
Programming Techniques Project Requirements

Programming Techniques 1/12

Cairo University
Faculty of Engineering
Computer Engineering Department

Programming Techniques

Programming Techniques

Project (Phase 2)

Game

Programming Techniques Project Requirements

Programming Techniques 2/12

Main Classes
You are given a code framework for Phase 2 where we have partially written code of some of

the project classes. You must stick to the given design (i.e. hierarchy of classes and the specified
job of each class) and complete the given framework by either: extending some classes or inheriting
from some classes (or even creating new base classes).

Below is the class diagram then a description for the basic classes.

Figure 1 – Class Diagram

Input Class:
ALL user inputs must come through this class. If any other class needs to read any input, it must call
a member function of the input class. You should add suitable member functions for different types
of inputs.

Output Class:
This class is responsible for ALL GUI outputs. It is responsible for toolbar and status bar creation,
grid and game objects drawing, and for messages printing to the user. If any other class needs to
make any output, it must call a member function of the output class. You should add suitable member
functions for different types of outputs.
Notes: - No input or output is done through the console. All must be done through the GUI window.
 - Input and Output classes are the ONLY classes that have access to GUI library.

Programming Techniques Project Requirements

Programming Techniques 3/12

Action Class:
Each operation of the design or play mode (corresponding to each icon) must have a corresponding
action class. This is the base class for all types of actions (operations) to be supported by the
application. To add a new action, you must inherit it from this class. Then you should override virtual
functions of class Action (ReadActionParameters and Execute functions). Each action may have
action parameters. Action parameters are the parameters needed to be read from the user, after
choosing the action icon, to be able to execute the action. You can also add more details or functions
for the class Action itself if needed.

GameObject Class:
This is the base class for all types of game objects (ladders, snakes or cards). Each game object
type must inherit from this class (GameObject), then you should override its virtual functions (e.g.
Draw, Save, …etc.). You can also add more details or functions for class GameObject itself if needed.
One of the important virtual functions of GameObject class is Apply() function. It applies the
GameObject’s effect on the passed player, for example: in the Ladder GameObject, Apply() moves
the player to the end cell of the ladder, and in the Card GameObject, Apply() makes the effect of
this specific card type on the player.

CellPosition Class:
This class represents the cell position in the grid by having two data members called vCell and hCell.
This class does NOT deal with real coordinates, it deals with the vCell, hCell and cellNum instead.

Cell Class:
This class represents the cells of the grid. It holds an object of CellPosition class. It also holds a
pointer to the game object occupying the cell. For snakes and ladders, they are set as the game
objects of only their start cell, so for example, if a ladder starts at cell 1 and ends at cell 12, then the
game object pointer of cell 1 will point to that ladder, however, the game object pointer of the end cell
12 will NOT point to that ladder.

Grid Class:
This class represents the game grid (the vertical and horizontal cells that game objects can move in).
It contains a 2-Dimensional Array of Pointers to Cells (called CellList). This list keeps track of the
grid cells. This is the ONLY class that can operate directly on the CellList which means that NO other
classes can Get this List or a copy of it and operate directly on it. It also includes an array of 4 Player
pointers, PlayerList, that represents the four players of the game. In addition, the Grid class has
pointers to the Input and the Output class objects.

The Grid class responsibility is to maintain the CellList (e.g. by providing public functions like
AddObjectToCell and RemoveObjectFromCell, …etc.) but it must NOT make any further logic

in its functions. There may be functions inside the Grid class like SaveAll that loops on the 2D array
and blindly call the virtual function Save for each GameObject pointer in each cell, but the functions
of the Grid class only loop and call functions (do NOT make any further logic).

ApplicationManager Class:
This is the maestro class that controls everything in the application. It creates the Grid, Input and
Output objects and have pointers of them as data members. Its job is to create an object of the action
class corresponding to the action chosen by the user then executes it. ApplicationManager just
manages or instructs other classes to do their jobs (NOT to do other classes’ jobs).

Player Class:
Each player object contains: player number, step count (initially 0) and wallet (initially 100). It also
contains a pointer to the cell the player currently occupying. Add any other needed data members.

Programming Techniques Project Requirements

Programming Techniques 4/12

One of the important functions in class Player is function Move(…) which makes the player move
with the passed dice number.

Ladder Class:
This class represents ladders and their location. Ladders also are types of game objects.

Snake Class:
This class represents snakes and their location. Snakes also are types of game objects.

Card Class:
This is the base class for all types of card items. To create a new card type (CardOne for example),
you must inherit it from this class. Then you should override virtual functions of class Card. You can
also add more details or functions for the class Card itself if needed. One of the virtual functions of
class Card is ReadCardParameters () which reads the parameters of a particular type of cards (for
example, the wallet amount to decrease in CardOne)

Example Scenarios

Example Scenario 1: Add Ladder Action (in Design Mode)

Here is an example scenario for adding a ladder in the Grid in Design Mode. It is performed through
the four steps mentioned in ‘Appendix A - implementation guidelines’ section. These four steps
are in the “main” function of phase 2 code. You must NOT change the “main” function of phase 2.

The 4 steps are as follows:

Step 1: Get user input

1- The ApplicationManager calls the Input class and waits for user action.
2- The user clicks on the “Add Ladder” icon in the tool bar to add a ladder.
3- The Input class checks the area of the click and recognizes that it is a "add ladder" operation.

It returns ADD_LADDER (an ”enum” value representing the ActionType) to the manager.

Step 2: Create a suitable action

1- ApplicationManager::ExecuteAction(ActionType) is called to create an action object of
type AddLadderAction class:
 Action* pAct = NULL;
 // in a switch case on the passed ActionType
 case ADD_LADDER: pAct = new AddLadderAction(this);

Step 3: Execute the action

1- ApplicationManager::ExecuteAction(…) calls the virtual AddLadderAction::Execute()
 pAct->Execute(); // Execute the AddLadderAction object

Programming Techniques Project Requirements

Programming Techniques 5/12

2- AddLadderAction::Execute()

a. Calls AddLadderAction::ReadActionParameters() which calls function
GetCellClicked() twice from the Input class to get the action parameters of
AddLadderAction (i.e. the start and end cell positions, startPos and endPos).

Notice that when AddLadderAction wants to print messages to the user on the status
bar, it calls some functions from the Output class.

b. Creates (allocates) an object of class Ladder:

 Ladder * pLadder = new Ladder(startPos, endPos);

c. Asks the Grid to set the created ladder object to the GameObject pointer of its Cell
(the start cell of the ladder) by calling Grid::AddObjectToCell (…) function and
passing the new ladder to it:
 pGrid->AddObjectToCell(pLadder);

Function Grid:: AddObjectToCell (GameObject * pNewObject) will do the following
(Note: the passed pNewObject now points to the newly created ladder object):

1. Get the cell position of the ladder object (which represents its start cell):
 CellPosition pos = pNewObject->GetPosition();

2. Set the passed ladder object to the GameObject pointer of its start cell
in the CellList:
 CellList[pos.VCell()][pos.HCell()]->SetGameObject(pNewObject);

Step 4: Update Interface
1- ApplicationManager::UpdateInterface() calls Grid:: UpdateInterface ()

2- The UpdateInterface() of the Grid class in the Design Mode redraws all cells with their

game objects (cards, ladders and snakes) using the following steps:

a. It iterates on each Cell in the CellList of Grid class and Call the following
function to redraw each cell and its card if it contains a card:
 CellList[i][j]->DrawCellOrCard(pOut);

b. It iterates again on each Cell in the CellList and Call the following function to

redraw the ladder/snake of each cell:
 CellList[i][j]->DrawLadderOrSnake(pOut);

 Notes:
a. UpdateInterface() draws all cells with cards first before the ladders/snakes to avoid

drawing a cell above a drawn ladder/snake.

b. DrawCellOrCard(…) function of class Cell calls the Draw(…) virtual function of
the GameObject class if the cell contains a card game object. Similarly, the
DrawLadderOrSnake(…) function of class Cell calls the Draw(…) virtual function
of class GameObject if the cell contains a ladder or a snake game object.

c. The Draw(…) function of GameObject class is a pure virtual function which is
overridden in class Ladder to call Output::DrawLadder(…) of class Output that is
responsible for Drawing the ladders in the Interface.

Programming Techniques Project Requirements

Programming Techniques 6/12

Example Scenario 2: Save Grid Action (in Create-Grid Mode)

❑ In General, Save/Open has NO relation to the Input or Output classes. They save/open
grids to/from files not the graphical window.

❑ Here we explain the calling sequence in the execute of ‘SaveGridAction’ action as an
example. Note the responsibility of each class and how each class does only its job or
responsibility.

❑ There is a save function in Grid class and in each type of GameObject but each function
performs a different job:

1. GameObject :: Save (… , Type)
It is a virtual function in GameObject class. Each class derived from GameObject class
should override it with its own implementation to save itself because each GameObject type
has different information and hence a different way or logic to save itself. The function takes
a “Type” parameter which could be an enum or an integer that represents the GameObject
type that should be save (either card, ladder or snake). So, each GameObject class type will
check the “Type” parameter sent to the function. If it is the same type of the class, it will save
its information to the file, otherwise, return without saving.

This “Type” parameter is sent because as shown in the “File Format” section mentioned
below, all ladders should be saved first, then all snakes then all cards.

2. Grid :: SaveAll (… , Type)
It is the function responsible for calling the GameObject :: Save(…, Type) function for the
GameObject of each cell (if any) in the Grid’s CellList because Grid class is the only class
that has CellList and no one else can access it. Note that it only gets the GameObject of
each cell and calls function save of the game object; ONLY calling without making the
save logic itself (not the responsibility of Grid but the responsibility of each game object
class). This note is important and has a huge grade percentage.

Note: dynamic_cast is NOT needed in this function because polymorphism will
automatically call the Save function of the correct object type for each GameObject pointer
in the list.

3. SaveGridAction :: Execute()

It does the following:
❑ first reads action parameters (i.e. the filename)
❑ then opens the file
❑ and calls Grid::SaveAll (…, LaddersType) to save all ladders
❑ and calls Grid::SaveAll (…, SnakesType) to same all snakes
❑ and calls Grid::SaveAll (…, CardsType) to same all snakes
❑ then closes the file

Note: if any information is available for SaveGridAction class without breaking class
responsibilities, it should write it to the file by itself.

 Important Note: Don’t abuse the “Type” enum that you will create for this function.
Whenever virtual functions and polymorphism could be applied, apply them. If any use of
Type enum in your project will replace virtual functions and break class responsibilities, this
will be grade-penalized.

Programming Techniques Project Requirements

Programming Techniques 7/12

File Format

The “Grid” File Format:

Your application should be able to save/open a grid to/from a simple text file. In this
section, the file format is described together with an example.

● File Format
Number_of_Ladders(n1)

Ladder_1_start_cell Ladder_1_end_cell

Ladder_2_start_cell Ladder_2_end_cell

………………………………………………………..

Ladder_n1_start_cell Ladder_n1_end_cell

Number_of_Snakes(n2)

Snake_1_start_cell Snake_1_end_cell

Snake_2_start_cell Snake_2_end_cell

………………………………………………………..

Snake_n2_start_cell Snake_n2_end_cell

Number_of_Cards(n3)

Card_1_type Card_1_Cell Card_1_parameter_1(if any)

………………………………………………………..

Card_n3_type Card_n3_Cell Card_n3_parameter_1(if any)

● Example: The grid file looks like that (comments in green are just for explaining the example)

2//number of ladders

13 57// start cell (13), end cell (57)

6 39// start cell (6), end cell (39)

2 //number of snakes

97 31// start cell (97), end cell (31)

92 48// start cell (92), end cell (48)

5 //number of cards

1 2 10// card of type 1 in cell 2. Decrement amount is 10

1 20 12// card of type 1 in cell 20. Decrement amount is 12

10 25 20 5// card of type 10 in cell 25. Cell price is 20 and fees for the card are 5

3 50// card of type 3 in cell 50 (no parameters for card 3)

10 80// card of type 10 in cell 80. Cell price is 20 and fees for the card are 5. Since each card

of type 10 has the same value and fees, the parameters should only be read once

Notes:

❑ You are allowed to modify this file format if necessary but after instructor approval.
❑ The “Open” Action:

For lines in the above file, For Example for the ladders: the OpenAction first creates
(allocates) an empty object of that type of ladder. Then, it calls GameObject::Read virtual
function that can be overridden in the class of each game object type to make the object
load its data from the opened file by itself (its job). Then, it calls Grid::AddObjectToCell
to add the created ladder object to a cell in the CellList.

Programming Techniques Project Requirements

Programming Techniques 8/12

Project Phase2

Partially-implemented code frameworks for Phase 2 are given to you to complete them.

For fast navigation in the given code in Visual Studio, you may need the following:
 F12 (go to definition): to go to definition of functions (code body), variables, …etc.
 “Ctrl” then “Minus”: to return to the previous location of the cursor.

 Phase 2 (Project Delivery)

In this phase, the completed I/O classes, CellPosition class, DEFS.h and UI_Info.h (without
phase 1 test code) should be added to the project framework code given for phase 2 (and the
images folder should be copied too) and the remaining classes of phase 2 should be
implemented. Start by implementing the base classes then move to derived classes.

In the given code of phase 2, AddLadderAction of Design mode is almost fully
implemented (needs only validation). In addition, some base classes are partially
implemented with some guiding comments to follow.

You are required to:

❑ Complete the Implementation of functions marked with ///TODO comment
as it is described in the comments. These are some useful functions that you can
use in implementation of phase 2.

❑ Complete all the classes mentioned in the “Main Classes Section” with full
implementation of their functions and finalize the project to perform all the
operations mentioned in the project documents in the 2 modes.

❑ You may need to add more classes to make the code more organized and
object-oriented but you are NOT allowed to change the initial classes’ design,
hierarchy and responsibilities we mentioned in the “Main Classes Section”.

Phase 2 Deliverables:

(1) Workload division: a printed page containing team information and a table that contains
members' names and the actions and cards each member has implemented.

(2) Online Submission: a zip file containing the following:
a. ID.txt file. (Information about the team: names, IDs, team email)
b. Workload division (described in the previous point)
c. The project phase 2 code and resources files (images, saved files, …etc.).
d. Sample grid files: at least three different grids. For each grid, provide:

i. Grid text file (created by save operation)
ii. Grid screenshot for the grid generated by your program

Note that The online submission time will be the same for all project teams. No modifications are
allowed after the online submission. After that, a face-to-face discussion of the project will be
held.

Programming Techniques Project Requirements

Programming Techniques 9/12

Phase 2 Evaluation Criteria

Percentages are added according to the difficulty of the task, so to divide the project load equally
on team members, each member should take actions that their percentages add up to about 25% of
phase 2 (if 4 students in the team).

Toolbar Operations [45%]
❑ Each operation percentage is mentioned below.
❑ [35%] Design Mode

❑ [5%] Add Ladder & Add Snake (with needed validations)
❑ [7%] Add Card
❑ [8%] Copy & Cut and Paste Card
❑ [3%] Delete Game Object
❑ [11%] Save & Open Grid
❑ [1%] Switch to play mode and Switch back to design mode (this icon in PlayMode)

❑ [10%] Play Mode
❑ [7%] Roll Dice & Input Dice Value

▪ This percentage includes ONLY what will be written inside the action classes of
Roll Dice and Input Dice Value; mainly the function calls written inside them (not
the implementation of each called function).

❑ [3%] New game

Game Logic [50%]
❑ Any percentage mentioned next to a Game Object means: handing all the Logic of this object in

the game:
❑ [10%] Player movement & adding money after 3 turns + Taking Ladders & Snakes
❑ [40%] Cards

▪ [2%] Card 1
▪ [3%] Card 2
▪ [5%] Card 3 & 4
▪ [2%] Card 5
▪ [2%] Card 6
▪ [4%] Card 7
▪ [6%] Card 8
▪ [10%] Cards [9-11]
▪ [6%] Card 12

❑ Note: it is recommended that the student who will work on Add card work also on cards

[9-11]
❑ Note: we tried to combine similar actions/objects together in the same percentage because they

share similar logic, so it is recommended not to separate them between more than one person
(for example, Card 3 & 4 are written together, so give both of them to one person).

Code Organization & Style [5%]
❑ Every class in .h and .cpp files
❑ Variable naming
❑ Indentation & Descriptive Comments
❑ Note: this percentage is divided between team members (Each should make the code

organization of his code part)

Programming Techniques Project Requirements

Programming Techniques 10/12

Bonus [10%]
❑ Each player has 4 special attacks that he can use throughout the game.
❑ A player can choose during his “recharge the wallet” turn to launch a special attack instead of

recharging his wallet. (If he is not denied from rolling dice)
❑ A message is shown, “Do you wish to launch a special attack instead of recharging? y/n”

❑ [1%] Each player can use two unique special attacks at most throughout the game. This means
a single player cannot use the same special attack twice.

❑ If a player chooses to launch a special attack, he is prompted to choose his special attack type
❑ The 4 special attacks are:

❑ [2%] Ice: Choose a player to prevent from rolling the next turn.
❑ [3%] Fire: Choose a player to burn. Deduct 20 coins from his wallet for his next 3 turns

(total 60).
❑ [3%] Poison: Choose a player to poison. For 5 turns, deduct 1 number from his dice roll.
❑ [1%] Lightning: Deduct 20 coins from all other players.

General Evaluation Criteria for any Operation:
1. Compilation Errors → MINUS 50% of Operation Grade

❑ The remaining 50% will be on logic and object-oriented concepts (see point no. 3)

2. Not Running (runtime error in its basic functionality) → MINUS 40% of Operation Grade

❑ The remaining 60% will be on logic and object-oriented concepts (see point no. 3)
❑ If we found runtime errors but in corner (not basic) cases, that’s will be part of the grade

but not the whole 40%.

3. Missing Object-Oriented Concepts → MINUS 30% of Operation Grade

❑ Separate class for each item and action
❑ Each class does its job. No class is performing the job of another class.
❑ Polymorphism: use of pointers and virtual functions
❑ See the “Implementation Guidelines” in the Appendix which contains all the

common mistakes that violates object-oriented concepts.

4. For each corner case that is not working → MINUS 10% to 20% of the Operation Grade

according to instruction evaluation.
Note: The code of any operation does NOT compensate for the absence of any other operation.

Individuals Evaluation:

Each member must be responsible for writing some project modules (e.g. some classes or some
functions) and must answer some questions showing that he/she understands both the program logic
and the implementation details. The work load between team members must be almost equal.
 The grade of each student will be divided as follows:

 [70%] of the student grade is on his individual work (the project part he was responsible for).

 [25%] of the student grade is on integrating his work with the work of ALL students who
Finished or nearly finished their project part.

 [5%] of the student grade is on cooperation with other team members and helping them with
their problems in their code parts (helping does NOT mean implementing their parts).

 You should inform the TAs before the deadline with a sufficient time (some weeks before) if
any problems occurred between members to be able to give warnings and take actions.

 If one or more members didn’t make their work, the other members will NOT be affected as long
as: i) the students informed the TAs about this problem with a sufficient time before the deadline
(to give warnings and take actions), ii) the students who finished their part integrated all their
parts together AND their part can be tested easily to see the output.

 If a student couldn’t finish his part, try to still integrate it to at least take the integration grade.

Programming Techniques Project Requirements

Programming Techniques 11/12

APPENDIX A
 [I] Implementation Guidelines

❑ Any user operation is performed in 4 steps:

❑ Get user action type.
❑ Create suitable action object for that action type.
❑ Execute the action (i.e. function Action::Execute() which first calls

ReadActionParameters() then executes the action).
❑ Update Interface which updates the drawings on the window after each executed action

❑ Use of Pointers/References: Nearly all the parameters passed/returned to/from the functions

should be pointers/references to be able to exploit polymorphism and virtual functions.
GameObject in a cell should be a Base Class Pointers (GameObject) to be able to point to any
game object type. Many class members should be pointers for the same reason.

❑ Classes’ responsibilities: Each class must perform tasks that are related to its responsibilities

only. No class performs the tasks of another class. For example, when class Ladder needs to
draw itself on the GUI, it calls function Output::DrawLadder because dealing with the GUI
window is the responsibly of class Output. Similarly, class Grid must not contain any logic. It only
should call functions. Read the “main classes” section to know the responsibility of each class.

❑ Abusing Getters: Don’t use getters to get data members of a class to make its job inside another

class. This breaks the classes’ responsibilities rule. For example, do NOT add in Grid class
function CellList() that gets the 2D array of cells to the other classes to loop on it and use it there.
CellList and looping on it are the responsibility of the Grid class only.

❑ Virtual Functions: In general, when you find some functionality (e.g. saving) that has different

implementation based on each type, you should make it virtual function in the base class and
override it in each derived class with its own implementation.

 A common mistake here is the abuse of dynamic_cast (or similar implementations like
type data member) by checking the object type outside the class and perform this class’s
job there (this job should be inside that class in a virtual member function in it).

 This does not mean you should never use dynamic_cast but do NOT use it in a way that
breaks the constraint of class responsibilities or replaces the use of virtual functions.

❑ Not all the actions need to add a corresponding function inside Grid. This will make Grid perform

the responsibility of these actions. However, some actions need to loop on CellList (e.g.
SaveGridAction …etc.). In this case only (looping on Game Objects), you can add functions for
them in Grid that loop on the list and just call functions without making any further logic.

❑ You are not allowed to use global variables in your implemented part of the project, use passing
variables as function parameters instead. That is better from software engineering point of view.

❑ You need to get instructor approval before using friendships.

Programming Techniques Project Requirements

Programming Techniques 12/12

[II] Workload Division Guidelines

Workload must be distributed among team members. A first question to the team at the project

discussion and evaluation is "who is responsible for what?” An answer like” we all worked together”
is a failure and will be penalized.

Here is a recommended way to divide the work based on Actions

❑ Divide workload by assigning some actions to each team member. Each member takes an

action, should make any needed changes in any class involved in that action then run and try
this action and see if it performs its operation correctly then move to another action.

❑ For example, the member who takes action ‘SaveGrid’ should create ‘SaveGridAction’ and
write the code related to SaveGridAction inside ‘Grid’ and ‘GameObject’ derived classes.
Then run and check if the game objects are successfully saved. Don’t wait for the whole
project to finish to run and test your implemented action.

❑ It is recommended to give similar actions to the same member because they have similar
implementation.

❑ After finishing and trying few related actions, it’s recommended to integrate them with the last

integrated version and any subsequent divided action should increment on this project version
and so on. We call this ‘Incremental Implementation’.

❑ It’s recommended to first divide the actions that other actions depend on (e.g. adding and
creating grids) then integrate before dividing the rest of the actions.

❑ In the game logic, you may divide by object type, …etc. Each member takes an object type

and totally handles it.

