

Requested addendum to the LAS 1.4 specification page 1 of 3

August 25th 2011

Requested Addendum for the LAS 1.4 specification

Hello,

the LAS format allows to store n "extra bytes" for every LAS point simply by specifying a point
size that is n bytes larger thank minimally required by the point type in the LAS header. These
extra bytes can be used to store user specific data. However, when doing so one has to
remember what those extra bytes mean as they do not get described anywhere and it is
impossible for other users to get any understanding what those “extra bytes” may mean (other
than with an accompanying “meta_data.txt” file).

I have an academic partner (OPALS at TU Vienna) that would like to switch their workflow to LAS
as they like the simplicity, efficiency, and wide-spead acceptance of the format. However, they
occasionally need to store “extra bytes” per point such as the laser pulse width of a return and
want those “extra bytes” documented.

Also, I am consulting with a joint working group of the German state land use and mapping
agencies. All state mapping agency workflows in Germany are currently ASCII based but they
consider switching to LAS. They are also interested in having the ability to occasional add
another field to LAS and have it described somehow so it can be shared across agencies and
softwares.

Hence, I am proposing to add an official, yet strictly optional, "Extra Bytes" LASF_Spec VLR to
the LAS 1.4 specification that describes those “extra bytes”. It does not interfere with the current
spec any more than the existing “Histogram” LASF_Spec or “Text area description” LASF_Spec.

As an added benefit, an "Extra Bytes" LASF_Spec is a first step towards a self-describing LAS
format. Adding the “Extra Bytes" LASF_Spec to LAS provides us a with a no-cost yet real-world
“test-run” for self-describing content in LAS that is completely risk-free as the added feature does
not affect anyone who does not use extra bytes. It being implemented and used via LAStools,
OPALS, (maybe libLAS?), ... will give us user feedback and insights for designing LAS 2.0.

Below I describe the proposed “Extra Bytes” LASF_Spec 4 along the current LASF_Spec 0 - 3.

Regards,

Martin.

Requested addendum to the LAS 1.4 specification page 2 of 3

Defined Variable Length Records:

Classification lookup: (optional)

User ID: LASF_Spec
Record ID: 0
Record Length after Header: 255 recs X 16 byte struct len (should it not be 256?)
struct CLASSIFICATION
{
 unsigned char ClassNumber;
 char Description[15];
};

Header lookup for flight-lines:
(Removed with Version 1.1 - Point Source ID in combination with Source ID provides the new
scheme for directly encoding flight line number. Thus variable Record ID 1 now becomes
reserved for future use.)

User ID: LASF_Spec
Record ID: 1

Histogram: (optional)

User ID: LASF_Spec
Record ID: 2

Text area description: (optional)

User ID: LASF_Spec
Record ID: 3

Extra Bytes: (optional)

User ID: LASF_Spec
Record ID: 4
Record Length after Header: n records x 92 bytes

This (optional) record is only needed for LAS files that contain user-defined “extra bytes” for every
LAS point. This happens whenever the point record size is set to a larger value than required by
the point type. For example, when a LAS file containing point type 1 has a point record size of 32
instead of 28 then there are 4 extra bytes per point. The “Extra Bytes” VLR contains a simple
description of type and meaning of these extra bytes so they can be useful to other people by -
optionally - exposing these “extra bytes” semantics via the LAS reader. The additional 4 bytes,
for example, could be a floating point value that specifies the pulse width. In this case there would
only be a single EXTRA_BYTES struct in the payload of this VLR.

The bit mask options specifies whether the min and max range of the value have been set (i.e.
are meaningful), whether the scale and/or offset values are set with which the extrabytes are then
to be multiplied and translated to reach the actual value, and whether there is a special value that
should be interpreted as no_data. By default all bits are zero which is supposed to mean that the
values in the corresponding fields are to be disregarded (and will probably be set to zero).
If the selected data_type is less than 8 bytes, the no_data_value, min, and max field should be
upcast into 8-byte storage. For any float these 8 bytes would be a double, for any unsigned char,
unsigned short, or unsigned long they would be an unsigned long long and for any char, short, or
long, they would be a long long.

Requested addendum to the LAS 1.4 specification page 3 of 3

struct EXTRA_BYTES
{
 unsigned char reserved[2]; // 2 bytes
 unsigned char data_type; // 1 byte
 unsigned char options; // 1 byte
 char name[16]; // 16 bytes
 anytype no_data_value; // 8 bytes
 anytype min; // 8 bytes
 anytype max; // 8 bytes
 double scale; // 8 bytes
 double offset; // 8 bytes
 char description[32]; // 32 bytes
}; // total of 92 bytes

Table 1 - Values for Extra Bytes Data Types
Value Meaning Size
0 unsigned char 1 byte
1 char 1 byte
2 unsigned short 2 bytes
3 short 2 bytes
4 unsigned long 4 bytes
5 long 4 bytes
6 unsigned long long 8 bytes
7 long long 8 bytes
8 float 4 bytes
9 double 8 bytes

Table 2 - Option Bit Field Encoding
Bit Field

Name
Description

0 no_data If set the no_data value is relevant.
1 min If set the min value is relevant
2 max If set the max value is relevant
3 scale If set each extra byte value should be multiplied by the scale value

 4 offset If set each extra byte value should be translated by the offset value

