
C/C++ Atomics Application Binary Interface
Standard for the Arm® 64-bit Architecture

2024Q1

Date of Issue: 5th April 2024

1 Preamble

1.1 Abstract
This document describes the C/C++ Atomics Application Binary Interface for the Arm 64-bit architecture.
This document concerns the valid Mappings from C/C++ Atomic Operations to sequences of A64
instructions. For matters concerning the memory model, please consult §B2 of the Arm Architecture
Reference Manual [ARMARM]. We focus only on a subset of the C11 atomic operations at the time of
writing.

1.2 Keywords
C++, C, Application Binary Interface, ABI, AArch64, C++ ABI, generic C++ ABI, Atomics, Concurrency

1.3 Latest release and defects report
Please check C/C++ Atomics Application Binary Interface Standard for the Arm 64-bit Architecture for the
latest release of this document.

Please report defects in this specification to the issue tracker page on GitHub.

2

Copyright © 2024, Arm Limited and its affiliates. All rights reserved.

https://developer.arm.com/documentation/ddi0487/latest
https://github.com/ARM-software/abi-aa
https://github.com/ARM-software/abi-aa/issues

1.4 Acknowledgement
This document came about in the process of Luke Geeson’s PhD on testing the compilation of concurrent
C/C++ with assistance from Wilco Dijkstra from Arm's Compiler Teams.

1.5 Licence
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to
Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Grant of Patent License. Subject to the terms and conditions of this license (both the Public License and
this Patent License), each Licensor hereby grants to You a perpetual, worldwide, non-exclusive,
no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Licensed Material, where such license applies
only to those patent claims licensable by such Licensor that are necessarily infringed by their
contribution(s) alone or by combination of their contribution(s) with the Licensed Material to which such
contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim
or counterclaim in a lawsuit) alleging that the Licensed Material or a contribution incorporated within the
Licensed Material constitutes direct or contributory patent infringement, then any licenses granted to You
under this license for that Licensed Material shall terminate as of the date such litigation is filed.

1.6 About the license
As identified more fully in the Licence section, this project is licensed under CC-BY-SA-4.0 along with an
additional patent license. The language in the additional patent license is largely identical to that in
Apache-2.0 (specifically, Section 3 of Apache-2.0 as reflected at
https://www.apache.org/licenses/LICENSE-2.0) with two exceptions.

First, several changes were made related to the defined terms so as to reflect the fact that such defined
terms need to align with the terminology in CC-BY-SA-4.0 rather than Apache-2.0 (e.g., changing “Work”
to “Licensed Material”).

Second, the defensive termination clause was changed such that the scope of defensive termination
applies to “any licenses granted to You” (rather than “any patent licenses granted to You”). This change is
intended to help maintain a healthy ecosystem by providing additional protection to the community
against patent litigation claims.

1.7 Contributions
Contributions to this project are licensed under an inbound=outbound model such that any such
contributions are licensed by the contributor under the same terms as those in the Licence section.

1.8 Trademark notice
The text of and illustrations in this document are licensed by Arm under a Creative Commons
Attribution–Share Alike 4.0 International license ("CC-BY-SA-4.0”), with an additional clause on patents.
The Arm trademarks featured here are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Please visit
https://www.arm.com/company/policies/trademarks for more information about Arm’s trademarks.

1.9 Copyright
Copyright (c) 2024, Arm Limited and its affiliates. All rights reserved.

3

Copyright © 2024, Arm Limited and its affiliates. All rights reserved.

http://creativecommons.org/licenses/by-sa/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://www.arm.com/company/policies/trademarks

Contents
1 Preamble 2

1.1 Abstract 2

1.2 Keywords 2

1.3 Latest release and defects report 2

1.4 Acknowledgement 3

1.5 Licence 3

1.6 About the license 3

1.7 Contributions 3

1.8 Trademark notice 3

1.9 Copyright 3

2 About this document 5

2.1 Change control 5

2.1.1 Current status and anticipated changes 5

2.2 Change History 5

2.3 References 5

2.4 Terms and Abbreviations 6

3 Overview 8

4 Mappings from Atomic Operations to Assembly Sequences 8

4.1 Notational Conventions 8

4.2 Mappings for 32-bit types 9

4.3 Mappings for 8-bit types 11

4.4 Mappings for 16-bit types 11

4.5 Mappings for 64-bit types 11

4.6 Mappings for 128-bit types 12

4.7 Special Cases 18

4.7.1 Destination Register Should Not Be Zero Register for Read-Modify-Writes 18

4.7.2 Const-Qualified 128-bit Atomic Loads Should Be Marked Mutable 18

5 Declarative statement of Mappings compatibility 19

5.1 Definition of ABI-Compatibility for Atomic Operations 19

6 Appendix: Mix Testing 19

6.1 The Mix Testing Process 19

7 Appendix: Read-Modify-Write Destination Register Semantics 20

4

Copyright © 2024, Arm Limited and its affiliates. All rights reserved.

2 About this document

2.1 Change control

2.1.1 Current status and anticipated changes
The following support level definitions are used by the Arm Atomics ABI specifications:

Release

Arm considers this specification to have enough implementations, which have received sufficient
testing, to verify that it is correct. The details of these criteria are dependent on the scale and
complexity of the change over previous versions: small, simple changes might only require one
implementation, but more complex changes require multiple independent implementations, which
have been rigorously tested for cross-compatibility. Arm anticipates that future changes to this
specification will be limited to typographical corrections, clarifications and compatible extensions.

Beta

Arm considers this specification to be complete, but existing implementations do not meet the
requirements for confidence in its release quality. Arm may need to make incompatible changes if
issues emerge from its implementation.

Alpha

The content of this specification is a draft, and Arm considers the likelihood of future incompatible
changes to be significant.

All content in this document is at the Alpha quality level.

2.2 Change History
If there is no entry in the change history table for a release, there are no changes to the content of the
document for that release.

Issue Date Change

00alp
0

5th April 2024. Alpha release.

2.3 References
This document refers to, or is referred to by, the following documents.

Ref External reference or URL Title

ARMA
RM

DDI 0487 Arm Architecture Reference Manual Armv8 for
Armv8-A architecture profile

CSTD ISO/IEC 9899:2018 International Standard ISO/IEC 9899:2018 –
Programming languages C.

AAELF
64

ELF for the Arm 64-bit Architecture
(AArch64)

ELF for the Arm 64-bit Architecture (AArch64)

PAPER CGO paper Compiler Testing with Relaxed Memory Models

Note: At the time of writing C23 is not released, as such ISO C17 is considered the latest published
document.

5

Copyright © 2024, Arm Limited and its affiliates. All rights reserved.

https://developer.arm.com/documentation/ddi0487/latest
https://developer.arm.com/documentation/ddi0487/latest
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf
https://github.com/ARM-software/abi-aa/releases
https://github.com/ARM-software/abi-aa/releases
https://doi.org/10.1109/CGO57630.2024.10444836

2.4 Terms and Abbreviations
The C/C++ Atomics ABI for the Arm 64-bit Architecture uses the following terms and abbreviations.

A64

The instruction set available when in AArch64 state.

AArch64

The 64-bit general-purpose register width state of the Armv8 architecture.

ABI

Application Binary Interface:

1. The specifications to which an executable must conform in order to execute in a specific
execution environment. For example, the Linux ABI for the Arm Architecture.

2. A particular aspect of the specifications to which independently produced relocatable files must
conform in order to be statically linkable and executable. For example, the C++ ABI for the Arm
64-bit Architecture [CPPABI64], or ELF for the Arm Architecture [AAELF64].

Arm-based

... based on the Arm architecture ...

Thread of Execution

A unit of computation that executes one or more Atomic Operations, Synchronization Operations or
other C language statements. The Arm Architecture Reference Manual [ARMARM] calls these
Observers. Typically a thread is defined as a function (e.g. a POSIX thread) although we do not limit
threads to such implementations.

Atomic Operation

A C/C++ operation on a Shared-Memory Location. Typically either a load, store, exchange, compare,
or arithmetic instruction (such as a fetch and add operation). Atomics are used to define higher level
primitives including locks and concurrent queues. ISO C defines the range of supported atomic
operations and the atomic type. Operations on atomic-qualified data are guaranteed not to be
interrupted by another Thread of Execution.

Concurrent Program

A C or C++ program that consists of one or more Threads of Execution. Each Thread of Execution
must communicate with other threads in the Concurrent Program through Shared-Memory Locations,
using both Atomic Operations and Non-Atomic Operations (Operations that lack the atomic qualifier)
to be deemed concurrent. This document focuses on compiling such programs for Arm-based
machines that run the A64 instruction set.

Synchronization Operation

The order that atomic operations are executed by each Thread of Execution may not be the same as
the order they are written in the program. Synchronization Operations are statements that constrain
the order of accesses made to Shared-Memory Locations by each thread. Synchronization Operations
include Thread Fences.

Shared-Memory Location

A memory location that can be accessed by any Thread of Execution in the program.

Memory Order Parameter

Describes a constraint on an Atomic Operation or Synchronization Operation. Memory Order
describes how memory accesses made by Atomic Operations may be ordered with respect to other
Atomic Operations and Synchronization Operations. ISO C defines a memory_order enum type to
capture the possible memory order parameters.

Thread Fence

A Thread Fence is a Synchronization Operation that constrains the order of Accesses made by Atomic
Operations on a given Thread of Execution. Fences are equipped with a Memory Order Parameter that
specifies which kinds of accesses may be reordered before or after the fence. ISO C defines the
atomic_thread_fence to synchronize the order of accesses made by atomic operations on _Atomic
qualified data.

Assembly Sequence

6

Copyright © 2024, Arm Limited and its affiliates. All rights reserved.

https://github.com/ARM-software/abi-aa/releases
https://github.com/ARM-software/abi-aa/releases
https://developer.arm.com/documentation/ddi0487/latest

A sequence of A64 instructions, optionally including Atomic Instructions.

Mapping

A Mapping takes an Atomic Operation and Compiler Profile as input, producing an Assembly
Sequence as output.

Compiler Profile

A Compiler implementation and command-line flags or attributes that use Mappings.

More specific terminology is defined when it is first used.

7

Copyright © 2024, Arm Limited and its affiliates. All rights reserved.

3 Overview
The C/C++ Atomics ABI for the Arm 64-bit architecture (AABI64) comprises the following
sub-components.

• The Mappings from Atomic Operations to Assembly Sequences, which defines the Mappings from
C/C++ atomic operations to sto one of more Assembly Sequences that are interoperable with
respect to each other.

• A Declarative statement of Mappings compatibility, as far as non-exhaustive testing can validate,
that the aforementioned Mappings can be used together. That is, there is no tested combination of
Mappings that induces unexpected program behaviour when a compiled program that uses atomics
is executed on a multi-core Arm-based machine.

4 Mappings from Atomic Operations to
Assembly Sequences
We now describe the compatible Mappings for C/C++ Atomic Operations and Assembly Sequences. Since
there is a large number of ways these Mappings may be combined, we break down the tables by the
width of the access, and list compatible Assembly Sequences for each Atomic Operation.

This is an open ABI, we encourage improvements to this specification to be submitted to the issue tracker
page on GitHub.

These Mappings are not exhaustive, but aim to cover the atomics we have tested. Please request more
atomics using the issue tracker.

4.1 Notational Conventions
To reduce repetition, we use the following notational conventions

Memory Order Parameter Notation

memory_order_relaxed relaxed

memory_order_acquire acq

memory_order_release rel

memory_order_acq_rel acq_rel

memory_order_seq_cst sc

In what follows loc refers to the location, val refers to a value parameter.

Arbitrary registers may be used in the Assembly Sequences that may change in compiler
implementations. Cases where arbitrary registers may not be used are covered in the Special Cases
section.

Further, in what follows there may be multiple valid Mappings from Atomic Operation to Assembly
Sequence, as made available by a given architecture extension. In this case we split the rows of the table
to represent multiple options.

Atomic Operation Assembly Sequence

atomic_store_explicit(loc,val,relaxed) ARCH1 option A

ARCH2 option B

8

Copyright © 2024, Arm Limited and its affiliates. All rights reserved.

https://github.com/ARM-software/abi-aa/issues
https://github.com/ARM-software/abi-aa/issues

Where ARCH is for example BASE (armv8), LSE, LSE2, LSE128, RCPC, or LRCPC3. ARCH describes the
required extension, with BASE meaning Armv8-A with no extensions and LSE is shorthand for FEAT_LSE
(likewise for the other extensions).

Lastly, all operations are in a shorthand form:

Atomic Operation ShortHand Atomic Operation

atomic_store_explicit(...) store(...)

atomic_load_explicit(...) load(...)

atomic_thread_fence(...) fence(...)

atomic_exchange_explicit(...) exchange(...)

atomic_fetch_add_explicit(...) fetch_add(...)

atomic_fetch_sub_explicit(...) fetch_sub(...)

atomic_fetch_or_explicit(...) fetch_or(...)

atomic_fetch_xor_explicit(...) fetch_xor(...)

atomic_fetch_and_explicit(...) fetch_and(...)

4.2 Mappings for 32-bit types
In what follows, register X1 contains the location loc and W2 contains val. The result is returned in W0.

Note

* Using WZR or XZR for the destination register is invalid (Section 4.7).

Atomic Operation Assembly Sequence

store(loc,val,relaxed) STR W2, [X1]

store(loc,val,rel) store(loc,val,sc) STLR W2, [X1]

load(loc,relaxed) LDR W2, [X1]

load(loc,acq) BASE LDAR W2, [X1]

RCPC LDAPR W2, [X1]

load(loc,sc) LDAR W2, [X1]

fence(relaxed) NOP

fence(acq) DMB ISHLD

fence(rel) fence(acq_rel) fence(sc) DMB ISH

exchange(loc,val,relaxed) BASE loop:

LDXR W0, [X1]
STXR W3, W2, [X1]
CBNZ W3, loop

LSE SWP W2, W0, [X1] *

9

Copyright © 2024, Arm Limited and its affiliates. All rights reserved.

Atomic Operation Assembly Sequence

exchange(loc,val,acq) BASE loop:

LDAXR W0, [X1]
STXR W3, W2, [X1]
CBNZ W3, loop

LSE SWPA W2, W0, [X1] *

exchange(loc,val,rel) BASE loop:

LDXR W0, [X1]
STLXR W3, W2, [X1]
CBNZ W3, loop

LSE SWPL W2, W0, [X1] *

exchange(loc,val,acq_rel)
exchange(loc,val,sc)

BASE loop:

LDAXR W0, [X1]
STLXR W3, W2, [X1]
CBNZ W3, loop

LSE SWPAL W2, W0, [X1] *

fetch_add(loc,val,relaxed) BASE loop:

LDXR W0, [X1]
ADD W2, W2, W0
STXR W3, W2, [X1]
CBNZ W3, loop

LSE LDADD W2, W0, [X1] *

fetch_add(loc,val,acq) BASE loop:

LDAXR W0, [X1]
ADD W2, W2, W0
STXR W3, W2, [X1]
CBNZ W3, loop

LSE LDADDA W2, W0, [X1] *

fetch_add(loc,val,rel) BASE loop:

LDXR W0, [X1]
ADD W2, W2, W0
STLXR W3, W2, [X1]
CBNZ W3, loop

LSE LDADDL W2, W0, [X1] *

fetch_add(loc,val,acq_rel)
fetch_add(loc,val,sc)

BASE loop:

LDXAR W0, [X1]
ADD W2, W2, W0
STLXR W3, W2, [X1]
CBNZ W3, loop

LSE LDADDAL W2, W0, [X1] *

10

Copyright © 2024, Arm Limited and its affiliates. All rights reserved.

Atomic Operation Assembly Sequence

compare_exchange_strong(

loc,&exp,val,relaxed,
relaxed)

BASE loop:

LDXR W0, [X1]
CMP W0, W4
B.NE fail
STXR W3, W2, [X1]
CBNZ W3, loop

fail:

LSE CAS W0, W2, [X1] *

compare_exchange_strong(

loc,&exp,val,acq,acq)

BASE loop:

LDAXR W0, [X1]
CMP W0, W4
B.NE fail
STXR W3, W2, [X1]
CBNZ W3, loop

fail:

LSE CASA W0, W2, [X1] *

compare_exchange_strong(

loc,&exp,val,rel,rel)

BASE loop:

LDXR W0, [X1]
CMP W0, W4
B.NE fail
STLXR W3, W2, [X1]
CBNZ W3, loop

fail:

LSE CASL W0, W2, [X1] *

compare_exchange_strong(

loc,&exp,val,acq_rel,acq)

compare_exchange_strong(

loc,&exp,val,sc,sc)

BASE loop:

LDAXR W0, [X1]
CMP W0, W4
B.NE fail
STLXR W3, W2, [X1]
CBNZ W3, loop

fail:

LSE CASAL W0, W2, [X1] *

4.3 Mappings for 8-bit types
The Mappings for 8-bit types are the same as 32-bit types except they use the B variants of instructions.

4.4 Mappings for 16-bit types
The Mappings for 16-bit types are the same as 32-bit types except they use the H variants of instructions.

4.5 Mappings for 64-bit types
The Msappings for 64-bit types are the same as 32-bit types except the registers used are X-registers.

11

Copyright © 2024, Arm Limited and its affiliates. All rights reserved.

4.6 Mappings for 128-bit types
Since the access width of 128-bit types is double that of the 64-bit register width, the following Mappings
use pair instructions, which require their own table.

In what follows, register X4 contains the location loc, X2 and X3 contain the input value. The result is
returned in X0 and X1.

Atomic Operation Assembly Sequence

store(loc,val,relaxed) BASE loop:

LDXP XZR, X1, [X4]
STXP W5, X2, X3, [X4]
CBNZ W5, loop

LSE LDP X0, X1, [X4]

loop:

MOV X6, X0
MOV X7, X1
CASP X0, X1, X2, X3, [X4]
CMP X0, X6
CCMP X1, X7, 0, EQ
B.NE loop

LSE2 STP x2, X3, [X4]

store(loc,val,rel) BASE loop:

LDXP XZR, X1, [X4]
STLXP W5, X2, X3, [X4]
CBNZ W5, loop

LSE LDP X0, X1, [X4]

loop:

MOV X6, X0
MOV X7, X1
CASPL X0, X1, X2, X3, [X4]
CMP X0, X6
CCMP X1, X7, 0, EQ
B.NE loop

LSE2 DMB ISH
STP X2, X3, [X4]

LRCPC3 STILP X2, X3, [X4]

12

Copyright © 2024, Arm Limited and its affiliates. All rights reserved.

Atomic Operation Assembly Sequence

store(loc,val,sc) BASE loop:

LDXP XZR, X1, [X4]
STLXP W5, X2, X3, [X4]
CBNZ W5, loop

LSE LDP X0, X1, [X4]

loop:

MOV X6, X0
MOV X7, X1
CASPL X0, X1, X2, X3, [X4]
CMP X0, X6
CCMP X1, X7, 0, EQ
B.NE loop

LSE2 DMB ISH
STP X2, X3, [X4]
DMB ISH

LRCPC3 STILP X2, X3, [X4]

load(loc,relaxed) BASE loop:

LDXP X0, X1, [X4]
STXP W5, X0, X1, [X4]
CBNZ W5, loop

LSE CASP X0, X1, X0, X1, [X4]

LSE2 LDP X0, X1, [X4]

load(loc,acq) BASE loop:

LDAXP X0, X1, [X4]
STXP W5, X0, X1, [X4]
CBNZ W5, loop

LSE CASPA X0, X1, X0, X1, [X4]

LSE2 LDP X0, X1, [X4]
DMB ISHLD

LRCPC3 LDIAPP X0, X1, [X4]

load(loc,sc) BASE loop:

LDAXP X0, X1, [X4]
STXP W5, X0, X1, [X4]
CBNZ W5, loop

LSE CASPA X0, X1, X0, X1, [X4]

LSE2 LDAR X5, [X4]
LDP X0, X1, [X4]
DMB ISHLD

LRCPC3 LDAR X5, [X4]
LDIAPP X0, X1, [X4]

13

Copyright © 2024, Arm Limited and its affiliates. All rights reserved.

Atomic Operation Assembly Sequence

exchange(loc,val,relaxed) BASE loop:

LDXP X0, X1, [X4]
STXP W5, X2, X3, [X4]
CBNZ W5, loop

LSE LDP X0, X1, [X4]

loop:

MOV X6, X0
MOV X7, X1
CASP X0, X1, X2, X3, [X4]
CMP X0, X6
CCMP X1, X7, 0, EQ
B.NE loop

LSE128 MOV X0, X2
MOV X1, X3
SWPP X0, X1, [X4]

exchange(loc,val,acq) BASE loop:

LDAXP X0, X1, [X4]
STXP W5, X2, X3, [X4]
CBNZ W5, loop

LSE LDP X0, X1, [X4]

loop:

MOV X6, X0
MOV X7, X1
CASPA X0, X1, X2, X3, [X4]
CMP X0, X6
CCMP X1, X7, 0, EQ
B.NE loop

LSE128 MOV X0, X2
MOV X1, X3
SWPPA X0, X1, [X4]

exchange(loc,val,rel) BASE loop:

LDXP X0, X1, [X4]
STLXP W5, X2, X3, [X4]
CBNZ W5, loop

LSE LDP X0, X1, [X4]

loop:

MOV X6, X0
MOV X7, X1
CASPL X0, X1, X2, X3, [X4]
CMP X0, X6
CCMP X1, X7, 0, EQ
B.NE loop

LSE128 MOV X0, X2
MOV X1, X3
SWPPL X0, X1, [X4]

14

Copyright © 2024, Arm Limited and its affiliates. All rights reserved.

Atomic Operation Assembly Sequence

exchange(loc,val,acq_rel)
exchange(loc,val,sc)

BASE loop:

LDAXP X0, X1, [X4]
STLXP W5, X2, X3, [X4]
CBNZ W5, loop

LSE LDP X0, X1, [X4]

loop:

MOV X6, X0
MOV X7, X1
CASPAL X0, X1, X2, X3, [X4]
CMP X0, X6
CCMP X1, X7, 0, EQ
B.NE loop

LSE128 MOV X0, X2
MOV X1, X3
SWPPAL X0, X1, [X4]

fetch_add(loc,val,relaxed) BASE loop:

LDXP X0, X1, [X4]
ADDS X0, X0, X2
ADC X1, X1, X3
STXP W5, X2, X3, [X4]
CBNZ W5, loop

LSE LDP X0, X1, [X4]

loop:

MOV X6, X0
MOV X7, X1
ADDS X8, X0, X2
ADC X9, X1, X3
CASP X0, X1, X8, X9, [X4]
CMP X0, X6
CCMP X1, X7, 0, EQ
B.NE loop

fetch_add(loc,val,acq) BASE loop:

LDAXP X0, X1, [X4]
ADDS X0, X0, X2
ADC X1, X1, X3
STXP W5, X2, X3, [X4]
CBNZ W5, loop

LSE LDP X0, X1, [X4]

loop:

MOV X6, X0
MOV X7, X1
ADDS X8, X0, X2
ADC X9, X1, X3
CASPA X0, X1, X8, X9, [X4]
CMP X0, X6
CCMP X1, X7, 0, EQ
B.NE loop

15

Copyright © 2024, Arm Limited and its affiliates. All rights reserved.

Atomic Operation Assembly Sequence

fetch_add(loc,val,rel) BASE loop:

LDXP X0, X1, [X4]
ADDS X0, X0, X2
ADC X1, X1, X3
STLXP W5, X2, X3, [X4]
CBNZ W5, loop

LSE LDP X0, X1, [X4]

loop:

MOV X6, X0
MOV X7, X1
ADDS X8, X0, X2
ADC X9, X1, X3
CASPL X0, X1, X8, X9, [X4]
CMP X0, X6
CCMP X1, X7, 0, EQ
B.NE loop

fetch_add(loc,val,acq_rel)
fetch_add(loc,val,sc)

BASE loop:

LDAXP X0, X1, [X4]
ADDS X0, X0, X2
ADC X1, X1, X3
STXLP W5, X2, X3, [X4]
CBNZ W5, loop

LSE LDP X0, X1, [X4]

loop:

MOV X6, X0
MOV X7, X1
ADDS X8, X0, X2
ADC X9, X1, X3
CASPAL X0, X1, X8, X9, [X4]
CMP X0, X6
CCMP X1, X7, 0, EQ
B.NE loop

fetch_or(loc,val,relaxed) LSE128 MOV X0, X2
MOV X1, X3
LDSETP X0, X1, [X4]

fetch_or(loc,val,acq) LSE128 MOV X0, X2
MOV X1, X3
LDSETPA X0, X1, [X4]

fetch_or(loc,val,rel) LSE128 MOV X0, X2
MOV X1, X3
LDSETPL X0, X1, [X4]

fetch_or(loc,val,acq_rel)
fetch_or(loc,val,sc)

LSE128 MOV X0, X2
MOV X1, X3
LDSETPAL X0, X1, [X4]

fetch_and(loc,val,relaxed) LSE128 MVN X0, X2
MVN X1, X3
LDCLRP X0, X1, [X4]

16

Copyright © 2024, Arm Limited and its affiliates. All rights reserved.

Atomic Operation Assembly Sequence

fetch_and(loc,val,acq) LSE128 MVN X0, X2
MVN X1, X3
LDCLRPA X0, X1, [X4]

fetch_and(loc,val,rel) LSE128 MVN X0, X2
MVN X1, X3
LDCLRPL X0, X1, [X4]

fetch_and(loc,val,acq_rel)
fetch_and(loc,val,sc)

LSE128 MVN X0, X2
MVN X1, X3
LDCLRPAL X0, X1, [X4]

compare_exchange_strong(

loc,&exp,val,relaxed,
relaxed)

BASE loop:

LDXP X6, x7, [X4]
CMP X6, X0
CCMP X7, X1, 0, EQ
CSEL X8, X2, X6, EQ
CSEL X9, X3, X7, EQ
STXP W5, X8, X9, [X4]
CBNZ W5, loop

MOV X0, X6
MOV X1, X7

LSE CASP X0, X1, X2, X3, [X4]

compare_exchange_strong(

loc,&exp,val,acq, acq)

BASE loop:

LDAXP X6, x7, [X4]
CMP X6, X0
CCMP X7, X1, 0, EQ
CSEL X8, X2, X6, EQ
CSEL X9, X3, X7, EQ
STXP W5, X8, X9, [X4]
CBNZ W5, loop

MOV X0, X6
MOV X1, X7

LSE CASPA X0, X1, X2, X3, [X4]

compare_exchange_strong(

loc,&exp,val,rel,rel)

BASE loop:

LDXP X6, x7, [X4]
CMP X6, X0
CCMP X7, X1, 0, EQ
CSEL X8, X2, X6, EQ
CSEL X9, X3, X7, EQ
STLXP W5, X8, X9, [X4]
CBNZ W5, loop

MOV X0, X6
MOV X1, X7

LSE CASPL X0, X1, X2, X3, [X4]

17

Copyright © 2024, Arm Limited and its affiliates. All rights reserved.

Atomic Operation Assembly Sequence

compare_exchange_strong(

loc,&exp,val,acq_rel,acq)

compare_exchange_strong(

loc,&exp,val,sc,sc)

BASE loop:

LDAXP X6, x7, [X4]
CMP X6, X0
CCMP X7, X1, 0, EQ
CSEL X8, X2, X6, EQ
CSEL X9, X3, X7, EQ
STLXP W5, X8, X9, [X4]
CBNZ W5, loop

MOV X0, X6
MOV X1, X7

LSE CASPAL X0, X1, X2, X3, [X4]

We do not list other variants of fetch_<op> since their Mappings should be the same (modulo
implementations of <op> that are not in scope of this document). Precisely, implementations that use
loops should use the instructions that load or store from memory with the relevant memory order, and
the appropriate <op> Assembly Sequence inside the loop. Exceptions, where Assembly Sequences exist,
are stated (for instance fetch_or can be implemented using LDSETP when the LSE128 extension is
enabled).

4.7 Special Cases
There are special cases in the Mappings presented above, these must be handled in order to prevent
unexpected outcomes of the compiled program. The special cases are identified below.

• Re-Ordering of Read-Modify-Write Effects and Acquire Fence

• Const-Qualified 128-bit Atomic Loads

4.7.1 Destination Register Should Not Be Zero Register for
Read-Modify-Writes
A compiler is not permitted to rewrite the destination register to be the zero register for atomic operations
that make use of SWP and LD<OP> Assembly instructions. These include but are not limited to:

Atomic Operation Assembly Sequence

exchange(loc,val,sc) MOV W4, #val; SWP W4, W10, [X1]

fetch_add(loc,val,sc) MOV W4, #val; LDADD W4, W10, [X1]

Where X1 contains the address of loc.

We annotate Mappings affected with * in section 4.2.

Please refer to Appendix: Read-Modify-Write Destination Register Semantics for information on why this
example must be documented.

4.7.2 Const-Qualified 128-bit Atomic Loads Should Be Marked Mutable
Const-qualified data containing 128-bit atomic types should not be placed in read-only memory (such as
the .rodata section).

Before LSE2, the only way to implement a single-copy 128-bit atomic load is by using a
Read-Modify-Write sequence. The write is not visible to software if the memory is writeable. Compilers
and runtimes should use the LSE2/LRCPC3 sequence when available.

18

Copyright © 2024, Arm Limited and its affiliates. All rights reserved.

5 Declarative statement of Mappings
compatibility
To ensure that the above Mappings are ABI-compatible we tested the compilation of Concurrent
Programs, where each Atomic Operation is compiled to one of the aforementioned Mappings. We test if
there is a compiled program that exhibits an outcome of execution according to the AArch64 Memory
Model contained in §B2 of the Arm Architecture Reference Manual [ARMARM] that is not an outcome of
execution of the source program under the ISO C model. In this section we define the process by which
we test compatibility. Please refer to Appendix: Mix Testing for information on how ABI-compatibility is
tested.

5.1 Definition of ABI-Compatibility for Atomic Operations
A compiler that implements the above set of Mappings is ABI-Compatible with respect to other compilers
that implement the Mappings, if Mix Testing their code generation finds no Compiler Bugs.

We impose some constraints on this definition:

• This is not a correctness guarantee, but rather a statement backed up by bounded testing. C/C++
Atomics ABI-compatibility is thus tested for the Mappings above by generating C/C++ Concurrent
Programs that permute combinations of Atomic Operations on each Thread of Execution. We bound
our test size between 2 and 5 Threads of Execution, where each Thread has at least 1 Atomic
Operation or Synchronization Operation and at most 5 Atomic Operations or Synchronization
Operations. We do not make any statement about the ABI-Compatibility of Concurrent Programs
outside these bounds.

• We test Concurrent Programs with a fixed initial state, loop unroll factor (equal to 1 loop unroll), and
function calls or recursion.

• The above Mappings are not exhaustive, we recommend that Arm's partners submit requests for
other Mappings to the ABI team using the issue tracker page on GitHub.

• This document makes no statement about the ABI-Compatibility of optimised Concurrent Programs,
nor does a statement concerning the performance of compiled programs under the above Mappings
when executed on a given Arm-based machine.

• This document makes no statement about the ABI-Compatibility of compilers that implement
Mappings other than what is stated in this document.

6 Appendix: Mix Testing
The status of this appendix is informative.

6.1 The Mix Testing Process
We test for Compiler bugs, a Compiler Bug is defined as an outcome of a compiled program execution
(under the AArch64 Memory Model contained in §B2 of the Arm Architecture Reference Manual
[ARMARM]) that is not an outcome of execution of the source Concurrent Program (under the ISO C
memory model). Consider the hypothetical example where a source Concurrent Program finishes
execution in one of three possible outcomes (a reference for this notation is found here [PAPER]):

{ thread_0:r0=0, thread_1:r0=1 }
{ thread_0:r0=1, thread_1:r0=0 }
{ thread_0:r0=1, thread_1:r0=1 }

19

Copyright © 2024, Arm Limited and its affiliates. All rights reserved.

https://developer.arm.com/documentation/ddi0487/latest
https://github.com/ARM-software/abi-aa/issues
https://developer.arm.com/documentation/ddi0487/latest
https://doi.org/10.1109/CGO57630.2024.10444836

and one possible compiled program outcome has the following according to the AArch64 Memory Model
contained in §B2 of the Arm Architecture Reference Manual [ARMARM]:

{ thread_0:X3=0, thread_1:X3=0 } <--- Forbidden by source model, Compiler Bug!
{ thread_0:X3=0, thread_1:X3=1 }
{ thread_0:X3=1, thread_1:X3=0 }
{ thread_0:X3=1, thread_1:X3=1 }

By comparing X3 and the local variable r0 of the original Concurrent Program in this example we see
there is one additional outcome of executing the compiled program that is not an outcome of executing
the source program (under the respective models). This suggests the Mappings under question are
incompatible, and a compiler that implements them exhibits a Compiler Bug. To ensure compatibility we
therefore test for the absence of such outcomes of the compiled programs when mixing all combinations
of the above Mappings. We define the Mix Testing process as follows:

1. Take an arbitrary Concurrent Program, when executed on the C/C++ memory model will produce
outcomes S.

2. Split out the individual Atomic Operations from the initial concurrent program into individual source
files.

3. Compile each individual source file containing an Atomic Operation using each Compiler Profile under
test that generates Assembly Sequences under a given Mapping.

4. Combine the Assembly Sequences from above into multiple possible Compiled Programs.

5. Compute the outcomes of each compiled program under the AArch64 Memory Model contained in
§B2 of the Arm Architecture Reference Manual [ARMARM]. Get a set of compiled program outcomes
C.

6. If any compiled program set of outcomes c in C exhibits a Compiler Bug (Check that c is a subset of
S) with then the given Mappings are not interoperable.

7 Appendix: Read-Modify-Write
Destination Register Semantics
We elaborate on why in the following example.

Consider the following Concurrent Program:

code-block:

// Shared-Memory Locations
_Atomic int* x;
_Atomic int* y;

// Memory Order Parameter
#define relaxed memory_order_relaxed
#define release memory_order_release
#define acquire memory_order_acquire

// Threads of Execution
void thread_0 () {
 atomic_store_explicit(x,1,relaxed);
 atomic_thread_fence(release);
 atomic_store_explicit(y,1,relaxed);
}

void thread_1 () {

20

Copyright © 2024, Arm Limited and its affiliates. All rights reserved.

https://developer.arm.com/documentation/ddi0487/latest
https://developer.arm.com/documentation/ddi0487/latest

 atomic_exchange_explicit(y,2,release);
 atomic_thread_fence(acquire);
 int r0 = atomic_load_explicit(x,relaxed);
}

Under ISO C, the above Concurrent Program finishes execution in one of three possible outcomes (a
reference for this notation is found here [PAPER]):

{ thread_1:r0=0; y=1; }
{ thread_1:r0=1; y=1; }
{ thread_1:r0=1; y=2; }

In this case the value read by the exchange on thread_1 is not used, and a compiler is free to remove
references to unused data. It is not legal according to this ABI for a compliant implementation piler to
translate the program into the following Assembly Sequences:

thread_0:
 MOV W9,#1
 STR W9,[X2]
 DMB ISH
 STR W3,[X4]

thread_1:
 MOV W9,#2
 SWP W9, WZR, [X2]
 DMB ISHLD
 LDR W3,[X4]

where thread_0:X2 contains the address of x, thread_0:X4 contains the address of y, and thread_1:X2
contains the address of y, thread_1:X4 contains the address of x.

The exchange Atomic Operation is compiled to a SWP Assembly Instruction, where its destination register
is the zero register WZR. The acquire fence on thread_1 is compiled to the DMB ISHLD Assembly
Instruction.

Executing the compiled program on an Arm-based machine from a fixed initial state (where x and y are 0)
produces one of the following outcomes, according to the AArch64 Memory Model contained in §B2 of the
Arm Architecture Reference Manual [ARMARM]:

{ thread_1:r0=0; [y]=1; }
{ thread_1:r0=0; [y]=2; } <-- Forbidden by source model, a bug!
{ thread_1:r0=1; [y]=1; }
{ thread_1:r0=1; [y]=2; }

By comparing W3 and the local variable r0 of the original Concurrent Program we see there is one
additional outcome of executing the compiled program that is not an outcome of executing the
Concurrent Program. This is due to the fact that according to the Arm Architecture Reference Manual
[ARMARM] instructions where the destination register is WZR or XZR, are not regarded as doing a read
for the purpose of a DMB LD barrier.

In this case the compiler introduces another outcome of Execution. To fix this issue, a compiler is not
permitted to rewrite the destination register to be the zero register in this case:

thread_0:
 MOV W9,#1
 STR W9,[X2]
 DMB ISH
 STR W3,[X4]

21

Copyright © 2024, Arm Limited and its affiliates. All rights reserved.

https://doi.org/10.1109/CGO57630.2024.10444836
https://developer.arm.com/documentation/ddi0487/latest
https://developer.arm.com/documentation/ddi0487/latest

thread_1:
 MOV W9,#2
 SWP W9, W10, [X2]
 DMB ISHLD
 LDR W3,[X4]

Executing the compiled program on an Arm-based machine from a fixed initial state (where x and y are 0)
produces one of the following outcomes, according to the AArch64 Memory Model contained in §B2 of the
Arm Architecture Reference Manual [ARMARM]:

{ thread_1:r0=0; [y]=1; }
{ thread_1:r0=1; [y]=1; }
{ thread_1:r0=1; [y]=2; }

As such the unexpected outcome has disappeared. There are multiple Mappings that exhibit this
behaviour, those affected make use of SWP and LD<OP> Assembly instructions.

22

Copyright © 2024, Arm Limited and its affiliates. All rights reserved.

https://developer.arm.com/documentation/ddi0487/latest

	1 Preamble
	1.1 Abstract
	1.2 Keywords
	1.3 Latest release and defects report
	1.4 Acknowledgement
	1.5 Licence
	1.6 About the license
	1.7 Contributions
	1.8 Trademark notice
	1.9 Copyright

	2 About this document
	2.1 Change control
	2.1.1 Current status and anticipated changes

	2.2 Change History
	2.3 References
	2.4 Terms and Abbreviations

	3 Overview
	4 Mappings from Atomic Operations to Assembly Sequences
	4.1 Notational Conventions
	4.2 Mappings for 32-bit types
	4.3 Mappings for 8-bit types
	4.4 Mappings for 16-bit types
	4.5 Mappings for 64-bit types
	4.6 Mappings for 128-bit types
	4.7 Special Cases
	4.7.1 Destination Register Should Not Be Zero Register for Read-Modify-Writes
	4.7.2 Const-Qualified 128-bit Atomic Loads Should Be Marked Mutable

	5 Declarative statement of Mappings compatibility
	5.1 Definition of ABI-Compatibility for Atomic Operations

	6 Appendix: Mix Testing
	6.1 The Mix Testing Process

	7 Appendix: Read-Modify-Write Destination Register Semantics

