
8/23/23, 11:58 AM Commentary on MaterialX implementation of OpenPBR

file:///C:/Users/portsmj/dev/OpenPBR-fork/materialx.md.html 1/8

Commentary on MaterialX implementation of
OpenPBR

For discussion purposes, this document unpacks the MaterialX XML implementation of the existing Autodesk standard surface
model, and the proposed OpenPBR model, into formulas which are bit easier to parse than the XML.

Then I give some initial commentary on the MaterialX implementations.

Standard Surface repo
OpenPBR repo
MaterialX standard surface implementation

Contents

1 Autodesk standard surface implementation in MaterialX
 1.1 Structure
 1.2 BSDFs

2 OpenPBR (proposed) implementation in MaterialX
 2.1 Structure
 2.2 BSDFs

3 Adjunct calculations in MaterialX implementations
 3.1 EDF
 3.2 Coat influence
 3.3 Tangent rotation
 3.4 IOR remapping
 3.5 Roughnesses

4 MaterialX commentary in context of OpenPBR
 4.1 Commentary on overall differences in formalism
 4.2 Commentary on some more technical discrepancies in model

1 Autodesk standard surface implementation in MaterialX

1.1 Structure

The XML node structure can be reduced to the following formulas (where for simplicity, nodes which just reduce to algebraic
operations are represented by formulas):

https://github.com/Autodesk/standard-surface
https://github.com/AcademySoftwareFoundation/OpenPBR
https://github.com/AcademySoftwareFoundation/MaterialX/blob/main/libraries/bxdf/standard_surface.mtlx

8/23/23, 11:58 AM Commentary on MaterialX implementation of OpenPBR

file:///C:/Users/portsmj/dev/OpenPBR-fork/materialx.md.html 2/8

1.2 BSDFs

shader constructor

coat_layer

thin_film_layer

metalness_mix

specular_layer

transmission_mix

sheen_layer

subsurface_mix

selected_subsurface_bsdf

=

=

=

=

=

=

=

=

=

surface(

layer(

layer(

mix(

layer(

mix(

layer(

mix(

mix(

bsdf

edf

opacity

top

base

top

base

fg

bg

mix

top

base

fg

bg

mix

top

base

fg

bg

mix

fg

bg

mix

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

coat_layer,

blended_coat_emission_edf

luminance(opacity))

coat_bsdf,

thin_film_layer ∗ (coat_color*coat + (1 − coat))) ,

thin_film_bsdf,

metalness_mix) ,

metal_bsdf,

specular_layer,

metalness) ,

specular_bsdf,

transmission_mix) ,

transmission_bsdf,

sheen_layer,

transmission) ,

sheen_bsdf,

subsurface_mix)

selected_subsurface_bsdf,

diffuse_bsdf,

subsurface) ,

translucent_bsdf,

subsurface_bsdf,

thin_walled) . (1)

coat_bsdf = dielectric_bsdf (weight

tint

ior

roughness

normal

tangent

distribution

scatter_mode

=

=

=

=

=

=

=

=

coat,

(1, 1, 1),

coat_IOR,

coat_roughness_vector,

coat_normal,

coat_tangent,

ggx,

R) (2)

translucent_bsdf = translucent_bsdf (weight

color

normal

=

=

=

1.0,

coat_affected_subsurface_color,

normal) (3)

8/23/23, 11:58 AM Commentary on MaterialX implementation of OpenPBR

file:///C:/Users/portsmj/dev/OpenPBR-fork/materialx.md.html 3/8

2 OpenPBR (proposed) implementation in MaterialX

2.1 Structure

diffuse_bsdf = oren_nayar_dif fuse_bsdf (weight

color

roughness

normal

=

=

=

=

base,

coat_affected_diffuse_color,

diffuse_roughness,

normal) (4)

subsurface_bsdf = subsurface_bsdf (weight

color

radius

anisotropy

normal

=

=

=

=

=

1.0,

coat_affected_subsurface_color,

subsurface_radius * subsurface_scale,

subsurface_anisotropy)

normal) (5)

sheen_bsdf = sheen_bsdf (weight

color

roughness

normal

=

=

=

=

sheen,

sheen_color,

sheen_roughness,

normal) (6)

transmission_bsdf = dielectric_bsdf (weight

tint

ior

roughness

normal

tangent

distribution

scatter_mode

=

=

=

=

=

=

=

=

1.0,

transmission_color,

specular_IOR,

transmission_roughness,

normal,

main_tangent,

ggx,

T) (7)

specular_bsdf = dielectric_bsdf (weight

tint

ior

roughness

normal

tangent

distribution

scatter_mode

=

=

=

=

=

=

=

=

specular,

specular_color,

specular_IOR,

main_roughness,

normal,

main_tangent,

ggx,

R) (8)

metal_bsdf = conductor_bsdf (weight

ior

extinction

normal

tangent

distribution

=

=

=

=

=

=

1.0,

artistic_ior. ior,

artistic_ior. extinction,

normal,

main_tangent,

ggx)

thin_film_bsdf = thin_f ilm_bsdf (thickness

ior

=

=

thin_film_thickness,

thin_film_IOR) (9)

8/23/23, 11:58 AM Commentary on MaterialX implementation of OpenPBR

file:///C:/Users/portsmj/dev/OpenPBR-fork/materialx.md.html 4/8

2.2 BSDFs

shader constructor

coat_layer

thin_film_layer

metalness_mix

specular_layer

transmission_mix

fuzz_layer

subsurface_mix

selected_subsurface_bsdf

=

=

=

=

=

=

=

=

=

surface(

layer(

layer(

mix(

layer(

mix(

layer(

mix(

mix(

bsdf

edf

opacity

top

base

top

base

fg

bg

mix

top

base

fg

bg

mix

top

base

fg

bg

mix

fg

bg

mix

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

coat_layer,

blended_coat_emission_edf

luminance(opacity))

coat_bsdf,

thin_film_layer ∗ (coat_color*coat + (1 − coat))) ,

thin_film_bsdf,

metalness_mix) ,

metal_bsdf,

specular_layer,

metalness) ,

specular_bsdf,

transmission_mix) ,

transmission_bsdf,

fuzz_layer,

transmission) ,

sheen_bsdf,

subsurface_mix)

selected_subsurface_bsdf,

diffuse_bsdf,

subsurface) ,

translucent_bsdf,

subsurface_bsdf,

thin_walled) . (10)

coat_bsdf = dielectric_bsdf (weight

tint

ior

roughness

normal

tangent

distribution

scatter_mode

=

=

=

=

=

=

=

=

coat,

(1, 1, 1),

coat_IOR,

coat_roughness_vector,

coat_normal,

coat_tangent,

ggx,

R) (11)

translucent_bsdf = translucent_bsdf (weight

color

normal

=

=

=

1.0,

coat_affected_subsurface_color,

normal) (12)

8/23/23, 11:58 AM Commentary on MaterialX implementation of OpenPBR

file:///C:/Users/portsmj/dev/OpenPBR-fork/materialx.md.html 5/8

3 Adjunct calculations in MaterialX implementations

3.1 EDF

diffuse_bsdf = oren_nayar_dif fuse_bsdf (weight

color

roughness

normal

=

=

=

=

base,

coat_affected_diffuse_color,

diffuse_roughness,

normal) (13)

subsurface_bsdf = subsurface_bsdf (weight

color

radius

anisotropy

normal

=

=

=

=

=

1.0,

coat_affected_subsurface_color,

subsurface_radius * subsurface_scale,

subsurface_anisotropy)

normal) (14)

sheen_bsdf = sheen_bsdf (weight

color

roughness

normal

=

=

=

=

fuzz,

fuzz_color,

fuzz_roughness,

normal) (15)

transmission_bsdf = dielectric_bsdf (weight

tint

ior

roughness

normal

tangent

distribution

scatter_mode

=

=

=

=

=

=

=

=

1.0,

transmission_color,

specular_IOR,

transmission_roughness,

normal,

main_tangent,

ggx,

T) (16)

specular_bsdf = dielectric_bsdf (weight

tint

ior

roughness

normal

tangent

distribution

scatter_mode

=

=

=

=

=

=

=

=

specular,

specular_color,

specular_IOR,

main_roughness,

normal,

main_tangent,

ggx,

R) (17)

metal_bsdf = generalized_schlick_bsdf (weight

color0

color90

roughness

normal

tangent

=

=

=

=

=

=

1.0,

base * base_color,

specular * specular_color,

main_roughness

normal,

main_tangent,

thin_film_bsdf = thin_f ilm_bsdf (thickness

ior

=

=

thin_film_thickness,

thin_film_IOR) (18)

blended_coat_emission_edf = mix(fg

bg

mix

=

=

=

coat_emission_edf,

uniform_edf (color = emission * emission_color),

coat) (19)

8/23/23, 11:58 AM Commentary on MaterialX implementation of OpenPBR

file:///C:/Users/portsmj/dev/OpenPBR-fork/materialx.md.html 6/8

3.2 Coat influence

3.3 Tangent rotation

3.4 IOR remapping

3.5 Roughnesses

coat_emission_edf = generalized_schlick_edf (color0

color90

exponent

base

=

=

=

=

(1, 1, 1),

coat_ior_to_F0,

5.0,

coat_tinted_emission_edf) (20)

coat_tinted_emission_edf = coat_color ∗ uniform_edf (color = emission * emission_color) (21)

coat_gamma = 1.0 + coat_affect_color*coat (22)

coat_affected_subsurface_color = pow(max(subsurface_color, 0), coat_gamma)

coat_affected_diffuse_color = pow(max(base_color, 0), coat_gamma)

coat_tangent = {normalize(coat_tangent_rotate),

tangent,

if coat_anisotropy > 0

otherwise.
(23)

coat_tangent_rotate = rotate3d(tangent,

amount

axis

=

=

360 ∗ coat_rotation,

coat_normal) (24)

main_tangent = {normalize(tangent_rotate),

tangent,

if specular_anisotropy > 0

otherwise.
(25)

tangent_rotate = rotate3d(tangent,

amount

axis

=

=

360 ∗ specular_rotation,

normal) (26)

artistic_ior = artistic_ior(reflectivity

edge_color

=

=

base_color * base,

specular_color * specular) (27)

coat_ior_to_F0 = (1 − coat_IOR

1 + coat_IOR
)

2
(28)

main_roughness = roughness_anisotropy(roughness

anisotropy

=

=

coat_affected_roughness,

specular_anisotropy) (29)

coat_affected_roughness = mix(fg

bg

mix

=

=

=

1.0,

specular_roughness,

coat_roughness * coat_affect_roughness * coat) (30)

transmission_roughness = roughness_anisotropy(roughness

anisotropy

=

=

coat_affected_transmission_roughness,

specular_anisotropy) (31)

8/23/23, 11:58 AM Commentary on MaterialX implementation of OpenPBR

file:///C:/Users/portsmj/dev/OpenPBR-fork/materialx.md.html 7/8

4 MaterialX commentary in context of OpenPBR

4.1 Commentary on overall differences in formalism

Generally, the existing MaterialX implementation seems to be a fairly faithful transcription of the formulas in the
Autodesk Standard Surface spec into an XML node form. But this then inherits the assumption of that spec that the
model is represented by a linear combination of weighted BSDFs, which is not assumed in OpenPBR where the spec
attempts to describe an unambiguous physical structure, remaining agnostic about how this is
implemented/approximated. This may be fine as MaterialX will amount to one particular approximate implementation
(possibly the canonical/standard one that closes the gap between the physical description and a practical
implementation), but we need to be careful about how this approximation is arrived at since it is no longer explicit in the
spec, and make sure that is is reasonably faithful to the form of the underlying physical model.

The MaterialX model consists of BSDFs composed by layer and mix operations. There is no explicit mention of
media/“VDF”. For example in MaterialX contains the parameters of the subsurface medium, which is
not a BSDF. In OpenPBR, there is an explicit distinction between the interface of the medium (a dielectric BSDF), and
the medium itself (a “VDF”, borrowing the MaterialX terminology).

The concept of BSDFs/closures having a “weight” is not generally present in OpenPBR, as it doesn't necessarily make
sense since not all BSDF models have a simple albedo scale factor as one of their parameters. If a weight parameter is
present which is supposed to scale the albedo of the BSDF this is said explicitly (e.g. parameters scales the
diffuse BSDF albedo, which makes good sense since albedo is a parameter of diffuse BSDFs). The weight
and color will be interpreted in OpenPBR as a (non-physical, but artistically useful/important) multiplier of the Fresnel
factor, rather than a generic weight. Some weights presented in MaterialX as a BSDF weight operate in OpenPBR by
controlling the coverage/presence of a layer (e.g.).

OpenPBR introduces the concept of a layer “coverage” or “presence” weight, which is the mix weight between the
coated and uncoated substrate. This is essentially what the weight in Standard Surface is doing, via a lerp formula.
In MaterialX, this coverage weight is not really explicit instead the base of the coat is “multiplied” by the lerp formula.
This form of operation made sense in the context of a model which is blending BSDFs (such as standard surface), but
doesn't make sense in OpenPBR where one is composing slabs of material not BSDF functions. It could be clearer to
augment the MaterialX layer operator with a coverage weight (which is trivial to transform into the lerp formula form if
working with BSDF linear combinations).

The layer operation takes a top and a base in MaterialX. Presumably “top” means the BSDF of the top interface, and
“base” means the (BSDF of the?) material substrate on which the layer is bonded. But in general there will be some
media in the sandwich between the interfaces (or at the bottom of the layer stack), which is not explicit in the MaterialX
representation. In OpenPBR we try to make this explicit by representing the material as consisting of physical slabs with
defined interface BSDFs and internal medium, denoted . If there is a “layer” operator in the formalism,
it probably should allow explicitly for the presence of the media, otherwise accounting for media requires “hacks” such
as the manual scaling factor in the base of the MaterialX coat layer.

In OpenPBR there is no distinction between and (i.e. two separate BSDFs with one
half-space artificially ignored via a “scatter mode”), these are just the reflected/transmitted lobes of the single dielectric
BSDF (bounding the underlying medium). Any non-physical/artistic multipliers of the dielectric's reflected/transmitted
lobes (and how the energy balance is affected) will be made explicit in the description of this single BSDF. Again, this is

coat_affected_transmission_roughness = mix(fg

bg

mix

=

=

=

1.0,

transmission_roughness_clamped,

coat_roughness * coat_affect_roughness * coat) (32

transmission_roughness_clamped = clamp(specular_roughness + transmission_extra_roughness) (33)

subsurface_bsdf

base_color

specular

sheen

coat

Slab(, V ,)f t f b

transmission_bsdf specular_bsdf

8/23/23, 11:58 AM Commentary on MaterialX implementation of OpenPBR

file:///C:/Users/portsmj/dev/OpenPBR-fork/materialx.md.html 8/8

not properly described yet in the OpenPBR spec. It could be reasonable for MaterialX to use this scatter mode notion,
but arguably it is more likely that renderers will implement a single dielectric BSDF with logic to handle the balance
between reflection and transmission.
As noted, in OpenPBR there will be a single dielectric BSDF representing the interface above the medium described
either by subsurface, transmission, or diffuse parametrizations. The in MaterialX seems to be
representing the base medium corresponding to the transmission properties, but:

It's not explicit that this is a dielectric BSDF
The volumetric parameters are missing (are those outside the scope of the existing MaterialX formalism?)
This is presumably supposed to be a model of a medium (VDF), not a BSDF interface, so the name

 is misleading (as is).

4.2 Commentary on some more technical discrepancies in model

Note that sheen is being moved to the top of the material in OpenPBR, not just renamed to fuzz. Also the sheen layering
operation is not properly transcribed from the Standard Surface spec, as the sheen color should not be included in the
reflectance for albedo scaling (otherwise the complementary color would tint the underlying base). We will need to
rationalize this in the OpenPBR spec as corresponding to the sheen medium having a non-colored/grey extinction.

In OpenPBR, the primary specular lobe will no longer have the interpretation as an explicit “specular layer”, instead it is
just due to the dielectric BSDF of the boundary of the base dielectric. To be fair, this is not properly fleshed out yet in
the OpenPBR draft spec.

In MaterialX, thin film is represented as an explicit layer (of dielectric?) under the coat. In practice, in Arnold this is
handled by modifying the Fresnel factor of the underlying dielectric and metal BSDFs. It would not make sense for
example to treat this as a regular layer composed by e.g. albedo scaling, as the relevant physical effect is a special one
requiring wave optics to solve, so seems more appropriate to handle these details within the black-box BSDF
implementations than as part of the material layering formalism. This is still an open question in OpenPBR though.

In MaterialX, the mix operation is overloaded to mean both statistical mix of materials, as well as a blend of EDFs, and
a regular lerp of numeric quantities. This seems reasonable as a convenience, though potentially slightly confusing.

Minor point, but having an explicit “foreground” and “background” in the mix operation doesn't quite seem an
appropriate analogy, as the two components are on an equal footing, the only question is which component the weight
controls (so the form seems clearer).

Just to note, the formulas (in Standard Surface, transcribed into MaterialX) that implement the effect of the coat on the
diffuse/subsurface color and roughnesses are one particular attempt at a rough approximation of effects that would
happen automatically in a physically accurate simulation of the light transport. Though it may be fine for MaterialX to
use these particular rough approximations explicitly, we're unclear whether to include such specific approximations in
the OpenPBR spec.

In MaterialX, there is a single EDF associated with the entire surface, so the effects supposed to be due to the emission
occurring under the coat have to be inserted by hand. It would be more explicit to associate the EDF with a particular
“slab” in the OpenPBR formalism (i.e. the entire material below the coat).

The explicit formulas defined for the tangent rotation seem perhaps unnecessary, as any implementation will probably
have their own routines to do this (given some unambiguous definition of the meaning of the parameters), rather than
executing it via the node graph.

The use of for the emission seems quite specific, and unclear what setting
 is trying to approximate.

translucent_bsdf

translucent_bsdf subsurface_bsdf

mix(, ,)S0 S1 w1

generalized_schlick_edf

color90 = coat_ior_to_F0

