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Abstract: AOtools is a Python pacakge which is open-source and aimed at providing
tools to adaptive optics users and researchers. We present version 0.6 which contains
tools for analysing data in the pupil plane, images and point spread functions in the
focal plane, wavefront sensors, modelling of atmospheric turbulence, physical optical
propagation of wavefronts, and conversion between frequently used adaptive optics and
astronomical units. The main drivers behind AOtools is that it should be easy to install
and use. To achieve this the project features extensive documentation, automated unit
testing and is registered on the Python Package Index. AOtools is under continuous
active development to expand the features available and we encourage everyone involved
in Adaptive Optics to become involved and contribute to the project.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The Python programming language1 has become a powerful tool for scientific research
[1, 2]. Currently Python uptake in astronomy and related fields is growing rapidly [3].
Adaptive Optics (AO) has reached a level of maturity where many algorithms and

techniques are considered “standard practice”, with cookbooks for implementing many
standard procedures existing to help users implement functions, such as [4]. There are
freely available tools for AO analysis in Matlab® (OOMAO [5]) and on GPU (MOAO
framework [6]). However, currently there is no freely available, open-source tool which
implements these functions for AO scientists to utilise in Python. We propose AOtools
as a project and Python package which encompasses this functionality.
For the project to be successful it is essential that the AOtools package is reliable,

easy to install, and easy to use. This mandates the use automation tools to ensure
documentation is up to date and that the core functionality of the code is working
as expected. To this end infrastructure has been put in place to make the package
“pip” installable, with minimal external dependencies. Currently the only dependencies
AOtools requires are: Numpy [7], Scipy [8], and matplotlib [9].

In this paper we outline the major functionality of the software at the current release
(v0.6), the structure of the project, approach used for the development of the library,
and finally the road map for the future of the project. It is envisaged that this project
will be useful beyond the realm of astronomical AO, including microscopy [10,11].

1http://www.python.org
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>>> import aotools
>>> pupil_mask = aotools.circle(64, 128) - aotools.circle(16, 128)

Fig. 1. Example code snippet for the creation of a telescope pupil mask using
two circles to create a circular aperture with a cut out section corresponding to
the secondary mirror.

2. Functionality

In this section we present the core functionality of the AOtools package, covering
functions applied to pupils in Sec. 2.1, simulation of atmospheric turbulence in Sec. 2.2,
processing AO images and WFS data in Sec 2.3 and 2.4 respectively, physical optical
propagation kernels in Sec 2.5, and conversions between astronomical units frequently
used in AO in Sec. 2.6.
To demonstrate the use of AOtools a snippet of code is presented along with plots

which shows how to generate the data for the corresponding figure. Working examples
of all of the code used to generate the plots shown in this paper can also be found at
https://github.com/AOtools/aotools_tests.

2.1. Pupil functions
2.1.1. Circular Masks

Generating circular functions in 2-D arrays is useful in generating pupil masks, as well
as other applications. Most lenses can be approximated with a circular pupil mask, and
telescope pupil shapes can usually be approximated with one or two circular apertures,
to create the obstruction of the secondary mirror. A simple function exists in AOTools
to create circular apertures, which can be combined to generate simple telescope pupil
masks. An example code snippet for the generation of a telescope pupil mask is shown
in Fig. 1, with the corresponding generated telescope pupil mask shown in Fig. 2.

2.1.2. Zernike Modes

It is frequently useful to decompose wavefronts into Zernike modes. This allows for
analysis of aberations and the performance of correction in AO systems, for example
atmospheric statistics are frequently decomposed into Zernike modes [12]. AOtools
defaults to normalising individual modes using Noll, however, they can also be normalised
by peak-to-valley and rms strenght if required. An example snippet for creating an array
of Zernike modes is given in Fig. 3, with a selection of the generated Zernike modes
plotted in Fig. 4.

2.2. Atmospheric Turbulence
AOtools features functionality to create both finite Kolmogorov [13,14] and Von Karman
turbulence phase screens. These functions are based on the example implementations
given in [4]. The library also includes methods to create infinite Kolmogorov and Von
Karman phase screens using the methods described in [15]. The phase screens created
are wavelength in dependant as the amplitude scale is in nm. An example code snippet
using the Fried method for generating infinite phase screens [15,16] is shown in Fig. 5,
with a plot of the corresponding phase screen given in Fig. 6. The average Zernike
breakdown of 1000 Fried infinite phase screens is shown in Fig. 7 alongside the theoretical
amplitudes of each mode from [12].

https://github.com/AOtools/aotools_tests
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Fig. 2. Example telescope pupil mask generated using the AOtools circle function
to create the pupil with a cut out corresponding to the obstruction from the
secondary mirror.

>>> import aotools
>>> zernike_array = aotools.zernArray(4, 10)

Fig. 3. Creation of first four Zernike modes (tip, tilt, defocus, and astigmatism)
using the AOtools Zernike functions on circular apertures. This function creates
all Zernikes up to the given J indicy.

2.3. Image processing
2.3.1. Point Source

AOtools includes some functions for analyzing Point Spread Functions (PSFs). This
includes the full encircled energy as a function for a PSF, and the radius corresponding
to a given fraction of encircled energy. There is also the functionality to calculate the
azimuthal average of an image. However, currently this is restricted to the PSF being in
the center of the input 2-D image. An example of generating a PSF and then using the
azimuthal averaging function is given in Fig. 8. The PSF generated from the pupil given
in Fig. 2 and the azimuthally averaged intensity is shown in Fig. 9.
AOtools also features a number of methods for centroiding images of point sources

and elongated Laser Guide Stars (LGSs). These include a number of centre of gravity
methods, including parameters for thresholding within the centroider, and other methods
used in Wavefront Sensors (WFSs), such as the brightest pixel centroider [17]. Example
code snippets for centroiding an image is given in Fig. 10.
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Fig. 4. The first four Zernike modes (excluding piston) generated using the
example code shown in Fig. 3.

>>> from aotools import turbulence
>>> # Set up parameters for creating phase screens
>>> nx_size = 128
>>> D = 8.
>>> pxl_scale = D/nx_size
>>> r0 = 0.164
>>> L0 = 100
>>> stencil_length_factor = 32
>>> # Create the initial phase screen
>>> phase_screen = turbulence.PhaseScreenKolmogorov(nx_size, pxl_scale,

r0, L0, stencil_length_factor)
>>> # Move phase screen along by a single row
>>> phase_screen.add_row()

Fig. 5. Example code snippet showing the specification and generation of an
infinite phase screen using the Fried method [15, 16]. The phase screen can be
“moved” by using the add_row method which is shown at the end of the snippet.
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Fig. 6. Example phase screen generated using the Fried infinite phase screen
method [15, 16] using the code shown in Fig. 5. The strengths is defined in nm
such that the phase screen is wavelength in dependant.
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Fig. 7. The average Zernike breakdown of 1000 individual Fried infinite phase
screens [15,16], with the theoretical strengths expected from Noll [12].



>>> import aotools
>>> import numpy
>>> # Create padding to get an oversampled psf at the end to make it look nice
>>> padded_pupil = numpy.zeros((1024, 1024))
>>> padded_pupil[:128, :128] = pupil_mask
>>> # Use AOtools to transform from the pupil to the focal plane
>>> psf = aotools.ft2(padded_pupil, delta=1./128.,)
>>> # Cut out the centre of the psf array for plotting
>>> psf = psf[512-64:512+64, 512-64:512+64]
>>> # Calculate the azimuthal average of the PSF
>>> azi_avg = aotools.azimuthal_average(numpy.abs(psf))

Fig. 8. Example code to generate a PSF for the pupil mask generated using
Fig. 1 and the calculation of the azimuthal average of the resulting PSF. The
padding and slicing of the pupil mask is included to oversample the FFT, leading
to a smoother PSF for plotting.
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Fig. 9. PSF corresponding to the pupil shown in Fig. 2 along side the the
corresponding azimuthal average of the PSF calculated using AOtools.

>>> from aotools import centroiders
>>> cog_centroid = centroiders.centre_of_gravity(psf)
>>> bpx_centroid = centroiders.brightest_pixel(psf)

Fig. 10. Centroiding a point source image using aotools built in centroiding
functions on the PSF generated in Fig. 8. These functions give centroids in the
units of array indices (with [0,0] representing the corner of the image), so the
centroid location corresponds to the index of the array.



>>> from aotools import centroiders
>>> from astropy.io import fits
>>> ext_image = fits.getdata("extended_image.fits")
>>> ref_image = fits.getdata("reference_image.fits")
>>> # Simple centroid for extended objects
>>> centroid = centroiders.correlation_centroid(ext_image,ref_image)
>>> # Manual correlation and centroiding of extened object
>>> corr_image = centroiders.cross_correlate(ext_image, ref_image)
>>> bpx_centroid = centroiders.brightest_pixel(corr_image)

Fig. 11. Example use of AOtools to centroid extened objects. AOtools can be
used to centroid using a cross-correlation and a centre of mass using a single
function call, or the correlation image can be generated in one step then any
centroiding technique can be applied to the correlation image.

Fig. 12. The left and middle images show the reference image and a shifted
sub-aperture image of solar granulation respectively. The right most image shows
the correlation image created from the cross-correlation of the left and center
images. This can then be centroided in order to measure the shift between the
sub-aperture image and the reference image.

2.3.2. Extended Source

AOtools also includes methods for centroiding extended objects using a cross-correlation
technique. The correlation images can be created using an inbuilt cross-correlation
function, then the resulting correlation image centroided using any centroiding function.
Or, if a simple centre of mass centroider will be applied to the correlation image, there
is a correlation_centroid function which will perform both the cross-correlation and
the centroiding to output the relative image shifts between images and a reference image.
Currently the only available method for cross-correlation is based on FFTs. The use
of AOtools to centroid extended objects is shown in Fig 11, with the example images,
and correlation image generated shown in Fig 12. There is also the functionality to
measure the contrast of images of extended objects, with both the Michelson [18] and
rms contrast currently implemented.

2.4. Wavefront Sensors
AOtools includes functions for generating sub-aperture masks for WFSs, based on a
simple square grid, by inputting the geometry of the sub-aperture grid and the pupil
mask. It is also possible to calculate the fill-factor for a set of sub-apertures for a given
pupil mask. Example code for doing both of these are given in Fig. 13 and an example
set of valid sub-apertures shown on the telescope pupil from Fig. 2 is shown in Fig. 14.



>>> import aotools
>>> sub_apertures = 7
>>> fill_factor = 0.6
>>> sub_ap_width = 128./sub_apertures
>>> # Create active sub-aperture array
>>> sub_aps = aotools.wfs.findActiveSubaps(sub_apertures, pupil_mask,

fill_factor)

Fig. 13. Calculation of WFS sub-apertures with a given fill factor or higher for
the pupil defined in Fig. 1. This allows for the creation of masks which can be
applied to WFS data to remove measurements from sub-apertures which do not
receive enough light to generate useful data. This can be used to filter WFS data
from simulations and RTCs, removing noisy data.

Fig. 14. Sub-apertures which meet required fill factor plotted over the corre-
sponding pupil mask from Fig. 2.

As well as creating sub-aperture masks for given pupil shapes AOtools also includes
methods to convert a “stream” of WFS data into a 2-D grid which matches sub-aperture
geometry. This allows for the conversion of data which comes out of RTC systems, such
as DARC [19,20], for analysis.

2.5. Optical Propagation
AOtools includes functions to physically propagate a wavefront through space, leading
to the generation of scintillation. Available physical propagation methods include the
angular spectrum method, and one and two step Fresnel propagation. An example code
snippet of propagating a complex wavefront created from the phase screen created in



>>> import numpy
>>> from aotools import opticalpropagation
>>> wavelength = 500e-9
>>> propagation_distance = 10000.
>>> # Create complex wavefront from phase screen
>>> wavefront = numpy.exp(j*phase_screen)
>>> # Propagate wavefront over 10km
>>> propagated_screen = opticalpropagation.angularSpectrum(wavefront,

wavelength, pxl_scale, pxl_scale,
propagation_distance)

>>> # Create image of propagated wavefront
>>> scintillation_pattern = numpy.abs(propagated_screen)**2.

Fig. 15. Example code showing the propagation of the phase created in Fig. 5
for 10km and creation of the resulting scintillation image in the pupil.
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Fig. 16. Example scintillation pattern generating from propagating the phase
screen from Fig. 6 containing atmospheric turbulence over 10km.

Fig. 5 is given in Fig. 15. The scintillation pattern from propagating the phase screen
shown in Fig. 6 by 10km is shown in Fig. 16. In Fig. 17 we show that the scintillation
irradiance power spectrum obtained through AOtools propagation is consistent with the
theory outlined in [21].
As well as physical propagation of wavefronts the optical propagation section of

AOtools includes a Fast Fourier Transform (FFT) based function to change between the
pupil plane and focal plane. This is can be used to convert a wavefront which is incident
to a telescope pupil into a PSF, as has been shown in the code snippet in Fig. 8 and
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Fig. 17. Scintillation irradiance power spectrum obtained by using AOtools angular
spectrum propagation to propagate 500 phase screens a distance of 10 km. Each
screen has r0 = 32 cm.

images produced in Fig. 9.

2.6. Astronomical unit conversions
Many standard astronomical units are not directly applicable to tasks such as AO
simulations. For instance stellar brightnesses are typically defined through the magnitude
system (see SIMBAD2, VizieR 3). However, for simulating AO systems photon flux is
required to calculate expected signal levels on WFSs. AOtools includes conversion
functions which convert stellar brightness into photon flux for a given waveband, and
vice-versa. Example code snippets are given in Fig. 18 which demonstrate converting
stellar magnitude to a photon flux.
As well as converting between astronomical units, AOtools also includes a number

of parameter conversion functions which are specific to astronomical AO. These pre-
dominantly relate to the conversion between different atmospheric parameters, including
Cn2, r0, seeing, etc. Examples showing the conversion between these different units are
shown in Fig. 19. AOtools also includes methods to calculate integrated atmospheric
parameters, such as coherence time and isoplanatic angle, from atmospheric turbulence
and wind speed profile.

2http://simbad.u-strasbg.fr/simbad/
3http://vizier.u-strasbg.fr/viz-bin/VizieR



>>> import aotools
>>> m = 0# Use Vega as example star
>>> exp_time = 30 # 30s exposure
>>> waveband = 'V'
>>> photon_rate = aotools.magnitude_to_flux(m, waveband)
>>> # Calculate photons in an example exposure
>>> photons = aotools.photons_per_band(m, pupil_mask, pixel_scale, exp_time)

Fig. 18. Examples of using AOtoools to convert stellar flux from magnitudes to
photon flux. Examples for both a raw conversion to photon rate and also for the
telescope pupil used in Fig. 13 and a given exposure time.

>>> import aotools
>>> r0 = 0.15
>>> cn2 = aotools.r0_to_cn2(r0)
>>> seeing = aotools.r0_to_seeing(r0)

Fig. 19. Example use of AOtools to convert between different typically used
astronomical AO units.

3. Infrastructure and Development Approach

AOtools is a python library which has been developed for the AO community by the AO
community. It is hoped that this continues, and the involvement of the community will
increase over time to include users of AO beyond astronomy and microscopy. In order
to achieve this a large focus of AOtools is outside of functionality of the module and
instead in infrastructure surrounding the tools. We use the software related expertise
of both the AO community and dedicated software engineers to ensure the code is well
maintained, written clearly with good documentation, and well tested. The general
infrastructure goals for AOtools are to ensure that it is is well tested, documented, and
is both easy to install and easy to use.

In order to encourage input to the codebase it is hosted on GitHub4, where it is open
source under a GNU Lesser General Public License v3.0.5 license. This license allows
for any work to use AOtools, including commercial, without forcing any licence on the
software. However, it does insist that any changes to the core AOtools package are made
public under a similar license. We utilise the infrastructure available through GitHub
and the git software6 to update the codebase and to manage the release of new versions.
Changes to the codebase are submitted though “pull requests”, where changes (whether
they are bug-fixes or new features) are reviewed by core members of the AOtools team
and merged into the main code base once the code has been approved.

Updating the main code base of AOtools is often followed by a release of a new version.
The versions are numbered according to the major.minor.micro format as described
in PEP4407. Major versions are those which contain major changes and may break
compatibility with previous versions, minor versions are those which contain new features
or enhancements to existing features (these should not break compatibility with versions
within the same Major version), and micro versions typically contain bug fixes for issues

4https://github.com/AOtools/aotools
5https://www.gnu.org/licenses/lgpl-3.0.en.html
6http://git-scm.com
7https://www.python.org/dev/peps/pep-0440/



found within the existing source code. After a new version of AOtools has been created
it is then registered with the Python Package Index (PyPI). This allows for AOtools be
installed and updated easily by users using ‘pip’. AOtools can be installed with python
using pip install aotools.
The AOtools package makes use of continuous integration. This is the automated

running of unit tests whenever changes are made to the main code base. As part of
this testing AOtools is run on a number of different versions of Python, on a number
of different operating systems in an attempt to avoid issues arising due to specific
installations and environments. We also keep track of how much of the main code base
is covered by this automated testing using code coverage tools 8.

AOtools has extensive documentation, which is created using the Sphinx documentation
generator [22] to automatically generate documentation for every available function and
module based on the docstrings in the source code. This ensures both that the source
code itself is well documented, but also generates a complete set of documentation which
is then hosted in an interactive format for ease of use at read the docs9.

4. Future Development

AOtools is a relatively young project and in active development. There are many updates
and incremental additions to functionality ongoing and planned for the future. Here we
summarise the major updates in functionality that are currently planned: WFS slope
analysis, and image processing.
Although there are some routines in AOtools for analysing WFS data there are

still many techniques which are not implemented. We plan on expanding the WFS
analysis routines available in AOtools to include measuring atmospheric parameters
from the slopes [23, 24] and generation of covariance matrices from both WFS data and
atmospheric turbulence profiles. Finally, functionality will be developed for the creation
of AO reconstructors based on covariance matrices which have been pre-calculated.

The development of image processing routines is concentrated onPSFs. AOtools will
feature simple to use methods for generating PSFs using different inputs, including
phase and complex amplitude in a pupil. Building on this we will develop methods for
applying a PSF to extended images, to allow for the degradation of wide-field images.
W will continue to maintain and improve much of the infrastructure of AOtools,

expanding documentation to include example code demonstrating the use of the functions,
much as presented in and alongside this paper. Currently AOtools features generic AO
functions and data processing methods and functions, and some methods which apply
specifically to astronomy. We are looking to expand the functionality of AOtools to
include other fields which make use of AO, such as microscopy. Finally, we plan on
submitting AOtools to be included as an affiliated package to astropy [25] to achieve
better integration with the features and facilities they offer.

5. Summary

The AOtools package is aimed to be a core package for AO scientists and users of data
taken with AO systems. It is currently in use in a number of astronomical projects
and instututions, however, we plan to expand beyone astronomy into the wider AO
community. In this paper we have described the major functionality of AOtools in release
0.6?, including:

• Pupil functions (§2.1)

8https://codecov.io/gh/AOtools/aotools
9http://aotools.readthedocs.io



• Atmospheric turbulence (§2.2)

• AO image processing (§2.3)

• Wavefront sensors (§2.4)

• Optical propagation (§2.5)

• Unit conversion (§2.6).

In Sec. 3 we outlined the development approach and core ideas behind the AOtools
project. This has enabled us to begin to involve the AO community with contributing
to the project. Finally, we outlined the future plans for the project in Sec. 4, with the
major goals of increasing functionality and becoming affiliated with the astropy project.
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