e We also consider that get_next_line() has an undefined behavior when reading
a binary file. However, you can implement a logical way to handle this behavior if
you want to.

Does your function still work if the BUFFER_SIZE value is 99997 If
% it is 17 100000007 Do you know why?

Try to read as little as possible each time get_next_line() is
called. If you encounter a new line, you have to return the current
line.

Don’t read the whole file and then process each line.

Forbidden

e You are not allowed to use your 1ibft in this project.
e 1seek() is forbidden.

e Global variables are forbidden.




Chapter 1V

Bonus part

This project is straightforward and doesn’t allow complex bonuses. However, we trust
your creativity. If you completed the mandatory part, give a try to this bonus part.

Here are the bonus part requirements:

e Develop get_next_line() using only one static variable.

e Your get_next_line() can manage multiple file descriptors at the same time.
For example, if you can read from the file descriptors 3, 4 and 5, you should be
able to read from a different fd per call without losing the reading thread of each
file descriptor or returning a line from another fd.

It means that you should be able to call get_next_line() to read from fd 3, then
fd 4, then 5, then once again 3, once again 4, and so forth.

Append the _bonus. [c\h] suffix to the bonus part files.
It means that, in addition to the mandatory part files, you will turn in the 3 following
files:

e get next_line_bonus.c
e get next_line_bonus.h

e get_next_line_utils_bonus.c

The bonus part will only be assessed if the mandatory part is
PERFECT. Perfect means the mandatory part has been integrally done
and works without malfunctioning. If you have not passed ALL the

mandatory requirements, your bonus part will not be evaluated at all.




Chapter V

Submission and peer-evaluation

Turn in your assignment in your Git repository as usual. Only the work inside your repos-
itory will be evaluated during the defense. Don’t hesitate to double check the names of
your files to ensure they are correct.

When writing your tests, remember that:

1) Both the buffer size and the line size can be of very different
values.

2) A file descriptor does not only point to regular files.

Be smart and cross-check with your peers. Prepare a full set of

diverse tests for defense.

Once passed, do not hesitate to add your get_next_line() to your 1ibft.




	Goals
	Common Instructions
	Mandatory part
	Bonus part
	Submission and peer-evaluation

