diff --git a/benchmarks/basic_ops.py b/benchmarks/basic_ops.py new file mode 100644 index 0000000..904ee62 --- /dev/null +++ b/benchmarks/basic_ops.py @@ -0,0 +1,218 @@ +import functools +from typing import Tuple, Callable, List, Optional +import time +import dataclasses + +import numpy as np + +import jax +import jax.numpy as jnp +from jax.experimental import mesh_utils, shard_map +from jax.sharding import PositionalSharding + + +from jax.sharding import Mesh +from jax.sharding import PartitionSpec +from jax.sharding import NamedSharding + +devices = jax.devices() +P = PartitionSpec + +devices = mesh_utils.create_device_mesh((len(devices),)) +mesh = Mesh(devices, axis_names=("x",)) +# y = jax.device_put(x, NamedSharding(mesh, P('a', 'b'))) + +L = 1 << 15 + + +@dataclasses.dataclass +class BenchmarkCase: + """BenchmarkCase.""" + + name: str + function: Callable + args_shape: List[Tuple] + args_sharding: List[PartitionSpec] + profiler_output: Optional[str] = None + + +start_key = jax.random.key(0) + + +def _new_arg(shape, dtype): + global start_key # pylint: disable=all + start_key, _ = jax.random.split(start_key) + with jax.default_device(jax.devices("cpu")[0]): + if dtype == jnp.int8.dtype: + return jax.random.randint(start_key, shape, 0, 100, dtype=dtype) + else: + return jax.random.normal(start_key, shape, dtype=dtype) + 1 + + +def _new_args(case, dtype): + args = [] + for shape, sharding in zip(case.args_shape, case.args_sharding): + arg = _new_arg(shape, dtype) + if sharding is not None: + arg = jax.device_put(arg, NamedSharding(mesh, sharding)) + args.append(arg) + return args + + +def _run_case(case, warmup=2, runtimes=5, dtype=jnp.bfloat16.dtype): + for _ in range(warmup): + args = _new_args(case, dtype) + case.function(*args) + + stamps = [] + for i in range(runtimes): + args = _new_args(case, dtype) + jax.block_until_ready(args) + if case.profiler_output is not None and i == (runtimes - 1): + jax.profiler.start_trace(case.profiler_output) + start = time.perf_counter() + jax.block_until_ready(case.function(*args)) + end = time.perf_counter() + if case.profiler_output is not None and i == (runtimes - 1): + jax.profiler.stop_trace() + stamps.append(end - start) + return sum(stamps) / runtimes + + +def _llama_ffn(x, w1, w2, w3): + w1_res = jax.nn.silu((x @ w1).astype(jnp.bfloat16.dtype)) + w3_res = x @ w3 + res = (w1_res * w3_res) @ w2 + return res + + +@jax.jit +@functools.partial( + shard_map.shard_map, + mesh=mesh, + in_specs=(P(), P(None, "x"), P("x"), P(None, "x")), + out_specs=(P()), +) +def _llama_ffn_shmap(x, w1, w2, w3): + for _ in range(3): + x = _llama_ffn(x, w1, w2, w3) + x = jax.lax.psum(x, "x") + return x + + +@jax.jit +def _llama_ffn_spmd(x, w1, w2, w3): + for _ in range(3): + x = _llama_ffn(x, w1, w2, w3) + x = jax.lax.with_sharding_constraint(x, NamedSharding(mesh, P())) + return x + + +dim = 4096 +multiple_of = 256 +# hidden_dim = 4 * dim +# hidden_dim = int(2 * hidden_dim / 3) +# hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) +hidden_dim = 11008 +BATCH = 1024 + + +@jax.jit +@functools.partial( + shard_map.shard_map, + mesh=mesh, + in_specs=(P("x"),), + out_specs=(P()), + check_rep=False, +) +def _all_gather(x): + return jax.lax.all_gather(x, "x") + + +@jax.jit +@functools.partial( + shard_map.shard_map, mesh=mesh, in_specs=(P("x"),), out_specs=(P()) +) +def _all_reduce(x): + return jax.lax.psum(x, "x") + + +allcases = [ + BenchmarkCase( + name="Matmul replicated", + function=jax.jit(jnp.matmul), + args_shape=((L, L), (L, L)), + args_sharding=(P(), P()), # replicated + ), + BenchmarkCase( + name="Matmul sharded colrow", + function=jax.jit(jnp.matmul), + args_shape=((L, L), (L, L)), + args_sharding=(P(None, "x"), P("x")), # replicated + ), + BenchmarkCase( + name="matmul sharded rowcol", + function=jax.jit(jnp.matmul), + args_shape=((L, L), (L, L)), + args_sharding=(P("x"), P("x", None)), # replicated + ), + BenchmarkCase( + name="all_gather", + function=_all_gather, + args_shape=((L, L),), + args_sharding=(P("x"),), # replicated + ), + BenchmarkCase( + name="all_reduce", + function=_all_reduce, + args_shape=((L, L),), + args_sharding=(P("x"),), # replicated + ), + BenchmarkCase( + name="Llama 3xffn shardmap", + function=_llama_ffn_shmap, + args_shape=( + (BATCH, dim), + (dim, hidden_dim), + (hidden_dim, dim), + (dim, hidden_dim), + ), + args_sharding=(P(), P(None, "x"), P("x"), P(None, "x")), + ), + BenchmarkCase( + name="Llama 3xffn gspmd", + function=_llama_ffn_spmd, + args_shape=( + (BATCH, dim), + (dim, hidden_dim), + (hidden_dim, dim), + (dim, hidden_dim), + ), + args_sharding=(P(), P(None, "x"), P("x"), P(None, "x")), + ), +] + + +def _run_call_cases(cases): + for dtype in (jnp.bfloat16.dtype, jnp.int8.dtype): + for case in cases: + avg = _run_case(case, dtype=dtype) + dtype_size = 2 if dtype == jnp.bfloat16.dtype else 1 + input_sizes = tuple( + [ + f"{np.prod(size) * dtype_size / (1<<20) :.6} MiB" + for size in case.args_shape + ] + ) + print( + f"{dtype} \t {case.name}: \t{avg * 1000 :.6} ms \t sizes: {input_sizes}" + ) + + +def main(): + print("Number of devices: ", len(devices)) + _run_call_cases(allcases) + + +if __name__ == "__main__": + main()