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ABSTRACT 

Mayer, D.G. and Butler, D.G., 1993. Statistical validation. Ecol. Modelling, 68: 21-32. 

Validation is a necessary step for model acceptance. No single combination of validation 
tests will be applicable across the diverse range of models and their uses. Choice of 
technique is important, as some contain problems and inconsistencies. Subjective assess- 
ment can be useful as a guide. Within visual techniques, observed vs. predicted plots are 
shown to have superior diagnostic capabilities compared to the more widely-used time-series 
plots. Mean absolute error is demonstrated as a more robust deviance measure than mean 
absolute percent error, and within the statistical tests a nominated sub-set of some simpler 
statistics should reveal most of the required information. The modelling efficiency is 
proposed as the best overall measure of agreement between observed and simulated values. 

INTRODUCTION 

Va l ida t ion  has  b e e n  de f i ned  as a c o m p a r i s o n  of  the  mode l ' s  p red ic t ions  
wi th  the  rea l  wor ld  to d e t e r m i n e  w h e t h e r  the  m o d e l  is su i table  for  its 
i n t e n d e d  p u r p o s e  ( M c K i n i o n  and  Baker ,  1982). M o d e l  va l ida t ion  is a 
m a n d a t o r y  s tep in the  complex  task o f  s imulat ion.  G e n e r a l  overviews of  
this p rocess  can  be  f o u n d  in mos t  s imula t ion  texts ( J0 rgensen ,  1986; Bra t l ey  
e t  al., 1987; Ripley ,  1987), wi th  m o r e  c o m p r e h e n s i v e  views so m ew h a t  r a r e r  
( D e n t  and  Blackie ,  1979). N o t e  tha t  t h e r e  are  no  abso lu te  cr i ter ia;  val ida-  
t ion  re la tes  to  the  po t en t i a l  appl ica t ions  and  users  of  the  mode l ,  no t  the  
m o d e l  i tself  (McCar l ,  1984). 

A r ange  o f  po ten t i a l  e r ro r s  and  p r o b l e m s  exist in the  overa l l  p rocess  of  
va l ida t ion ,  as d iscussed  e l sewhere .  T h e s e  inc lude  the  necess i ty  for  on-go ing  

Correspondence to: D.G. Mayer, Queensland Department of Primary Industries, G.P.O. Box 
46, Brisbane, Qld. 4001, Australia. 

0304-3800/93/$06.00 © 1993 - Elsevier Science Publishers B.V. All rights reserved 



22 D.G. MAYER AND D.G. B U T L E R  

validation as opposed to a one-off exercise (Law and Kelton, 1982); 
acceptable levels and costs of Type I and Type II statistical errors (Dent 
and Blackie, 1979); and sources of acceptable or suitable data sets for 
validation (McCarl, 1984). Also, models can never be proven valid, only 
invalid (Harrison, 1990). Failure to prove a significant difference between 
real and model data may only be due to insufficient replication or lack of 
power of the applied statistical test. 

This study assumes that the necessary data have been obtained, and 
concentrates on techniques and statistics for comparing validation data 
with model predictions. It is shown how some commonly-used methods are 
open to misinterpretation and potential abuse, and better alternatives are 
evaluated. The modelling efficiency, a dimensionless statistic which paral- 
lels the co-efficient of determination, is proposed as the best overall 
measure of model performance. 

VALIDATION TECHNIQUES 

A wide range of methods has been proposed and used in many different 
fields of study. In many cases the choice of technique is restricted by the 
potential uses and testing requirements of the model, the type of data that 
the model generates, or the availability of real-world data. Validation 
techniques can be grouped into four main categories, namely subjective 
assessment, visual techniques, deviance measures and statistical tests. 

Subjective assessment 
These techniques involve evaluation by a number of experts in the field 

of interest. They include the Turing-type tests (Law and Kelton, 1982), 
where the experts are presented with both simulated and real-world data 
series and asked to distinguish between these. This application in particular 
is open to misinterpretation. Whilst the model may perform well, there may 
be certain identifiable features contained in either the simulated or real- 
world data which make the distinction easy. 

Due to their very nature, subjective tests are prone to personal bias. 
Some members of a panel may pass less-than-acceptable results; equally, 
others may be over-critical. Successes in subjective assessment would 
appear to be more a function of panel selection than model performance, 
and this technique's major advantage would appear to be as a complement 
to more objective measures. 

Visual techniques 
Graphical displays of data feature in these methods, typically plots of 

both simulated data (usually continuous, and represented by a line) and 
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observed data (usually discrete, and represented by points) against a 
common independent  variable. These are most commonly presented as 
time series plots, but may also be applied across, for example, depth of 
water or soil profile, altitude, pathogen or pest numbers, or concentration 
of a critical nutrient or toxic element. 

These plots have been recommended as an informative method of data 
presentation (Dent and Blackie, 1979), and are widely used in many 
disciplines. There are, however, problems with these displays, despite their 
popularity. Take, for example, Fig. la, where the data appear to be at least 
approximately in agreement with the line. This is despite the fact that they 
are independent  - -  the line was calculated as y = sin(x 2) - 0.07x 2 + 0.7x 
+ 0.2, and the points (equally spaced across the X-axis) were chosen from 
the uniform distribution 0.5 ~<x <~ 2.5, using the first 8 pairs of random 
numbers from Kendall and Babington-Smith (1954). Figure lb  looks to be a 
reasonably good fit; the points here were selected for statistical properties 
that will be illustrated later. 

The apparent acceptance of variable-quality data presented in this way is 
enhanced by the undiscriminating reader, who views the deviance of each 
point as the distance to the nearest line (in any direction). The true 
deviance is the perpendicular distance to the line, which is often far larger, 
especially if the simulated line oscillates across the available space. 

A preferable alternative is to plot the observed (y) vs. predicted (33) data 
directly, with the line y = 33 marked (to indicate the position of the 'perfect 
fit'). The fitted linear regression line should not be presented, as this 
process equates to a re-calibration of the model, and successfully hides any 
systematic departure (i.e. bias) from the line y = 33. If the data can some- 
how be stratified (e.g. according to location, soil type, species, age, sex, 
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Fig. 2. Observed vs. predicted plots of data from Fig. 1. 
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etc.), it is advantageous to plot each stratum with a different symbol. This 
plot directly presents goodness of fit as vertical deviations from the 'per- 
fect' line, and indicates any biases present (either overall, or in certain 
sections of the data). This type of graph presents very similar information 
as a residuals (y-~3)  vs. predicted (~3) plot, widely used in statistical 
diagnostics (Draper and Smith, 1966). For validation purposes, y itself is 
preferable to the residual, as this way the predicted and observed values 
can be read off directly. 

Figure 2 shows the data from Fig. 1 plotted this way. As expected, Fig. 
2a shows the 'model '  to be worthless, with a random scatter of data. Figure 
2b demonstrates a strong positive relationship, with the first indication of 
two problems - -  firstly, insufficient data sampling, as there are no data in 
the higher range of predicted values; and secondly, model bias, with 
evidence of under-prediction at higher values. 

Deviance  measures 

These are applicable when observed and simulated data can be paired 
according to time, location, treatment,  etc. Deviance measures are based 
on the differences between the simulated and observed values. A balanced 
average of all data is normally used, but in some circumstances data 
weighting may be applied, for example, 'worst case' measures based on the 
maximum or extreme values (J0rgensen, 1986). Miller (1974) and Miller et 
al. (1976) propose a method for internal model  validation based on an 
extended sensitivity analysis combining deviations, but this does not appear 
to have been much used. For binary data, a simple deviance measure is 
percent  of the observational units with a correct value (Brammer, 1989). 
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For numerical data, two commonly used measures are mean absolute 
error (MAE) and mean absolute percent  error (MA%E) (Schaeffer, 1980), 
defined as: 

MAE = (El Yi - Yi I)/n, and 

M A % E =  100[E(I y ~ - ; ~ l / I  y~ I ) ] / n ,  

(1) 

(2) 

where Yi represent observed values, ~9i simulated values, and n the number  
of pairs. 

M A % E  is widely used, although by different names, in demographic 
studies (Siegal, 1972; Cohen, 1986; Smith, 1987) and other fields (Hameed,  
1974). As MAE is in the same units as the data and M A % E  is relative, 
both can be informative measures. Note that MAE may also be used for 
mean algebraic error (Smith, 1987), in which case the absolute signs would 
be omitted from Eq. (1). In this case, it is not a true measure of deviance, 
as positive and negative deviations cancel each other out. Rather,  its 
overall average measures any bias of the model by comparing the distribu- 
tion of the differences against zero. As bias is better measured by other 
statistical tests, we do not recommend this usage, and adopt MAE as its 
original (absolute) definition. 

An alternative to using absolute differences is to use second moments  
(Picard and Cook, 1984), and, using its square root, derive the root mean 
square error RMSE as 

21 ~0.5 
R M S E  = { [ E ( y i - y / )  ] / g / )  . (3)  

Algebraically, RMSE > MAE (due to the influence of squaring larger 
values), with these measures being approximately equal if the absolute 
differences are of similar magnitude. With squared deviations, RMSE can 
be useful in deriving statistical properties. As a summary measure of the 
relative degree of deviations, either MAE or RMSE can be used. 

Kleijnen (1987) recommends MA%E,  and suggests 10% as an upper  
limit on acceptability. Given that model  validity depends very much on 
both the type of model  and its intended uses (Bratley et al., 1987), it is 
impractical to set a single absolute limit. In many cases these measures are 
used merely to compare different models or techniques. 

A potential problem exists in Eq. (2) with the division by Yi. Obviously, 
M A % E  is undefined if any observed value (yi) equals zero, but this 
restriction does not apply to the simulated values (:9i). Problems also occur 
with low values of yi, as M A % E  tends towards infinity as any y~ tends 
towards zero. Given that M A % E  can be heavily influenced by single low 
values of Yi, it should be viewed with caution unless all y~ are of similar 
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magnitude. Given this limitation, a better relative deviance measure may 
be the mean absolute error relative to the observed mean (=  MAE/y) ,  
which can also be used if MA%E is undefined. An alternate relative 
measure is the 'general standard deviation' of J¢rgensen et al. (1986), 
which equates to (RMSE/fi).  This measure would provide very similar 
information to (MAE/~) .  

Statistical tests 
Applicability of statistical tests depends very much on the types of data 

available. For example, if sample population distributions are measured 
and simulated, then overall population tests are applicable, such as the 
unpaired t-test or a non-parametric distribution test (Conover, 1980). If, 
however, paired samples are available, appropriate methods include the 
paired t-test, regression analysis or the non-parametric sign test. Stochastic 
models, which generate a distribution for comparison with each observa- 
tion, also introduce statistical problems (Dent and Blackie, 1979). The 
usual approach here is to use the mean of the generated distribution, 
although more complex alternatives are available (Reynolds et al., 1981; 
Whitmore, 1991). 

A wide range of potential statistical tests exists, as outlined by McCarl 
(1984). Many are specialised applications to particular disciplines and 
model types. Of the 'general' statistics available, we favour the simpler, 
more easily understood ones. We also prefer parametric to non-parametric 
statistics, provided the underlying parametric assumptions hold with either 
the data or their transformation, because of the former's power in valida- 
tion applications (Reynolds et al., 1981). Note that it is usual to adopt 
two-tail significance testing, thus allowing for deviations in either the 
positive or negative direction. 

As a first step, the spread of the distributions can be tested with the 
F-statistic for variance ratios, and the locations of the distributions can be 
checked by calculating their respective means and the appropriate t-test 
(Kleijnen, 1987). The overall distribution tests (Conover, 1980) simultane- 
ously test both these properties, but we recommend they be detailed 
individually for clarity. A range of more complex parametric statistics, 
based on the ones above, is outlined in Reynolds et al. (1981). They 
demonstrate that these are useful in identifying data problems which would 
otherwise escape detection. We do not support their view, and will show 
later that the simpler statistics perform equally well on their example. 

One potential problem with these techniques is the non-independence of 
data. If the observations are taken from different experimental units these 
statistical tests are appropriate. If, however, the observations are repeated 
samplings of the same experimental unit (as often occurs in time-series 
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data with insufficient time-lag), they will be correlated, violating the as- 
sumption of independence.  In those cases, two possibilities are available. 
Firstly, Feldman et al. (1984) define a chi-square statistic for testing 
between samples, allowing for dependence.  To apply this statistic, it is 
necessary to estimate the population variances and covariances, and Feld- 
man et al. (1984) concede that the required data will rarely be available. 
Instead, they advocate using estimates of these from a stochastic model. 
Whilst theoretically correct, this technique may be difficult for generalist 
modellers to implement.  

The second available alternative for dependent  time-series data relies on 
a number  of time series (for example, different years, locations, varieties, 
treatments,  etc.) being available. Split-plot analysis of variance can be 
applied (Cole and Grizzle, 1966), with time being the split factor. The 
main-plot analysis will be valid, but may have too few error degrees of 
f reedom to be sufficiently powerful. Within the split-plot section, the ' t ime' 
main effect and 'main plot by time' interaction effects will be approximate 
only, but will at least indicate which effects are dominant.  

Given independent  paired data, regression analysis of observed vs. 
predicted data is also a useful tool for model validation. To conform with 
statistical assumptions, it is usual to take the observations as the Y-variate 
(as these data contain natural variability), and model predictions as the 
non-variable Xs (deterministic models contain no variation, and stochastic 
models can be re-run many times to minimise variation) (Harrison, 1990). 
A number  of useful statistics are available from regression analysis - -  R:' 
indicates the degree of fit, significance of the quadratic term can be used as 
a test for curvature, and the fitted constants indicate any observed biases in 
the model. The simultaneous F-test for slope = 1 and intercept = 0 (Dent 
and Blackie, 1979) is particularly useful in identifying bias. 

As indicated in the Visual Techniques section, the problem with the line 
of best fit is that it does not relate the observed data to the 'perfect fit' 
line; rather to a 're-calibration' of the model. A data set could be extremely 
close to linear, but spatially removed from the y = 33 line. The regression fit 
would be excellent, although the simultaneous F-statistic for bias would be 
significant. 

A dimensionless statistic which directly relates model  predictions to 
observed data is the modelling efficiency, EF (Loague and Green, 19911), 
defined as: 

EF  = 1 - (SS about y = 33)/(Corrected SS of y) 

= - - Yi) /Y'-(Yi - ~)2 1 E(yi ^ 2 (4) 

where SS is sum of sqaares. Along similar lines, Greenwood et al. (1985) 
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proposed using (SS about y = 33) as a percentage of the corrected SS of y, 
as a measure of model performance.  This is effectively 100(1 - EF). From 
Eq. (4), it is obvious how EF  parallels the widely-used co-efficient of 
determination,  

R 2 = 1 - (SS about line of best f i t ) / (Cor rec ted  SS of y)  (5) 

R 2 is interpreted as the proportion of variation explained by the fitted 
regression line, and EF is a similar measure against the set line y = 33. For  
both statistics, a 'perfect  fit' results in zero for the sum of squares about 
the respective lines, giving unity as the upper  bound and desired value. The 
degree of fit declines as these statistics fall away from one. For regression, 
the line of best fit cannot be worse than y = y, so R 2 has a lower bound of 
zero. In Eq. (4) the data are compared with a fixed line, so this restriction 
is removed. Thus, EF  has a (theoretical) lower bound of negative infinity. A 
value of zero indicates the fit to y = 33 is equal to the fit to y = ~, with 
values of  EF  less than zero resulting from a worse fit. Use of this statistic in 
validation is an extension of the R 2 statistic for the class of non-linear 
regression models which do not include y = y as a possible case. In these 
situations, negative values are also possible. 

The calculated EF  is thus an overall indication of goodness of fit. Any 
model giving a negative value cannot be recommended,  with preferable 
values close to one indicating a 'near-perfect '  model. 

APPLICATION TO DATA SETS 

Taking the data  presented in Fig. 1, a number  of relevant statistics were 
calculated, as presented in Table 1. Data  set a was previously dismissed on 
visual appraisal, and the statistics confirm this - -  high deviance measures, 
no relationship between observed and predicted, and EF value less than 
zero. On the time-series plot, data set b appeared a good fit, and some 
statistics confirm this - -  comparatively low deviance measures, a non-sig- 

TABLE 1 

Statistical measures of validation applied to data from Fig. 1 

Data Deviance measures Paired Linear regression Modelling 
set MAE MA%E t-test R 2 Slope Intercept Bias a efficiency 

a 0.61 70.0 0.0 ns 0 . 0 0 1  ns - - 0 . 0 4  1.50 1.8 ns --0.78 
b 0.27 21.8 1.9 ns 0.805 ** 0.55 0.46 10.6 * -0.12 

a Simultaneous F-statistic for slope = 1 and intercept = 0. 
ns not significant; * P < 0.05; * * P < 0.01. 
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Fig. 3. Nitrate levels (ppm) in the Pigeon River, from Summers et al. (1991). 

nificant t-test for differences, and a regression R 2 o f  8 0 % .  The observed 
vs. predicted plot, however, indicated potential bias, which was confirmed 
by the significance (P < 0.05) of the simultaneous F-test. However, serious 
problems are indicated by the negative EF value, showing that y = p is a 
closer fit to these data. For this hypothetical model, we would conclude 
that whilst a good relationship exists between observed and predicted 
values, the model displays bias, and re-calibration would be necessary. 

A second example demonstrates how both visual presentation and statis- 
tical tests can be open to mis-interpretation. Plotted against geographical 
distance, the NO 3 validation data of Summers et al. (1991), their fig. 10c, 
looks a reasonably good fit. However, an observed vs. predicted plot as 
shown in our Fig. 3 (ignoring the initial 'pre-discharge' calibrated point) 
reveals consistent over-prediction. The statistics applied by Summers et al. 
(1991), namely individual t-tests of slope against one and intercept against 
zero, were non-significant [for data in Fig. 3, b = 0.98 + 0.16 (standard 
error), a = -0 .22  + 0.43]. However, significant bias is indicated by alter- 
nate statistics, namely a simultaneous test of the above conditions (F2, 5 = 
11.1; P = 0.017), and by a t-test for paired observations ( t  6 = 5.1; P --= 0 .004) .  

Also, the modelling efficiency is reasonably low at 0.35. 
Our third example uses the data from 63 pine plantation plots of Daniels 

and Burkhard, as listed in Reynolds et al. (1981). These authors used 
comparatively complex statistical techniques to find previously undetected 
deficiencies in the model's predictions. For our analysis, we initially view 
an observed vs. predicted plot, with age classes (as grouped by Reynolds et 
al., 1981) being plotted as different symbols (Fig. 4). To the discerning eye, 
it is apparent that the model is over-predicting at younger ages and 
under-predicting at older ages. 
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Fig. 4. Pine plantation yields (m3/ha) from Reynolds et al. (1981), by tree age. 

TABLE 2 

Validation measures for data of Reynolds et al. (1981), both overall and by age class 

Age class (years) Combined 11-14 15-18 19-24 > 24 

Number of observations 63 16 18 13 16 
Mean (simulated values) 171 80 114 215 289 
Mean (observed values) 180 67 101 211 356 
Paired t-test -1.3 ns 3.1 ** 2.6 * 0.4 ns -3.5 ** 
Linear regression 

R 2 0.83 0.41 0.75 0.32 0.16 
Slope 1.24 0.66 0.93 0.53 0.62 
Intercept - 31.6 13.4 - 5.6 96.0 176.7 
Bias a 6.3 * 5.6 * 3.1 n~ 1.8 ns 5.8 * 

Modelling efficiency 0.80 - 0.12 0.64 0.07 - 0.64 

a Simultaneous F-statistic for slope = 1 and intercept = 0. 
ns not significant; * P < 0.05; ** P < 0.01. 

This  op in ion  is con f i rmed  by the  statistics p r e s e n t e d  in Tab le  2 - - o v e r a l l ,  

the  t- test  is non-s ignif icant ,  and  b o t h  E F  and  R 2 are  qui te  good.  T h e  

F- tes t  for  bias is, however ,  s ignif icant  ( P  < 0.01), and  the s lope g rea t e r  than  
one.  Cons ide r ing  the  individual  ages, the t-tests show significant  differ-  
ences  in th ree  ou t  o f  the  four  classes, and  E F  apprec iab ly  be t t e r  than  zero  

in only  one  case. T a k e n  overall ,  these  results  indica te  a r ea sonab le  mode l  

tha t  still conta ins  u n a c c e p t a b l e  biases, as was also conc luded  by Reyno lds  
et  al. (1981). 

CONCLUSIONS 

D u e  to the complexi t ies  o f  mode l s  and  da ta  types, the re  is no  set 
c omb ina t i on  o f  va l ida t ion  t echn iques  which is appl icable  across all rood- 
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elling situations. In most cases, a number  of validation measures  are 
necessary to appreciate ' the whole picture'.  Of  the available methods,  the 
simpler ones in many cases are both adequate  and preferable.  

Whilst t ime-series plots can be informative, a bet ter  diagnostic alterna- 
tive is to plot the observed vs. predicted data, with the line y = 33 marked.  
For  deviance measures,  mean  absolute error  or root mean  square error  are 
r ecommended  as more  stable statistics than mean  absolute percentage 
error. The parametr ic  t-test of  means,  and linear regression analysis of the 
observed vs. predicted plot (including simultaneous F-test for bias) are the 
most useful general  statistical methods.  The modelling efficiency, a statistic 
based on the co-efficient of  determination,  directly compares predictions 
with real-world observations, and is proposed as an important  overall 
measure  of fit. 
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