Skip to content
Decision Forest C++ library with a scikit-learn compatible Python interface.
C++ Python Jupyter Notebook CMake
Branch: master
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
doc
examples
koho
.coveragerc
.gitignore
.readthedocs.yml
.travis.yml
LICENSE
README.rst
environment.yml
requirements.txt
setup.cfg
setup.py

README.rst

Travis Codecov ReadTheDocs

koho (TM)

koho (Hawaiian word for 'to estimate') is a Decision Forest C++ library with a scikit-learn compatible Python interface.

  • Classification
  • Numerical (dense) data
  • Missing values (Not Missing At Random (NMAR))
  • Class balancing
  • Multi-Class
  • Multi-Output (single model)
  • Build order: depth first
  • Impurity criteria: gini
  • n Decision Trees with soft voting
  • Split a. features: best over k (incl. all) random features
  • Split b. thresholds: 1 random or all thresholds
  • Stop criteria: max depth, (pure, no improvement)
  • Bagging (Bootstrap AGGregatING) with out-of-bag estimates
  • Important Features
  • Export Graph

ReadTheDocs

New BSD License

Change Log: 1.1.0 Multi-Output (single model) 1.0.0 Missing Values (NMAR) : Python, Cython(bindings), C++ 0.0.2 Criterion implemented in Cython 0.0.1 Classification : Python only

Copyright 2019, AI Werkstatt (TM). All rights reserved.

You can’t perform that action at this time.