

PROG6212

PART 2: Basic WPF
App with SQL
Database

1

Contents
Creating a new WPF App .. 2

Adding a class library .. 3

Installing the necessary NuGet Packages .. 6

Creating the SQL Database ... 9

Creating a database table ... 11

Locating the database connection string .. 15

Creating the Form ... 16

Writing to the database .. 18

Adding the connection string .. 20

Writing to the database: Test ... 21

Adding the Student class to the class library .. 24

Cleaning up the code & adding a Collection of Students ... 25

Retrieving data from the database and displaying it in a list ... 26

Retrieving data from the database and displaying it in a list: Test ... 27

2

Creating a new WPF App

Create a new WPF App(.NET Framework) Project

Select the .NET Framework 4.7.2 version

Click Create

3

Adding a class library

In your Solution Explorer go to your Solution tab and click Add -> New Project

Create a class library (.NET Framework)

Choose .NET Framework 4.7.2 and click create

To add your class library to your WPF Project as a reference

Go to your WPF Project in the solution explorer and click References -> Add Reference

4

In the Reference Manager go to Projects and select your class library, then click OK

5

Your class library is now added to your project and your solution explorer should look similar to this

We’ll come back to your class library later in the project.

6

Installing the necessary NuGet Packages

Now let’s setup the necessary SQL database packages so we can use it in our WPF App

Go to your WPF Project in the solution explorer and open Manage NuGet Packages…

Go to browse, then search and install the following packages:

1. Microsoft.EntityFrameworkCore.Design (Version 3.1.32)

2. Microsoft.EntityFrameworkCore.Tools (Version 3.1.32)

3. Microsoft.EntityFrameworkCore.SqlServer (Version 3.1.32)

Figure 1: 1. Microsoft.EntityFrameworkCore.Design(Version 3.1.32)

Figure 2: Microsoft.EntityFrameworkCore.Tools(Version 3.1.32)

Figure 3: Microsoft.EntityFrameworkCore.SqlServer(Version 3.1.32)

7

After each packages installs, Click OK in the Preview Changes Window

8

 Accept the License for each installation

After the packages are installed, in your NuGet Package Manager go to Installed to view your

installed packages.

If visual studio is not displaying all the installed packages, then Save your project then close and

open Visual Studio.

Now Open Manage NuGet Packages… -> and refresh your Installed packages

Now your project is setup in .NET Framework with a connected class library and all the required

packages ready to perform SQL functions for data persistence

9

Creating the SQL Database
Let’s move on to create the SQL Database where you’ll be persisting your data to

Go to your project in the solution explorer and Add -> New Item

10

Under C# click on Data -> Service Based Database

Change the name or leave it as default, then click Add

The database should then appear in your solution explorer as of type mdf like this

11

Creating a database table
Now in the solution explorer double click on the blue mdf file. Your database should appear in the

server explorer on the left under Data Connections

Now right click on Tables -> Add New Table

12

The Table Design window should appear with an area below to write T-SQL scripts

For an example database we are going to change the table name to Student with columns:

StudentID and StudentName

13

Now click enter

It will process the T-SQL script

After the script is processed, navigate to the top just above the table and click Update

Make sure to Include transactional scripts and then click Update Database

Below the T-SQL in Data Tools Operations you should see your Update completed successfully

14

Now open your Server Explorer and Refresh your Database and Tables. Your database should now

have the new Student Table added with the StudentId and StudentName columns

Now that our database is created, we now need a connection to the database.

15

Locating the database connection string
You can find your database connection string by double clicking on your [database name].mdf file in

the Solution Explorer under Database properties

You will need this connection string later in your application

16

Creating the Form
Let’s move to the xaml design MainWidnow where we will create the Student form

To continue the basic Student example

• Add a label for Student Name. Set the content=”Student Name”

• Add a Textbox alongside it and give it a name of x:Name=”StudentName”. Set the Text=””

• Add a button to save the data and double click on it to auto-generate an Onclick method

It should look something like this

17

• Now let’s add a GridView and a button to retrieve all the Students saved in the database like

this.

• Set the ListView x:Name=”StudentList”

• Set the button Content=”Show Students” and double click it to auto-generate an Onclick method

The student form is now setup.

From here you’ll INSERT data into your database from the StudentName textbox when the Saved

Data button is clicked. You can then click on the Show Students button to populate the GridView

with a SELECT query showing all the records in the Students tables

We’ll now be moving to the MainWindow.cs class

18

Writing to the database
Add the following code to within the SaveData Onclick method the functionality will be discussed

Code breakdown:

• In the SaveData_Click method we’ve created an empty string for now to store the database’s

connection string called connectionString

• We’ve then added a try-catch block to test the code, run it if there are no errors and catch any

errors through a message box

In the try block

• We add a using clause to create a new connect to the database so that the connection can be

disposed of properly

• We then open the connection and alert the user if the connection is successful

19

• Then we declare an INSERT query that’ll insert the student name input using a StudentName

Parameter which we define later

• The SqlCommand binds the query to the specific database through the database connection

• We then add a parameter for the student’s name input that takes the input as

StudentName.Text

• After setting up the command we execute the command to actually run it

• We then alert the user to show the input was added successfully

In the catch block

• The application will run the try block line-by-line and throw the appropriate error when its

reached

20

Adding the connection string
Remember we have to add the connection string. To do this double click on your database.mdf file

21

Copy the full connection string under database properties and paste it in the 2 quotation marks by

your connectionString. It should look something like this

Writing to the database: Test
Now start the application and try entering some text into the textbox then click the Save Data

button

22

This is good but let’s query the database too see if Jeff was actually added.

To do this open your Server Explorer -> Right click on your database -> New Query

23

Write a SELECT query to pull all the records in the Students table

Click the triangular green execute button to run the query

Congratulations! You now know how to insert data from your WPF app to your SQL database.

Now that we’ve added data to the database lets look at how to pull data from it and display the

results in a GridView. You’ll now be working with the Show Students button Onclick method

In this case it’s the ShowStudentsBtn_Click method

Now would be a good time to Save All your work

24

Adding the Student class to the class library
You’ll need to use your class library now. Let’s rename the default class (Should be Class1.cs) to

Student.cs

In the student class add the two columns from the Student table in the database that we’ve earlier

created StudentId and StudentName

25

Cleaning up the code & adding a Collection of Students
Now let’s head back to MainWIndow.xaml.cs

First, let’s clean up our code by removing all the unnecessary usings

Since we are going to work with the database connection in 2 methods, we can optimize our code to

declare the connection string outside the SaveData_Click method so we can use it anywhere in this

class.

You can use any List or collection as long as it’s a data structure that you can manage properly but, in

this case, let’s use an ObservableCollection of type Student that’ll serve as our GridViews Item

Source

26

Retrieving data from the database and displaying it in a list
Add the following code to your ShowStudentsBtn_Click method and let’s unpack it in the code

breakdown

Let’s pop up the GridView we earlier created

Notice how the DisplayMemberBinding is set to a Binding of StudentName

Code Breakdown:

• We establish a database connection and open it.

• We create a SQL query (selectQuery) to retrieve all data from the Student table.

• We create a SqlCommand object and execute the query.

• We use a SqlDataReader to read the result set row by row.

• For each row, we create a Student object and populate its properties with data from the

database.

• The Student object is then added to the Students collection (an ObservableCollection<Student>).

• When you run the application and click the "Show Students" button, the data retrieved from the

database is stored in the Students collection.

27

• The ListView is configured to display this data in the GridView columns, with each row

representing a Student object.

• The DisplayMemberBinding property of the GridViewColumn specifies which property of the

student object to display in that column.

Retrieving data from the database and displaying it in a list: Test
Run the application and see if the data displays all the students you’ve added

It should display something like when you click the Show students button

