
www.elsevier.com/locate/ynimg
NeuroImage 23 (2004) S139–S150
Geodesic estimation for large deformation anatomical shape

averaging and interpolation

Brian Avants and James C. Gee*

University of Pennsylvania, Philadelphia, PA 19104, United States

Available online 11 September 2004
The goal of this research is to promote variational methods for

anatomical averaging that operate within the space of the underlying

image registration problem. This approach is effective when using the

large deformation viscous framework, where linear averaging is not

valid, or in the elastic case. The theory behind this novel atlas building

algorithm is similar to the traditional pairwise registration problem,

but with single image forces replaced by average forces. These group

forces drive an average transport ordinary differential equation

allowing one to estimate the geodesic that moves an image toward

the mean shape configuration. This model gives large deformation

atlases that are optimal with respect to the shape manifold as defined

by the data and the image registration assumptions. We use the

techniques in the large deformation context here, but they also pertain

to small deformation atlas construction. Furthermore, a natural,

inherently inverse consistent image registration is gained for free, as

is a tool for constant arc length geodesic shape interpolation. The

geodesic atlas creation algorithm is quantitatively compared to the

Euclidean anatomical average to elucidate the need for optimized

atlases. The procedures generate improved average representations of

highly variable anatomy from distinct populations.
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Introduction

Anatomical atlases have tremendous value in today’s medical

environment where large databases are mined for diagnostic,

research, and pedagogical information. High-resolution atlases are

an instance of anatomy upon which teaching or surgical planning

is based (Kikinis et al., 1996; Miller et al., 1993; Yelnik et al.,

2003). Surgical procedures may employ atlas-based image
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registration for planning the placement of deep-brain stimulators

(Dawant et al., 2003). Average anatomical atlases provide a least-

biased coordinate system for surgical planning, functional local-

ization studies (Ashburner and Friston, 1996), or for studying

structure–function relationships (Letovsky et al., 1998). They also

operate as a reference frame for understanding the normal

variation of anatomy (Talairach and Tournoux, 1988) and as a

probabilistic space into which functional or structural features are

mapped (Le Briquer and Gee, 1997). Genomics researchers

currently build atlases to investigate the relationship of genotype

to phenotype (Mackenzie-Graham et al., 2004), which is a major

focus of the Allen Brain Institute (Allen Brain Atlas). Perform-

ance of algorithms based on manipulating empirical information,

such as active shape (Cootes et al., 1995), should also benefit

from use of an average model.

Computerized atlases based on magnetic resonance (MR)

images may compile either average shape (Le Briquer and Gee,

1997), average intensity, or both (Guimond et al., 2000) within a

single image. The Euclidean shape space, shown in Fig. 1, is often

assumed for these models leading to the use of linear averaging of

the transformations and intensity to produce the atlases. Deviations

from the mean shape or intensity may then be captured separately

by statistical models such as principal components (Cootes et al.,

1995; Le Briquer and Gee, 1997). Average intensities are

traditionally found by first computing transformations from an

anatomical instance to a population data set. The averages of these

displacement fields, which take a member of the population to the

remainder of the data, represent an average in the sense of

anatomical positions. This average transformation must then be

inverted to gain the average shape (Guimond et al., 2000).

However, positional differences are not explicitly minimized in

the registration problem, typically because one promotes smooth-

ness by using differential measures in the face of ill-posed

problems (Tikhonov and Arsenin, 1977).

One difficulty with this approach is that the process of

averaging transformations may destroy the optimal properties of

the individual transformations. For example, the average of large

deformation displacement fields, each of which satisfies the

minimization of a well-defined variational energy, may no longer



Fig. 1. The linear shape space.
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be a legitimate displacement field with respect to the optimized

quantities. Another example is found in time-parameterized

mappings. The flows defining these transformations at each time

satisfy the fluid equations, allowing the maps to be interpreted as

members of the diffeomorphism group (Miller and Younes, 2001).

Averaging the final displacements in these maps eliminates the

optimality in space and time.

Optimization-based atlases respect the underlying manifold

structure of the optimization problem (Yezzi and Soatto, 2003).

Large deformation image registration is important for studying

anatomical variation within groups and, more importantly, for the

comparison of topologically dissimilar groups such as normal vs.

highly atrophied brains, interspecies comparisons, as well as

anatomical growth and development. One approach for comparing

very distinct groups is to base comparison on their representative

atlases. Large deformation atlases may be used to compactly

represent a group and its shape or intensity variations.

The large deformation image registration framework invites

group theoretical population studies where one bases structural

comparisons on the geodesic distances between members of the

group. Thus, it is important to be able to compute atlases that are

least biased within this theoretical framework, as well as in the

small deformation elastic case.

This work provides a flexible algorithm for allowing shape

averaging that enables properties of the physical model used in the

registration to persist in the average shape transformation. The

distances from the diffeomorphism group are used to illustrate the

techniques. Thus, geodesic averaging, rather than linear averaging,

is used to estimate mean atlas shapes. We find the average

representation of anatomy by using the same optimization frame-

work as is assumed for the image registration itself. This kind of

averaging is a metaregistration algorithm operating with average

forces along the shape manifold. This explicit optimization

inherently respects the optimization problem and implies a basic

framework for large deformation statistics. Here we compute

means, but variances and principal components that are optimal in

time should follow. The framework allows either large or small

deformation averaging and realizes different outcomes than simply

taking the naive Euclidean mean of displacements.
Methodology

The goal of this paper is to point out that average anatomical

shape atlases should be computed with respect to the assumptions
of the image registration problem. This simplifies the atlas

estimation: the same algorithm used for pairwise registration

should be the foundation of an algorithm for computing the

transformation from an initial atlas to the optimal atlas. Given a

variational registration algorithm A that solves the pairwise

problem, one simply invokes a meta-algorithm
¯A¯A¯

that replaces

an individual image and its forces with a data set of images and the

average forces. We will follow this general philosophy using an

extension of the group theoretical diffeomorphic registration

algorithm as A (Miller and Younes, 2001).

Mathematical background

The basic notion of computational anatomy is related to the

theory of categories, in which one studies a collection of objects

and the mappings between those objects. Neuroanatomical images

defined on an open domain X and with an approximately

consistent topology are an example of an object collection. In

computational anatomy, the group of diffeomorphisms gives one-

to-one mappings between the objects in the collection. The

diffeomorphisms are Cn smooth, invertible, topology preserving

transformations. Thus, anatomy without bholesQ remains without

holes under the action of a diffeomorphism.

Consider a set of anatomical images defined on bounded

domain X, each of which contains identical topology initially at

positions {xi}. Shape normalization requires a reparameterization

of this population data set, P = {xi} into a common coordinate

space. Each coordinate x̄ then identifies the same anatomical

position in each example. Formally, this requires a mapping set

{gi: x̄Yxi} such that,

g�1
1 x1 ¼ x̄x
: : :

g�1
n xn ¼ x̄x

ð1Þ

Each mapping holds the coordinate transformation between the

canonical configuration x̄ and xi, such that gi = Id + u, where Id is

the identity. Th mean shape is gi(x̄) = x̄ + u(x̄) = xi. If gi is time

parameterized in interval [0, 1], its value is taken at gi (1), the final

state.

The individual mappings gi may be found by using a variety of

nonrigid image registration algorithms (Ashburner and Friston,

1996; Christensen et al., 1993; Le Briquer and Gee, 1997;

Rueckert et al., 1999). These methods return a displacement field

u that models the motion of a continuum deforming under

external forces. Solutions of this kind minimize a balance of

regularization and similarity terms. The displacement field is

found in either the Lagrangian reference frame, where the

reference configuration x is fixed, or in the Eulerian frame, where

the configuration is a function of time x(t). Provided a value for u,

the solution will transform the moving image J(xi) to the fixed

domain I(x̄) such that JV(x̄) = J(Id + ui
�1)(xi) = J B gi�1 B xi. We

will denote the images I = I(x) and J = J(y) with the spatial

coordinates implied.

The transformation model for the nonrigid registration used

here is the one-parameter diffeomorphism group G . The group G
transforms the underlying space X through a map / with the

following properties,

(1) /(Id, X) = X where Id is identity in G and

(2) /(g, /(h, X)) = / (g B h, X), 8g, h a G .
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These are known as right actions and may also be thought of as

mappings or coordinate transformations on the objects. The use of

composition in the definition of the map, /, delivers the group

structure to G , with / the group action. Additionally, the group

orbit is the set of objects that may be formed when one applies the

group to an individual object I. Noting that Ig = I B g B x, the orbit
of, for example, neuroanatomical image I is then {Ig}, where there

exists a separate orbit for anatomical image J, { Jh} (Grenander

and Miller, 1998).

Flows for diffeomorphic image registration

The transformation of anatomical images with respect to the

diffeomorphism group is obtained by studying time dependent

action g generated by velocity fields or flows v on X. The mapping

/(t) = g(t)(x) emerges from a transport ordinary differential

equation,

d
dt
g tð Þ xð Þ ¼ v g tð Þ xð Þð Þ

g 0ð Þ ¼ g0:

�
ð2Þ

Integrating the incremental solutions from time zero to time

t = 1,

g 1ð Þ ¼
Z t¼ 1

t¼ 0

v g tð Þð Þdt; ð3Þ

imparts the final diffeomorphic map / = g (1) where / is a

solution of the transport o.d.e. in Eq. (2).

The group theoretical formulation allows one to measure

distances between anatomical instances I and J with a true

mathematical metric. The goal is then to find the shortest path

between instances of the anatomy via the group action. The image

registration and metric are gained through solving the variational

problem below (Dupuis et al., 1998),

Solve : D I ; Jð Þ

¼ inf
v

Z 1

0

tLvtdt
�
; with I / xð Þð Þ ¼ J yð Þ:

�
ð4Þ

The length D is defined with respect to the linear operator L. Here,

it is the Cauchy–Navier operator,

L ¼ lj2 þ k þ lð ÞjY jYdÞ:
�

ð5Þ

The differential norm td tL = tLd t on v is determined by

the associated linear operator L where td t is the standard L2

norm defined for square integrable functions (and thus implying

integration over the spatial variable). This is a true distance in

that it is positive, symmetric, and satisfies the triangle inequality

(Miller et al., 2002). The incremental integration of the velocity

field is essential to this property (consider that the flow along

the velocity field is, in the infinitesimial limit, piece-wise linear

with equivalent norm forward and backward in time). In

contrast, deformation-based norms taken from continuum

mechanics are also positive and equal zero at the identity, but

may not be symmetric.

Optimization of these energies issues the solution g*,

mapping between I and J. These definitions provide an

appropriate notion of the curved geometric distance between
two instances of anatomy. If one’s velocity field is not smooth

or the domain configurations (I, J) are not reachable from each

other, then the updates to g will need to be infinitesimally

small to maintain diffeomorphism and the endpoint condition

will never be met, yielding an infinite distance. The Euler–

Lagrange (E–L) equations for this problem were recently

derived (Miller et al., 2002). Rather than using the local E–

L equations, we solve the variational problem in the integral

form by using the Galerkin finite element (FE) method

(Zienkiewicz, 1971).

Symmetric formulation for the velocity field

The transformation / is often applied only to image I. This

introduces an inherent and undesirable asymmetry to the optimi-

zation process that has negative effects on both the registration

performance and the symmetry of the metric computation. The

asymmetry is reduced here by considering that,

vh h 1� tð Þð Þð Þ�1 ¼ vg g tð Þð Þ: ð6Þ

Optimization with respect to g then directly implies optimiza-

tion with respect to h, where h is operating in the time-reversed

direction of g,

v4 ¼ argmin
v

1

2

Z 1

0

tLvt2 þ Ig�1 tð Þ xð Þ � J xð Þt2
� �

dt

� �
;

with x ¼ h�1 1� tð Þ yð Þ:

ð7Þ

Note that tIg�1(t)(x) � J(x)t = tJh�1 (1 � t)(y) �
I(y)t. Recalling Eq. (6), minimization with respect to v yields

(Ig�1(t)(x) � J(x))(jIg�1 (t)(x) + jJ(x)), the optimal symmetric

similarity gradient in the space of diffeomorphic flows. Regrid-

ding of the domain substitutes, here, for the jacobian term arising

from a change of variables (thus, at any time, regridding sets g

temporarily to Id, though the total g is saved). The main point

here is that gradients with respect to both I and J come into play,

thus giving a symmetry with respect to the image features

guiding the registration. This locally symmetric computation is

illustrated, along with the flow and its integration, in Fig. 2. Note

that it is also possible to register the images by solving for g

forward from time zero and backward from time 1 such that the

images bmeetQ at time 0.5 in a mean configuration (Avants and

Gee, 2004a, 2004b; Davis et al., 2004). This binverse consistentQ
formulation requires both h and g to be stored and will be

derived later in the text.

Constant arc length constraint

The optimal approximation to the time-integrated map requires

parameterization of g by arc length, the unique and natural choice

for (even infinite-dimensional) curves. The time-dependent

integral for g is estimated with finite differences in time via

the trapezoidal rule. Because the optimization process is not

locally smooth in time, we measure the arc length at a step-size h

that is larger than that of the optimization step-size tdLvt, with
d a small scalar. This is illustrated for a one-dimensional map in

Fig. 3 (the ratio of step size h to the optimization step size is

typically near 0.1). The incremental velocities are accumulated

via gradient descent such that v*(t)cId +
P

i = 0
i = n yvi. The total

map g(t) is then integrated to g(t + h) using v*(t) when



Fig. 2. The computation of the optimal v uses gradients from both images.
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tLv*(t)t reaches the desired constant value h. If the arc length

oversteps h, a local line search on dvn corrects the size of

tLv*t. The trapezoidal rule then provides the optimal in time

approximation to the length as,Z tb

ta
tv tð ÞtLdtc

Xi¼n

i¼1

h

2
tv ti þ i� 1ð Þhð ÞtL þ tv ti þ ihð ÞtLÞ:ð

ð8Þ

This approach contributes a more robust estimate of the geodesic

distance and is also beneficial for the shape averaging application

(we have found the distances estimated by the greedy algorithm

in Christensen et al., 1993 are too noisy). To summarize, the
Fig. 3. The computation of the optimal g in time is performed using the

trapezoidal rule, requiring constant arc length parameterization.
following steps are needed in the algorithm for computing

geodesics:

(1) Solve for the instantaneous regularized velocity field.

(2) Use the locally optimal solution above in a second gradient

descent step, accumulating dv until the arc length reaches h.

(3) Integrate v to augment g in time and to compute a robust

estimate of the geodesic distance.

Note the advantage that the velocity field is only needed at

two time points, although an optimal in time solution is

computed. Regridding may also be performed, as in Christensen

et al. (1993).

Robust intensity constraint

An additional modification to the traditional viscous framework

is the introduction of a robust similarity potential such that tI �
Jt is replaced by robust function q(I � J). A similar idea was used

in Gee and Haynor (1996) and Hellier et al. (2001). Here, the

metric is linear beyond robustness parameter gamma, such that,

if x b c then q xð Þ ¼ x2;
else if x z c then q xð Þ ¼ c þ jx� yj:

�

In our applications, c is set to 0.01 when the image

histograms are matched and normalized to the interval [0, 1].

The robust function is shown in Fig. 4, while its improved

performance is in Fig. 5. Similarly, an intensity-based evaluation

of this registration algorithm’s optimization capabilities is

summarized in Fig. 6.
Population shape averaging algorithms

The image registration algorithm described in the previous

section allows the computation of transformations between the

domains in a population data set. The traditional linear averaging

for atlas estimation will be discussed first, followed by the novel

geodesic averaging method. Examples will illustrate the need for

the geodesic optimization algorithm.
Fig. 4. The robust potential is used (dashed line) rather than the parabolic

potential (solid line).



Fig. 6. A data set of 12 whole head MR images was registered to an

arbitrary atlas (top row) with the ITK 1.6 Demons algorithm (bottom row)

and with the viscous flow with the robust symmetric similarity here (middle

row). The registered image intensities were then averaged linearly. The

viscous flow produces a crisper average image than the ITK 1.6 Demons

algorithm. Note that this is an evaluation that only investigates the intensity

optimization and does not use anatomical information explicitly.

Fig. 5. The robust potential with symmetric velocity field is used to register

the bfixedQ and bmovingQ image. Note that the jacobians (right of center) are

smooth and that forward and inverse direction are reflective of the expected

shape changes (e.g., in the ventricles). The right column shows the benefit

of the symmetric flow (top right, arrow, where one can see some

nonventricular tissue being deformed into the ventricles) and the robust

potential (bottom right, arrow, where one can see that the bholeQ in the

bfixedQ image causes a large error in the registration that is not present in the

robust case).
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Shape average from mean deformation: linear averaging

We assume an underlying linear shape space, as in Fig. 1, and

that a registration algorithm provides correspondence fields. Given

the ability to compute this solution, average shapes are found by

choosing an arbitrary instance as the reference configuration xo =

xj and then computing {gi} with respect to this configuration. The

average displacement field from xo to {xi} is,

ūu xoð Þ ¼ Nð Þ�1
XN
i¼ 1

ui: ð9Þ

This mean deformation minimizes the energy,

ūu xoð Þ ¼ argmin
u

1

2

XN
i¼ 1

jui � uj2: ð10Þ

Note that, as the total displacement fields are used, all scales of

information are treated equally. The average configuration is then

computed as x̄ = ḡ�1 xo, where an inversion of the mean

deformation field is required (see Appendix for one approach).

Averaging of vector fields does not necessarily preserve the large

deformation continuum model, nor does it satisfy the correct

optimization model, as illustrated in Figs. 7 and 8.
Curved case: averaging with the diffeomorphism group

The algorithm A will now be extended into algorithm ĀA for an

optimized estimate of the large deformation atlas.

The variational problem for diffeomorphic averaging

As seen in Fig. 8, the manifold shape is determined by the

transformation model as well as the similarity criterion (intensity

relationships, landmarks, etc.) and is illustrated in Fig. 9. Although

the global surface is curved, each point on the manifold looks locally

Euclidean in its tangent space. This fact will be exploited to compute
Fig. 7. The bCQ and bC patchQ images (first and second in the top row) are

registered with the large deformation diffeomorphic method in the top row,

giving transformation g(t). The linear average of the vector field u at g(1)

with Id is shown in the bottom row left and left middle. The averaging with

geodesic distances, at bottom row right, is more natural. Deformed grid

images are also shown for the geodesic average. The jacobian of the C to C

patch map is strictly positive with minimum value 0.14.



Fig. 9. The curved shape space and an illustration of a mean geodesic flow

toward an optimal position on the manifold (with respect to the other shapes).

Note that the average shape flows as do the members of the database.

Fig. 8. The edge maps of the linear (left) and geodesic (right) bCQ and bC
patchQ average shapes are overlayed on the edge map of the bCQ image. The

Euclidean average decouples the averaging from the registration problem and

does not satisfy the optimization constraints that are inherent to the problem.
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means of local velocity fields and to solve a mean transport ordinary

differential equation that engenders a mean flow. This allows us to

estimate optimal geodesic paths with respect to the manifold and

permits registration of the whole database at once.

We recover the average-shape image from an image data set by

solving an inverse problem involving the geodesic distances

between the images and a boundary value constraint on the

transformed image appearances. Find { gi} such that,

8j Ij B g�1
j ¼ Ijg

�1
j ¼ ĪI

E gj

n o� �
is minimal:

(
ð11Þ

The distance E in this case is the sum over the shape database

of distances defined in Eq. (4). The existence of geodesic paths on

the diffeomorphism manifold and the symmetry of those paths’

distances are important facts for this algorithm. Furthermore, these

paths, as mentioned above for the pairwise case, are also

parameterized with constant arc length. Convexity is not guaran-

teed, here, as the problem is fundamentally ill posed. This is in

contrast to the work by Fletcher et al. (2003) in which the

optimization problem does not have a data term.

The simplest nontrivial case of this inverse problem is a single

pair of images. First, regard the naive algorithm for minimization.

(1) Register images I and J while measuring the distance D (I,

J)(t), between them.

(2) Repeat the registration stopping at t(1/2), where D(I, J)(t(1/2)) =

(1/2) D(I, J)(t = 1).

This numerical minimization can be achieved successfully and

was used in Fig. 7. However, the practical optimization process

continues in a coarse to fine fashion causing coarse scale

corrections to occur first in time. This is an undesirable bias that

makes the averages appear visually incorrect when features exist at

multiple scales, such as in anatomical images.

The key to finding the correct velocities is to solve a variational

problem derived from Eq. (11) explicitly. First we give the average

version of the transport ordinary differential equation,

d
dt
ḡg ðtÞ xð Þ ¼ v̄v ðḡ tð Þ xð ÞÞ;

ḡg ð0Þ ¼ ḡg0:

�
ð12Þ
The initial value g0 is again the identity Id. Integrating the

incremental solutions from time zero to time t = 1 will now result
in the average diffeomorphic transformation,

ḡg 1ð Þ ¼
Z t¼ 1

t¼ 0

v̄v ḡ tð Þð Þdt; ð13Þ

which in turn holds forth the final diffeomorphic map /̄ = ḡ (1).

First, consider the case of two images. The variational problem is

then,

g14; g24 ¼ argmin
v1 tð Þ

argmin
v2 tð Þ

Z 1

0

tv1t
2
L þ tv2t

2
L þ tIg�1

1 � ĪItdt
� �

þ tJg�1
2 � ĪItdt:

We then rearrange terms using the equality constraints from the

original problem statement,

g14; g24 ¼ argmin
v1 tð Þ

argmin
v2 tð Þ

(Z 1

0

tv1t
2
L þ tv2t

2
L

þ tIg�1
1 � Ig�1

2 tdt

)
: (14)

Solving via alternating minimization with respect to gi, and all

hi constant, provides average deformations that are optimized

symmetrically using information at all scales. The geodesic

averaging constraint E(g1) = E(g2) is upheld by construction and

the configurations Ig1
�1 and Jg2

�1 are both in average position.

Note also that this inverse consistent transformation from I to J is

g1
�1 B g2 (Fig. 10). This is distinct from the ideas of Johnson and

Christensen (2001) in which a variational term is used to estimate

consistency, as the inverse consistency here is inherent to the

theory. We will denote the output of this algorithm as ĀA 2(d ,d )

where the input is a pair of images. Intuitively, the algorithm lets

the images I and J bmeetQ at the mean configuration. An

illustration of this approach for geodesic shape interpolation is

shown in Fig. 11.

The algorithm for Eq. (12) when averaging a large database will

be denoted ĀA (Ī, {I1,: : :, IN}). This solves for the average transport
differential equation ḡ̇ = v̄(ḡ), with ḡ(0) = x. The bar in ḡ denotes a

mean value taken over the data set with v̄=(1/N)
P

ivi and the dot

in ġ indicating a time derivative. This requires solution of a



Fig. 10. The inverse consistent registration of two images is shown.
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variational problem for v* where the full database is used. This

algorithm is summarized as,

(1) For each time, t, initializes v̄ = Id.

(2) For time t, use the constant arc length estimation method to

solve the following problem for each i a {1,. . .,N},

v14 ¼ argmin
v1 tð Þ

tvit
2
L þ ctIiḡg�1 � ĪI g�1t

n o
; ð15Þ

noting that symmetric flows are computed with respect to the

domain of Ī.

(3) Set optimal v̄*(x) = (1/N)
P

ivi* (x) and also tv̄(x)tL = h.

This is achieved in the same way as in the constant arc length

constraint section.
Fig. 11. Three time points of scale consistent shape interpolation are

generated from a pair of anatomical instances. The pairwise symmetric

registration method used here insures that the interpolated anatomy is

consistent for all scales of information. The original images are at top left

and bottom left, respectively. This anatomical pair is in correspondence at

time 0.5, which is the average of the anatomy at time 0 with the anatomy at

time 1. Note that here we have used the topology of the closest anatomy at

all points. It would also be natural to use an intensity average where the

relative weights are determined by the time values.
(4) Find the new ḡ in the domain of the original anatomical

estimate through composition, ḡ�1, t+h (xt =0) = ḡ�1,t (Id + v̄(x)).

(5) Repeat until ḡ converges and all images are registered.

This algorithm is the mean flow version of the pairwise

algorithm and an extended form of A. It is initialized at time zero

with a candidate anatomy Ii from the data set, with ḡ = Id and x̄ c
ḡxi. The anatomy then flows toward the mean configuration

giving, ultimately, ḡ�1x̄ = xi = xt=0. The norms of the velocity v

and v̄ at each time are held to a small constant arc length during

this algorithm such that tvitL = tv̄tL. As in the pairwise case,

the diffeomorphic framework is used to flow an initial mean shape

estimate along a geodesic path toward the centroid of the database

as determined by the optimization criterion. The mean flow is

estimated with a constant arc length step size giving a strong

estimate of the geodesic distance and attempts to convey an equally

weighed contribution of each anatomy to the mean. This algorithm

outputs the distance from the original image to the mean shape as

well as the jacobian of that transformation. Note that registration of

each individual image toward the mean I will proceed even if the

mean flow stabilizes. An example of this algorithm operating in

three dimensions is shown in Fig. 12 while it is illustrated in Fig.

13. Jacobians of the mean flow are shown in Fig. 14.
Results

We now show an experimental comparison between the two

algorithms above, results of which are summarized in Fig. 16. Note

that this is an evaluation that only investigates the intensity

optimization and does not use anatomical information explicitly.

For each of three initial estimates to the mean anatomy, we:

(1) Compute the linear and the geodesic average to the database.

(2) Compute measures of the deformation-based distance and the

intensity distance (SSD) to the database by registering all
Fig. 12. The top row shows the geodesic anatomical average computed

from a database of six chimpanzee cortices. The bottom row shows the

same for a database of six human cortices. The middle row shows the

anatomical average of all 12 images, where the human was used as an initial

estimate. After the registration process converged, the intensities were

linearly averaged to produce estimates of a bmissing linkQ (center row)

neuroanatomy that is midway between chimp and human in terms of shape

and intensity.



Fig. 13. A sketch of the algorithm for computing the mean geodesic flow.
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images to the atlas. Linear averaging is performed on the

displacement field output by the large deformation algorithm.

(3) Compare the consistency between atlases constructed from

different initial configurations. This involves comparing

intensities of the different estimated atlases. The intensities

should be very similar if they converge to a very similar

solution (as determined by image, not anatomical, infor-

mation).

This allows us to compare the atlases with respect to the

quantities the algorithms minimize. The SSD is measured between

the atlas and the original unregistered data set (1st number in each

entry in the SSD column) and the atlas and the registered data set

(2nd number in each entry in the SSD column). The linear

algorithm was iterated until convergence for this study. Inter-atlas

consistency measures the SSD between the mean of the atlas

intensities and atlases 1, 2, and 3 for each algorithm (Fig. 15).

The geodesic averaging algorithm has several practical advan-

tages over the linear case. As expected, it supplies a more

optimized intensity configuration than the linear atlas, as indicated

by the numerical data in the SSD column of Fig. 16. The total SSD
Fig. 14. Comparison of the typical jacobian from two mean flow calculations and

have more of a bmedialQ structure than the more diffuse pairwise jacobian.
between the final atlas and the database is measured both before

registration (first entry in column) and after registration (second

entry in column). Relatedly, the computed atlases are more

consistent with respect to the point to which they converge (again,

measured through the intensity values), making it less sensitive to

the original atlas selected. Iteration of the algorithm is likely to

minimize the sensitivity to the initial configuration even further.

The geodesic mean also grants a better distribution in the

optimization parameter space, as shown in Fig. 18. This may also

be seen in the numerical graphs of Figs. 17 and 18. Also, the

geodesic average requires less deformation to exhibit better

similarity values than with the linear average. The only advantage

the linear atlas has is in revealing a configuration that is overall

bcloserQ than accorded by the large deformation atlas. This is the

hypothesized result and it is important to note that although

proximity is minimized, deformation is not.

Intensity averaging may also be incorporated into these

algorithms, as in Davis et al. (2004). However, one must take

care that false topologies are not created during this process, which

is difficult when using linear intensity averaging. Furthermore,

linear averaging may also create intensities that do not appear in
one from a pairwise image registration. The mean flow jacobians appear to



Fig. 15. The images in the top row are the evaluation results of the linear

averaging on a database of six human cortical images. The bottom row

shows the same for the geodesic averaging. The interatlas intensity

consistency is rescaled to show details.
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the original data set (consider the case of data with discrete steps in

intensity) causing false information to be introduced. Thus, it is

important to either insure correct tissue types are aligned or to use a

second optimization step for best estimating photometric trans-

formations (Miller and Younes, 2001). Another interesting

observation is that jacobians produced by the mean flow have a

notably different appearance as can be seen in Fig. 14. The origin

of this distinction is still under investigation.
Conclusion

This paper gave a novel approach for performing geodesic

averaging of shape along anatomical image registration mani-

folds. The design involves transferring algorithmic knowledge

about the pairwise registration case into a database-wide

registration. The foundational algorithm, here, is an extended

version of the viscous fluid framework, but the basic ideas could

also be used with other algorithms, such as elastic image

registration (Gee and Bajcsy, 1999). Applications of the methods

in two and three dimensions were shown and should be useful in

future comparative studies of populations with very different

topology or large deformations in shape.
Fig. 16. Table summarizing the numerical results that compare the atlases with r

compute the sum of squared intensity differences (SSD) and both linear and curved

The SSD is measured between the atlas and the image data set both before (*) and

2) is the total of distances defined by Eq. (4). The geodesic atlas has a better SSD w

when measured from itself to the registered database. Interatlas consistency meas
Two additional applications of the theory were illustrated. First,

an inverse consistent image registration algorithm is conferred by

simply integrating velocity fields both forward and backward in

time. This allows the images to meet at the mean configuration and

the full correspondence to be gained by composition. Second, the

theory invites a natural way to find a constant arc length

parameterization of the interpolation between two anatomical

images. This can be important in both image registration and

anatomical modeling (Sundaram et al., 2004).

The algorithm was motivated by the need to couple the image

registration and atlas creation process directly in an optimization

framework. Results are better than linear averaging as the

optimization assumptions of the registration algorithm are

maintained by construction. An open question is why the

jacobians from the average flow look qualitatively different and

if this would have an effect on morphometric calculations. Also,

it is not clear what, if anything, this means about the underlying

transformation. It is possible that the transformations, originating

from time integration of averaged, symmetric flow, tend to focus

on the interiors of smooth structures, rather than only at their

borders.

Another important contribution of this work is that the

framework sets up large deformation statistical analyses. The

ability to locally analyze the flows themselves for statistical

meaning is useful in modeling and simulating growth and

development as well as atrophy and normal shape variation. The

locally linear structure of the optimization manifold makes it

potentially feasible to use linear statistics such as principal

components analysis.

One major weakness in this current work is the lack of

anatomically based evaluation and also the small database sizes.

The first issue will be addressed by performing landmark or

segmentation-based geodesic averaging. The algorithm remains

essentially the same as is developed here but with the intensity-

based similarity replaced with landmark information. When more

efficient three-dimensional implementations are completed, we

intend to make the ITK code (Yoo, 2003, 2004) used in this work

publicly available and also to study in detail the effect of database

size and outliers on the atlasing process. This is a very difficult and

open question that will be important to investigate. Future work
espect to the quantities the algorithms minimized. For each algorithm, we

distances. The linear algorithm was iterated until convergence for this study.

after (**) the data set is registered to the atlas. The curved distance (column

hen measured from itself to the original database. It also gives a better SSD

ures the SSD between atlases 1, 2, and 3 for each algorithm.



Fig. 17. Graphs summarizing the numerical results.

Fig. 18. This graph summarizes the improved distribution of shape and intensity differences when using a geodesically averaged vs. a linear atlas.
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will also include further investigation of accommodating large

photometric variability through variational and robust methods

similar to those contributed here.
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Appendix A. Transformation inversion

The deformation inversion process is solved as a boundary

value problem using a fast nearest neighbor interpolation in the

forward direction. An alternative method is in Guimond et al.

(2000). The time integrated mean displacement field ū is applied to

the original positions x of the initial anatomy. The warp is inverted

by computing ū�1 which submits x̄ + ū�1 = x. However, due to the

deforming nature of ū, the definition of x̄ may not be dense. Thus,

we use the following algorithm,

(1) Define pi as a pixel in the forward domain and NN as the

nearest neighbor operation.

(2) 8pi with pi = NN(x + ū), fix ū�1(pi) = �ū.

(3) 8pj without pj = NN(x + ū), ū;�1 pj = Gr n ū�1pj
(4) if the change in ū�1 is small, then return ū�1, else go to step

2.

Step 2 involves a fast convolution with Gaussian kernel Gr.

One may use an explicit optimization process over the whole

domain using other interpolations or the finite element method, at

the cost of additional computation time.
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