
Data structures project,
Implementation document

Heikki Haapala and Aleksi Markkanen
Student numbers 014090190 and 013126382

10 pages

March 4, 2013

CONTENTS CONTENTS

Contents

1 Structure of the Program 2

2 Attained Computational Complexity 3

2.1 O-analysis of the pseudocode 4

2.1.1 QuickHull . 4

2.1.2 Gift-wrapping . 4

2.1.3 Graham scan . 5

3 Comparing the Different Algorithms 7

Page 1/10

1 STRUCTURE OF THE PROGRAM

1 Structure of the Program

We divided the code into five different Java source packages: algorithms,
comparators, datastructures, graphics and main.

Package algorithms contains an interface Algorithm which the algorithms
will implement. Only one method is specified, namely useAlgorithm. All
other methods are declared private.

Comparators contains only one class, AngleComparator. It implements a
comparator for the Point2D.Double class, in which the points are sorted in
ascending order by their polar angles. This method of sorting is used by the
Gift-wrapping algorithm.

Package datastructures contains our implementation of the linked list. We
implemented methods to add and remove points, to sort the list and to check
wether a given object is in the list. The list also knows its length.

The graphics package contains code necessary to draw the results on the
screen. In the main package we placed all other program logic, i.e. input
parameters, reading and writing to and from files and so on.

Page 2/10

2 ATTAINED COMPUTATIONAL COMPLEXITY

2 Attained Computational Complexity

In the definitions document, we aimed for the best possible time complexities
for our algorithms of choice. However, for simplicity, we decided to settle for
O(n) space complexity. This way, we could generate a new linked list for the
points of the convex hull. This also reduced the complexity of our algorithms,
especially the Quickhull algorithm.

Page 3/10

2.1 O-analysis of the pseudocode2 ATTAINED COMPUTATIONAL COMPLEXITY

2.1 O-analysis of the pseudocode

2.1.1 QuickHull

QuickHull(S)
Data: List S of points on a plane
Result: List H of points that form the convex hull of S

Find the points A and B that have the minimum and maximum
values for x-coordinates, respectively. These points are bound to be a
part of the convex hull.
Divide S into S1 and S2 so that points in S1 and S2 lie on the opposite
sides of the line AB.
H ← {}.
H = FindHull(S1, A,B) ∪ FindHull(S2, B,A)

Algorithm 1: Core method

FindHull(S,A,B)

Data: List S of points on a plane, Point A, Point B
Result: List H of points that form the convex hull of S and are on

the right of the line AB

if S is empty then
return A,B

end
Find C = argmax dist(AB,C)
Divide S into S1 and S2 so that points in S1 lie on the right side of
AC and points in S2 lie on the right side of BC. The rest of the points
can be discarded.
return FindHull(S1, P, C)∪ FindHull(S2, C,Q).

Algorithm 2: FindHull method
At first, it would seem that the time complexity of the recursive method is
of order O(n2). While this is true for some datasets, usually the recursive
method discards many points with each iteration and thus brings the average-
case time complexity down to O(n log n).

2.1.2 Gift-wrapping

The following pseudocode specifies the Jarvis’ march algorithm[2].

Page 4/10

2.1 O-analysis of the pseudocode2 ATTAINED COMPUTATIONAL COMPLEXITY

jarvis(S)

pointOnHull = leftmost point in S

i = 0

repeat

P[i] = pointOnHull

endpoint = S[0] // initial endpoint for a candidate edge on the hull

for j from 1 to |S|-1

if (endpoint == pointOnHull) or (S[j] is left of line from P[i] to endpoint)

endpoint = S[j] // found greater left turn, update endpoint

endfor

i = i+1

pointOnHull = endpoint

until endpoint == P[0] // wrapped around to first hull point

The inner loop of the pseudocode is run for each input point. Thus, its time
complexity is of order O(n). However, the outer loop is iterated over the hull
points. If there are h hull points, the total time complexity is O(nh). This
is a so-called output-sensitive algorithm.

2.1.3 Graham scan

Graham scan is given by the following pseudocode[3]:

We begin by defining an auxilliary function.

function ccw(p1, p2, p3):

return (p2.x - p1.x)*(p3.y - p1.y) - (p2.y - p1.y)*(p3.x - p1.x)

Now we can write the graham scan in a simpler form.

let N = number of points

let points[N+1] = the array of points

swap points[1] with the point with the lowest y-coordinate

sort points by polar angle with points[1]

We want points[0] to be a sentinel point that will stop the loop.

let points[0] = points[N]

Page 5/10

2.1 O-analysis of the pseudocode2 ATTAINED COMPUTATIONAL COMPLEXITY

M will denote the number of points on the convex hull.

let M = 1

for i = 2 to N:

Find next valid point on convex hull.

while ccw(points[M-1], points[M], points[i]) <= 0:

if M > 1:

M -= 1

All points are collinear

else if i == N:

break

else

i += 1

Update M and swap points[i] to the correct place.

M += 1

swap points[M] with points[i]

The actual algorithm has the time complexity O(n), but since it is necessary
to sort the input first, it is dominated by the time complexity O(n log n) of
our Mergesort implementation.

Page 6/10

3 COMPARING THE DIFFERENT ALGORITHMS

3 Comparing the Different Algorithms

We compared the performance of our algorithms using two test cases. First,
we had a hardest case dataset for which all of the input points were part of the
convex hull. This was achieved by taking evenly spaced numbers using the
Octave command linspace and applying sin and cosin functions to them.
This produced a set of points that lie on the unit circle in the plane.

Other test case consisted of generating random points from a Gaussian dis-
tribution. This in our mind represents a ”average case” since Gaussian dis-
tributions are quite prevalent in natural sciences.

Figure 1: Average case performance

Page 7/10

3 COMPARING THE DIFFERENT ALGORITHMS

Figure 2: Worst case performance

Page 8/10

3 COMPARING THE DIFFERENT ALGORITHMS

In the figures, the Quickhull algorithm is plotted in cyan, gift-wrapping in
magenta and Graham scan in blue.

X-axis is the amount of points and y-axis is the time in milliseconds. Quick-
hull could not be performed for large datasets because of the Java stack
size.

Page 9/10

REFERENCES REFERENCES

References

[1] Convex hull algorithms,

Wikipedia, the free encyclopedia

http://en.wikipedia.org/wiki/Convex_hull_algorithms

[2] Gift Wrapping Algorithm,

Wikipedia, the free encyclopedia

http://en.wikipedia.org/wiki/Gift_wrapping_algorithm

[3] Graham Scan,

Wikipedia, the free encyclopedia

http://en.wikipedia.org/wiki/Graham_scan

Page 10/10

http://en.wikipedia.org/wiki/Convex_hull_algorithms
http://en.wikipedia.org/wiki/Gift_wrapping_algorithm
http://en.wikipedia.org/wiki/Graham_scan

	Structure of the Program
	Attained Computational Complexity
	O-analysis of the pseudocode
	QuickHull
	Gift-wrapping
	Graham scan

	Comparing the Different Algorithms

