LensCore is an open-source accessibility testing and web crawling platform built with a containerized, API-driven architecture. It provides comprehensive web accessibility analysis using axe-core integration and flexible storage options for screenshots and reports.
- π Web Crawling: Intelligent website crawling with configurable depth and rules
- βΏ Accessibility Testing: WCAG compliance testing powered by axe-core
- π€ AI-Powered Analysis: Plain language explanations and tech-stack specific remediation
- π§ Intelligent Caching: Smart caching system to minimize AI API costs and improve performance
- πΈ Screenshot Capture: Automatic screenshot capture for violations and pages
- πΎ Flexible Storage: Support for local, AWS S3, and Google Cloud Storage
- π RESTful APIs: Clean API endpoints for crawl, test, and combined operations
- π³ Docker Ready: Fully containerized with Docker Compose support
- β‘ High Performance: Concurrent processing with configurable limits
- π‘οΈ Production Ready: Built-in health checks, logging, and error handling
- Quick Start
- Makefile Commands
- Configuration
- API Documentation
- AI Integration
- Contributing
- Code of Conduct
- License
- Node.js 20+ (for local development)
- Docker & Docker Compose (for containerized deployment)
- Git (for cloning the repository)
-
Clone the repository:
git clone <repository-url> cd LensCore
-
Set up environment:
cp env.example .env
-
Start the service (with Makefile):
make build-docker
-
Verify installation:
curl http://localhost:3001/api/health
-
Stop services:
make down
For production deployments with Redis caching:
-
Set up environment:
cp env.example .env # Edit .env and set CACHE_TYPE=redis -
Start with Redis:
docker-compose up -d --build
-
Verify Redis connection:
curl http://localhost:3001/api/cache/stats
-
Install dependencies:
make install
-
Set up environment:
cp env.example .env
-
Start development server:
make dev
Common tasks:
make install # Install dependencies
make dev # Run development server
make build # Build for production
make start # Run production server
make test # Run all tests
make lint # Run ESLint
make format # Format code with Prettier
make typecheck # TypeScript type checking
make build-docker # Build Docker image
make up # Start services with Docker Compose
make down # Stop services with Docker Compose
make logs # Tail Docker Compose logs
make env # Print key env variables from .envLensCore uses environment variables for configuration. Copy env.example to .env and customize as needed:
NODE_ENV=development
PORT=3001
LOG_LEVEL=infoLocal Storage (Default):
STORAGE_TYPE=local
STORAGE_PATH=./storageAWS S3:
STORAGE_TYPE=s3
AWS_ACCESS_KEY_ID=your_aws_access_key
AWS_SECRET_ACCESS_KEY=your_aws_secret_key
AWS_REGION=us-east-1
AWS_S3_BUCKET=your-s3-bucket-nameGoogle Cloud Storage:
STORAGE_TYPE=gcs
GCS_PROJECT_ID=your-gcs-project-id
GCS_KEY_FILE_PATH=./path/to/service-account-key.json
GCS_BUCKET_NAME=your-gcs-bucket-nameCRAWL_TIMEOUT=10000
CRAWL_CONCURRENCY=5
CRAWL_MAX_URLS=25
CRAWL_WAIT_UNTIL=domcontentloadedAXE_TIMEOUT=10000
AXE_CONCURRENCY=5OPENAI_API_KEY=your-openai-api-key
OPENAI_MODEL=gpt-3.5-turbo
OPENAI_MAX_TOKENS=1000
OPENAI_TEMPERATURE=0.7
OPENAI_TIMEOUT=30000
OPENAI_RETRY_ATTEMPTS=3
OPENAI_RETRY_DELAY=1000CACHE_TYPE=memory # memory, filesystem, redis
CACHE_TTL=3600 # 1 hour in seconds
CACHE_MAX_SIZE=1000 # For memory cache
CACHE_PATH=./cache # For filesystem cache
REDIS_HOST=localhost # Redis host
REDIS_PORT=6379 # Redis port
REDIS_PASSWORD= # Redis password (optional)
REDIS_DB=0 # Redis databaseBase URL & Response Format
http://localhost:3001/api
All API responses follow a consistent JSON format with appropriate HTTP status codes.
π₯ Health Check
Check the health status of all services.
Endpoint: GET /api/health
Example:
curl http://localhost:3001/api/healthResponse:
{
"status": "healthy",
"timestamp": "2024-01-01T00:00:00.000Z",
"services": {
"crawling": "up",
"accessibility": "up",
"storage": "up"
}
}π·οΈ Crawl Website
Crawl a website and discover all linked pages.
Endpoint: POST /api/crawl
Request Body:
{
"url": "https://example.com",
"max_depth": 2,
"maxUrls": 10,
"timeout": 10000,
"concurrency": 3,
"waitUntil": "domcontentloaded",
"rules": {
"include_subdomains": true,
"follow_external": false,
"exclude_paths": ["/admin", "/private"],
"include_paths": ["/public", "/docs"],
"respect_robots": true
},
"enableAI": true,
"projectContext": {
"framework": "React",
"cssFramework": "Tailwind CSS",
"language": "TypeScript",
"buildTool": "Vite"
}
}Parameters:
url(required): Target website URLmax_depth(optional): Maximum crawling depth (1-5, default: 2)maxUrls(optional): Maximum number of URLs to crawl (default: 25)timeout(optional): Request timeout in milliseconds (default: 10000)concurrency(optional): Number of concurrent requests (default: 5)waitUntil(optional): Page load condition (default: "domcontentloaded")rules(optional): Crawling rules configurationenableAI(optional): Enable AI processing for accessibility issues (default: false)projectContext(optional): Structured project context for more precise AI analysis
Crawling Rules:
include_subdomains(optional): Include subdomains in crawling (default: false)follow_external(optional): Follow external links (default: false)exclude_paths(optional): Array of paths to exclude from crawlinginclude_paths(optional): Array of paths to include (if specified, only these paths will be crawled)respect_robots(optional): Respect robots.txt (default: true)
Project Context Structure:
{
"framework": "React",
"cssFramework": "Tailwind CSS",
"language": "TypeScript",
"buildTool": "Vite",
"additionalContext": "Custom context"
}Example:
curl -X POST http://localhost:3001/api/crawl \
-H "Content-Type: application/json" \
-d '{
"url": "https://example.com",
"max_depth": 2,
"maxUrls": 10,
"timeout": 10000,
"concurrency": 3,
"rules": {
"include_subdomains": true,
"follow_external": false,
"exclude_paths": ["/admin", "/private"]
},
"enableAI": true,
"projectContext": {
"framework": "React",
"cssFramework": "Tailwind CSS",
"language": "TypeScript",
"additionalContext": "Need to detail explanation"
}
}'Response:
{
"pages": [
{
"url": "https://example.com",
"title": "Example Domain",
"description": "This domain is for use in illustrative examples",
"statusCode": 200,
"timestamp": "2024-01-01T00:00:00.000Z"
},
{
"url": "https://example.com/about",
"title": "About Us",
"description": "Learn more about our company",
"statusCode": 200,
"timestamp": "2024-01-01T00:00:01.000Z"
}
],
"totalPages": 2,
"crawlTime": 2500,
"metadata": {
"crawledAt": "2024-01-01T00:00:02.000Z",
"maxDepth": 2,
"rules": {
"include_subdomains": true,
"follow_external": false,
"exclude_paths": ["/admin", "/private"]
},
"totalPages": 2,
"crawlTime": 2500,
"aiEnabled": true,
"cacheHits": 0,
"cacheMisses": 0,
"processingTime": 150
}
}βΏ Test Accessibility
Run accessibility tests on a single page using axe-core.
Endpoint: POST /api/test
Request Body:
{
"url": "https://example.com",
"includeScreenshot": true,
"timeout": 10000,
"rules": ["color-contrast", "image-alt"],
"tags": ["wcag2aa", "wcag143"],
"enableAI": true,
"projectContext": {
"framework": "Vue.js",
"cssFramework": "Bootstrap",
"language": "JavaScript"
}
}Parameters:
url(required): Target page URLincludeScreenshot(optional): Capture screenshot (default: false)timeout(optional): Test timeout in milliseconds (default: 10000)rules(optional): Specific axe-core rules to testtags(optional): WCAG tags to include in testingenableAI(optional): Enable AI processing for accessibility issues (default: false)projectContext(optional): Structured project context for more precise AI analysis
Project Context Structure:
{
"framework": "React",
"cssFramework": "Tailwind CSS",
"language": "TypeScript",
"buildTool": "Vite",
"additionalContext": "Custom context"
}Example:
curl -X POST http://localhost:3001/api/test \
-H "Content-Type: application/json" \
-d '{
"url": "https://example.com",
"includeScreenshot": true,
"timeout": 10000,
"enableAI": true,
"projectContext": {
"framework": "Next.js",
"cssFramework": "Tailwind CSS",
"language": "TypeScript"
}
}'Response:
{
"url": "https://example.com",
"score": 85,
"violations": [
{
"id": "color-contrast",
"impact": "serious",
"description": "Ensures the contrast between foreground and background colors meets WCAG 2 AA contrast ratio thresholds",
"help": "Elements must have sufficient color contrast",
"helpUrl": "https://dequeuniversity.com/rules/axe/4.8/color-contrast",
"tags": ["cat.color", "wcag2aa", "wcag143"],
"nodes": [
{
"target": ["h1"],
"html": "<h1>Example Domain</h1>",
"failureSummary": "Fix any of the following:\n Element has insufficient color contrast of 2.52 (foreground color: #000000, background color: #ffffff, font size: 32px, font weight: normal). Expected contrast ratio of at least 3:1"
}
],
"aiExplanation": "This accessibility issue occurs when text doesn't have enough contrast against its background...",
"aiRemediation": "To fix this issue:\n1. Increase color contrast ratio...\n2. Use CSS: color: #000; background: #fff;",
"userStory": "Users with screen readers have difficulty navigating because there is no clear main landmark. Users who use keyboard navigation cannot jump to the main content quickly. Users with cognitive disabilities may be confused by unclear page structure."
}
],
"passes": [],
"incomplete": [],
"inapplicable": [],
"screenshot": "https://storage.example.com/screenshots/uuid.png",
"timestamp": "2024-01-01T00:00:00.000Z",
"aiEnabled": true,
"aiError": null
}π Test Multiple Pages
Run accessibility tests on multiple pages simultaneously.
Endpoint: POST /api/test-multiple
Request Body:
[
{
"url": "https://example.com",
"includeScreenshot": true,
"timeout": 10000
},
{
"url": "https://example.com/about",
"includeScreenshot": true,
"timeout": 10000
}
]Example:
curl -X POST http://localhost:3001/api/test-multiple \
-H "Content-Type: application/json" \
-d '[
{
"url": "https://example.com",
"includeScreenshot": true
},
{
"url": "https://example.com/about",
"includeScreenshot": true
}
]'Response:
{
"results": [
{
"url": "https://example.com",
"score": 85,
"violations": [...],
"passes": [],
"incomplete": [],
"inapplicable": [],
"screenshot": "https://storage.example.com/screenshots/uuid1.png",
"timestamp": "2024-01-01T00:00:00.000Z"
},
{
"url": "https://example.com/about",
"score": 92,
"violations": [...],
"passes": [],
"incomplete": [],
"inapplicable": [],
"screenshot": "https://storage.example.com/screenshots/uuid2.png",
"timestamp": "2024-01-01T00:00:00.000Z"
}
],
"totalPages": 2,
"testTime": 3000
}π Combined Crawl and Test
Crawl a website and run accessibility tests on all discovered pages.
Endpoint: POST /api/combined
Request Body:
{
"url": "https://example.com",
"crawlOptions": {
"maxUrls": 5,
"concurrency": 2,
"timeout": 10000
},
"testOptions": {
"includeScreenshot": true,
"timeout": 15000,
"rules": ["color-contrast"]
},
"enableAI": true,
"projectContext": {
"framework": "Angular",
"cssFramework": "Material UI",
"language": "TypeScript"
}
}Parameters:
url(required): Target website URLcrawlOptions(optional): Crawling configuration (see crawl API)testOptions(optional): Testing configuration (see test API)enableAI(optional): Enable AI processing for accessibility issues (default: false)projectContext(optional): Structured project context for more precise AI analysis
Project Context Structure:
{
"framework": "React",
"cssFramework": "Tailwind CSS",
"language": "TypeScript",
"buildTool": "Vite",
"additionalContext": "Custom context"
}Example:
curl -X POST http://localhost:3001/api/combined \
-H "Content-Type: application/json" \
-d '{
"url": "https://example.com",
"crawlOptions": {
"maxUrls": 5,
"concurrency": 2
},
"testOptions": {
"includeScreenshot": true,
"timeout": 15000
},
"enableAI": true,
"projectContext": {
"framework": "React",
"cssFramework": "Tailwind CSS",
"language": "TypeScript"
}
}'Response:
{
"crawl": {
"pages": [
{
"url": "https://example.com",
"title": "Example Domain",
"description": "This domain is for use in illustrative examples",
"statusCode": 200,
"timestamp": "2024-01-01T00:00:00.000Z"
}
],
"totalPages": 1,
"crawlTime": 3000
},
"accessibility": {
"results": [
{
"url": "https://example.com",
"score": 85,
"violations": [
{
"id": "color-contrast",
"impact": "serious",
"description": "Elements must have sufficient color contrast",
"help": "Ensure all text elements have sufficient color contrast",
"helpUrl": "https://dequeuniversity.com/rules/axe/4.8/color-contrast",
"nodes": [...],
"aiExplanation": "This accessibility issue occurs when text doesn't have enough contrast...",
"aiRemediation": "To fix this issue:\n1. Increase color contrast ratio...\n2. Use CSS: color: #000; background: #fff;"
}
],
"passes": [],
"incomplete": [],
"inapplicable": [],
"screenshot": "https://storage.example.com/screenshots/uuid.png",
"timestamp": "2024-01-01T00:00:00.000Z",
"aiEnabled": true,
"aiError": null
}
],
"totalPages": 1,
"testTime": 15000
},
"totalTime": 18000
}ποΈ Cache Management
Manage the intelligent caching system for AI responses.
Get Cache Statistics
Endpoint: GET /api/cache/stats
Example:
curl http://localhost:3001/api/cache/statsResponse:
{
"status": "success",
"data": {
"hits": 15,
"misses": 8,
"size": 12,
"hitRate": 0.65
}
}Clear Cache
Endpoint: DELETE /api/cache/clear
Example:
curl -X DELETE http://localhost:3001/api/cache/clearResponse:
{
"status": "success",
"message": "Cache cleared successfully"
}LensCore includes optional AI-powered analysis for accessibility issues, providing plain language explanations and tech-stack specific remediation steps.
- Plain Language Explanations: Convert technical accessibility issues into easy-to-understand explanations
- Tech-Stack Specific Remediation: Get specific, actionable steps tailored to your technology stack
- Dynamic Prompt Engineering: Intelligent prompt generation based on project context
- Structured Response Parsing: Consistent JSON response format with fallback handling
- Optional Processing: AI processing is opt-in and doesn't affect existing functionality
- Cost Effective: Only processes AI when explicitly requested
Project Context (Recommended):
{
"enableAI": true,
"projectContext": {
"framework": "React",
"cssFramework": "Tailwind CSS",
"language": "TypeScript",
"buildTool": "Vite"
}
}Backward Compatibility (Tech Stack String):
{
"enableAI": true,
"projectContext": {
"additionalContext": "React, TypeScript, Tailwind CSS"
}
}When AI is enabled, responses include additional fields:
aiExplanation: Plain language explanation of the accessibility issueaiRemediation: Specific steps to fix the issue with code examplesuserStory: Human-readable impact explanation for the accessibility issueaiEnabled: Boolean indicating if AI processing was successfulaiError: Error message if AI processing failed
Set your OpenAI API key in environment variables:
OPENAI_API_KEY=your-openai-api-keyLensCore uses advanced prompt engineering to generate context-aware responses:
Automatic Tech Stack Detection:
- Framework: React, Vue.js, Angular, Svelte, Next.js, Nuxt.js
- CSS Framework: Tailwind CSS, Bootstrap, Material UI, Chakra UI
- Language: TypeScript, JavaScript
- Build Tools: Webpack, Vite, Rollup, Parcel
Response Format:
{
"rule_id": "color-contrast",
"plain_explanation": "This text has insufficient contrast for users with visual impairments.",
"remediation": "Use Tailwind CSS classes like text-gray-800 or text-gray-900 for better contrast."
}Fallback Handling:
- Automatic fallback responses if AI fails
- Graceful degradation without breaking the API
- Consistent response structure
Test with AI (Project Context):
curl -X POST http://localhost:3001/api/test \
-H "Content-Type: application/json" \
-d '{
"url": "https://example.com",
"enableAI": true,
"projectContext": {
"framework": "Vue.js",
"cssFramework": "Bootstrap",
"language": "JavaScript"
}
}'Test with AI (Backward Compatibility):
curl -X POST http://localhost:3001/api/test \
-H "Content-Type: application/json" \
-d '{
"url": "https://example.com",
"enableAI": true,
"projectContext": {
"additionalContext": "Vue.js, JavaScript, Bootstrap"
}
}'Combined with AI:
curl -X POST http://localhost:3001/api/combined \
-H "Content-Type: application/json" \
-d '{
"url": "https://example.com",
"enableAI": true,
"projectContext": {
"framework": "Next.js",
"cssFramework": "Tailwind CSS",
"language": "TypeScript"
}
}'We welcome contributions! Whether you're fixing bugs, adding features, or improving documentation, your help makes LensCore better.
See our Contributing Guide for details on how to get started.
This project adheres to the Contributor Covenant Code of Conduct to ensure a welcoming and inclusive environment for all contributors. By participating in this project, you are expected to uphold this code. Please report any violations to the project maintainers.
This project is licensed under the MIT License - see the LICENSE file for details.
- axe-core for accessibility testing
- Puppeteer for web automation
- Express.js for the web framework
- OpenAI for AI-powered accessibility analysis
- Docker for containerization
Made with β€οΈ by the AccessTime team