Skip to content

🌐 LensCore is an open-source, API-first platform for web crawling and automated accessibility testing. Easily scan websites, detect WCAG issues with axe-core, and store reports, all in a fast, scalable, containerized environment

License

Notifications You must be signed in to change notification settings

Access-Time/LensCore

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

83 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

LensCore

AccessLine Logo

License: MIT Contributor Covenant Docker TypeScript Node.js
Puppeteer axe-core Express

LensCore is an open-source accessibility testing and web crawling platform built with a containerized, API-driven architecture. It provides comprehensive web accessibility analysis using axe-core integration and flexible storage options for screenshots and reports.

πŸš€ Features

  • 🌐 Web Crawling: Intelligent website crawling with configurable depth and rules
  • β™Ώ Accessibility Testing: WCAG compliance testing powered by axe-core
  • πŸ€– AI-Powered Analysis: Plain language explanations and tech-stack specific remediation
  • 🧠 Intelligent Caching: Smart caching system to minimize AI API costs and improve performance
  • πŸ“Έ Screenshot Capture: Automatic screenshot capture for violations and pages
  • πŸ’Ύ Flexible Storage: Support for local, AWS S3, and Google Cloud Storage
  • πŸ”Œ RESTful APIs: Clean API endpoints for crawl, test, and combined operations
  • 🐳 Docker Ready: Fully containerized with Docker Compose support
  • ⚑ High Performance: Concurrent processing with configurable limits
  • πŸ›‘οΈ Production Ready: Built-in health checks, logging, and error handling

πŸ“‹ Table of Contents

⚑ Quick Start

Prerequisites

  • Node.js 20+ (for local development)
  • Docker & Docker Compose (for containerized deployment)
  • Git (for cloning the repository)

Using Docker (Recommended)

  1. Clone the repository:

    git clone <repository-url>
    cd LensCore
  2. Set up environment:

    cp env.example .env
  3. Start the service (with Makefile):

    make build-docker
  4. Verify installation:

    curl http://localhost:3001/api/health
  5. Stop services:

    make down

Docker with Redis (Production)

For production deployments with Redis caching:

  1. Set up environment:

    cp env.example .env
    # Edit .env and set CACHE_TYPE=redis
  2. Start with Redis:

    docker-compose up -d --build
  3. Verify Redis connection:

    curl http://localhost:3001/api/cache/stats

Using Node.js

  1. Install dependencies:

    make install
  2. Set up environment:

    cp env.example .env
  3. Start development server:

    make dev

Makefile Commands

Common tasks:

make install      # Install dependencies
make dev          # Run development server
make build        # Build for production
make start        # Run production server
make test         # Run all tests
make lint         # Run ESLint
make format          # Format code with Prettier
make typecheck    # TypeScript type checking

make build-docker # Build Docker image
make up           # Start services with Docker Compose
make down         # Stop services with Docker Compose
make logs         # Tail Docker Compose logs

make env          # Print key env variables from .env

βš™οΈ Configuration

Environment Variables

LensCore uses environment variables for configuration. Copy env.example to .env and customize as needed:

Core Application Settings

NODE_ENV=development
PORT=3001
LOG_LEVEL=info

Storage Configuration

Local Storage (Default):

STORAGE_TYPE=local
STORAGE_PATH=./storage

AWS S3:

STORAGE_TYPE=s3
AWS_ACCESS_KEY_ID=your_aws_access_key
AWS_SECRET_ACCESS_KEY=your_aws_secret_key
AWS_REGION=us-east-1
AWS_S3_BUCKET=your-s3-bucket-name

Google Cloud Storage:

STORAGE_TYPE=gcs
GCS_PROJECT_ID=your-gcs-project-id
GCS_KEY_FILE_PATH=./path/to/service-account-key.json
GCS_BUCKET_NAME=your-gcs-bucket-name

Crawling Configuration

CRAWL_TIMEOUT=10000
CRAWL_CONCURRENCY=5
CRAWL_MAX_URLS=25
CRAWL_WAIT_UNTIL=domcontentloaded

Accessibility Testing Configuration

AXE_TIMEOUT=10000
AXE_CONCURRENCY=5

AI Processing Configuration (Optional)

OPENAI_API_KEY=your-openai-api-key
OPENAI_MODEL=gpt-3.5-turbo
OPENAI_MAX_TOKENS=1000
OPENAI_TEMPERATURE=0.7
OPENAI_TIMEOUT=30000
OPENAI_RETRY_ATTEMPTS=3
OPENAI_RETRY_DELAY=1000

Cache Configuration (Optional)

CACHE_TYPE=memory          # memory, filesystem, redis
CACHE_TTL=3600            # 1 hour in seconds
CACHE_MAX_SIZE=1000       # For memory cache
CACHE_PATH=./cache         # For filesystem cache
REDIS_HOST=localhost       # Redis host
REDIS_PORT=6379           # Redis port
REDIS_PASSWORD=            # Redis password (optional)
REDIS_DB=0                # Redis database

πŸ“š API Documentation

Base URL & Response Format

Base URL

http://localhost:3001/api

Response Format

All API responses follow a consistent JSON format with appropriate HTTP status codes.


πŸ₯ Health Check

Check the health status of all services.

Endpoint: GET /api/health

Example:

curl http://localhost:3001/api/health

Response:

{
  "status": "healthy",
  "timestamp": "2024-01-01T00:00:00.000Z",
  "services": {
    "crawling": "up",
    "accessibility": "up",
    "storage": "up"
  }
}

πŸ•·οΈ Crawl Website

Crawl a website and discover all linked pages.

Endpoint: POST /api/crawl

Request Body:

{
  "url": "https://example.com",
  "max_depth": 2,
  "maxUrls": 10,
  "timeout": 10000,
  "concurrency": 3,
  "waitUntil": "domcontentloaded",
  "rules": {
    "include_subdomains": true,
    "follow_external": false,
    "exclude_paths": ["/admin", "/private"],
    "include_paths": ["/public", "/docs"],
    "respect_robots": true
  },
  "enableAI": true,
  "projectContext": {
    "framework": "React",
    "cssFramework": "Tailwind CSS",
    "language": "TypeScript",
    "buildTool": "Vite"
  }
}

Parameters:

  • url (required): Target website URL
  • max_depth (optional): Maximum crawling depth (1-5, default: 2)
  • maxUrls (optional): Maximum number of URLs to crawl (default: 25)
  • timeout (optional): Request timeout in milliseconds (default: 10000)
  • concurrency (optional): Number of concurrent requests (default: 5)
  • waitUntil (optional): Page load condition (default: "domcontentloaded")
  • rules (optional): Crawling rules configuration
  • enableAI (optional): Enable AI processing for accessibility issues (default: false)
  • projectContext (optional): Structured project context for more precise AI analysis

Crawling Rules:

  • include_subdomains (optional): Include subdomains in crawling (default: false)
  • follow_external (optional): Follow external links (default: false)
  • exclude_paths (optional): Array of paths to exclude from crawling
  • include_paths (optional): Array of paths to include (if specified, only these paths will be crawled)
  • respect_robots (optional): Respect robots.txt (default: true)

Project Context Structure:

{
  "framework": "React",
  "cssFramework": "Tailwind CSS",
  "language": "TypeScript",
  "buildTool": "Vite",
  "additionalContext": "Custom context"
}

Example:

curl -X POST http://localhost:3001/api/crawl \
  -H "Content-Type: application/json" \
  -d '{
    "url": "https://example.com",
    "max_depth": 2,
    "maxUrls": 10,
    "timeout": 10000,
    "concurrency": 3,
    "rules": {
      "include_subdomains": true,
      "follow_external": false,
      "exclude_paths": ["/admin", "/private"]
    },
    "enableAI": true,
    "projectContext": {
      "framework": "React",
      "cssFramework": "Tailwind CSS",
      "language": "TypeScript",
      "additionalContext": "Need to detail explanation"
    }
  }'

Response:

{
  "pages": [
    {
      "url": "https://example.com",
      "title": "Example Domain",
      "description": "This domain is for use in illustrative examples",
      "statusCode": 200,
      "timestamp": "2024-01-01T00:00:00.000Z"
    },
    {
      "url": "https://example.com/about",
      "title": "About Us",
      "description": "Learn more about our company",
      "statusCode": 200,
      "timestamp": "2024-01-01T00:00:01.000Z"
    }
  ],
  "totalPages": 2,
  "crawlTime": 2500,
  "metadata": {
    "crawledAt": "2024-01-01T00:00:02.000Z",
    "maxDepth": 2,
    "rules": {
      "include_subdomains": true,
      "follow_external": false,
      "exclude_paths": ["/admin", "/private"]
    },
    "totalPages": 2,
    "crawlTime": 2500,
    "aiEnabled": true,
    "cacheHits": 0,
    "cacheMisses": 0,
    "processingTime": 150
  }
}

β™Ώ Test Accessibility

Run accessibility tests on a single page using axe-core.

Endpoint: POST /api/test

Request Body:

{
  "url": "https://example.com",
  "includeScreenshot": true,
  "timeout": 10000,
  "rules": ["color-contrast", "image-alt"],
  "tags": ["wcag2aa", "wcag143"],
  "enableAI": true,
  "projectContext": {
    "framework": "Vue.js",
    "cssFramework": "Bootstrap",
    "language": "JavaScript"
  }
}

Parameters:

  • url (required): Target page URL
  • includeScreenshot (optional): Capture screenshot (default: false)
  • timeout (optional): Test timeout in milliseconds (default: 10000)
  • rules (optional): Specific axe-core rules to test
  • tags (optional): WCAG tags to include in testing
  • enableAI (optional): Enable AI processing for accessibility issues (default: false)
  • projectContext (optional): Structured project context for more precise AI analysis

Project Context Structure:

{
  "framework": "React",
  "cssFramework": "Tailwind CSS",
  "language": "TypeScript",
  "buildTool": "Vite",
  "additionalContext": "Custom context"
}

Example:

curl -X POST http://localhost:3001/api/test \
  -H "Content-Type: application/json" \
  -d '{
    "url": "https://example.com",
    "includeScreenshot": true,
    "timeout": 10000,
    "enableAI": true,
    "projectContext": {
      "framework": "Next.js",
      "cssFramework": "Tailwind CSS",
      "language": "TypeScript"
    }
  }'

Response:

{
  "url": "https://example.com",
  "score": 85,
  "violations": [
    {
      "id": "color-contrast",
      "impact": "serious",
      "description": "Ensures the contrast between foreground and background colors meets WCAG 2 AA contrast ratio thresholds",
      "help": "Elements must have sufficient color contrast",
      "helpUrl": "https://dequeuniversity.com/rules/axe/4.8/color-contrast",
      "tags": ["cat.color", "wcag2aa", "wcag143"],
      "nodes": [
        {
          "target": ["h1"],
          "html": "<h1>Example Domain</h1>",
          "failureSummary": "Fix any of the following:\n  Element has insufficient color contrast of 2.52 (foreground color: #000000, background color: #ffffff, font size: 32px, font weight: normal). Expected contrast ratio of at least 3:1"
        }
      ],
      "aiExplanation": "This accessibility issue occurs when text doesn't have enough contrast against its background...",
      "aiRemediation": "To fix this issue:\n1. Increase color contrast ratio...\n2. Use CSS: color: #000; background: #fff;",
      "userStory": "Users with screen readers have difficulty navigating because there is no clear main landmark. Users who use keyboard navigation cannot jump to the main content quickly. Users with cognitive disabilities may be confused by unclear page structure."
    }
  ],
  "passes": [],
  "incomplete": [],
  "inapplicable": [],
  "screenshot": "https://storage.example.com/screenshots/uuid.png",
  "timestamp": "2024-01-01T00:00:00.000Z",
  "aiEnabled": true,
  "aiError": null
}

πŸ”„ Test Multiple Pages

Run accessibility tests on multiple pages simultaneously.

Endpoint: POST /api/test-multiple

Request Body:

[
  {
    "url": "https://example.com",
    "includeScreenshot": true,
    "timeout": 10000
  },
  {
    "url": "https://example.com/about",
    "includeScreenshot": true,
    "timeout": 10000
  }
]

Example:

curl -X POST http://localhost:3001/api/test-multiple \
  -H "Content-Type: application/json" \
  -d '[
    {
      "url": "https://example.com",
      "includeScreenshot": true
    },
    {
      "url": "https://example.com/about",
      "includeScreenshot": true
    }
  ]'

Response:

{
  "results": [
    {
      "url": "https://example.com",
      "score": 85,
      "violations": [...],
      "passes": [],
      "incomplete": [],
      "inapplicable": [],
      "screenshot": "https://storage.example.com/screenshots/uuid1.png",
      "timestamp": "2024-01-01T00:00:00.000Z"
    },
    {
      "url": "https://example.com/about",
      "score": 92,
      "violations": [...],
      "passes": [],
      "incomplete": [],
      "inapplicable": [],
      "screenshot": "https://storage.example.com/screenshots/uuid2.png",
      "timestamp": "2024-01-01T00:00:00.000Z"
    }
  ],
  "totalPages": 2,
  "testTime": 3000
}

πŸš€ Combined Crawl and Test

Crawl a website and run accessibility tests on all discovered pages.

Endpoint: POST /api/combined

Request Body:

{
  "url": "https://example.com",
  "crawlOptions": {
    "maxUrls": 5,
    "concurrency": 2,
    "timeout": 10000
  },
  "testOptions": {
    "includeScreenshot": true,
    "timeout": 15000,
    "rules": ["color-contrast"]
  },
  "enableAI": true,
  "projectContext": {
    "framework": "Angular",
    "cssFramework": "Material UI",
    "language": "TypeScript"
  }
}

Parameters:

  • url (required): Target website URL
  • crawlOptions (optional): Crawling configuration (see crawl API)
  • testOptions (optional): Testing configuration (see test API)
  • enableAI (optional): Enable AI processing for accessibility issues (default: false)
  • projectContext (optional): Structured project context for more precise AI analysis

Project Context Structure:

{
  "framework": "React",
  "cssFramework": "Tailwind CSS",
  "language": "TypeScript",
  "buildTool": "Vite",
  "additionalContext": "Custom context"
}

Example:

curl -X POST http://localhost:3001/api/combined \
  -H "Content-Type: application/json" \
  -d '{
    "url": "https://example.com",
    "crawlOptions": {
      "maxUrls": 5,
      "concurrency": 2
    },
    "testOptions": {
      "includeScreenshot": true,
      "timeout": 15000
    },
    "enableAI": true,
    "projectContext": {
      "framework": "React",
      "cssFramework": "Tailwind CSS",
      "language": "TypeScript"
    }
  }'

Response:

{
  "crawl": {
    "pages": [
      {
        "url": "https://example.com",
        "title": "Example Domain",
        "description": "This domain is for use in illustrative examples",
        "statusCode": 200,
        "timestamp": "2024-01-01T00:00:00.000Z"
      }
    ],
    "totalPages": 1,
    "crawlTime": 3000
  },
  "accessibility": {
    "results": [
      {
        "url": "https://example.com",
        "score": 85,
        "violations": [
          {
            "id": "color-contrast",
            "impact": "serious",
            "description": "Elements must have sufficient color contrast",
            "help": "Ensure all text elements have sufficient color contrast",
            "helpUrl": "https://dequeuniversity.com/rules/axe/4.8/color-contrast",
            "nodes": [...],
            "aiExplanation": "This accessibility issue occurs when text doesn't have enough contrast...",
            "aiRemediation": "To fix this issue:\n1. Increase color contrast ratio...\n2. Use CSS: color: #000; background: #fff;"
          }
        ],
        "passes": [],
        "incomplete": [],
        "inapplicable": [],
        "screenshot": "https://storage.example.com/screenshots/uuid.png",
        "timestamp": "2024-01-01T00:00:00.000Z",
        "aiEnabled": true,
        "aiError": null
      }
    ],
    "totalPages": 1,
    "testTime": 15000
  },
  "totalTime": 18000
}

πŸ—„οΈ Cache Management

Manage the intelligent caching system for AI responses.

Get Cache Statistics

Endpoint: GET /api/cache/stats

Example:

curl http://localhost:3001/api/cache/stats

Response:

{
  "status": "success",
  "data": {
    "hits": 15,
    "misses": 8,
    "size": 12,
    "hitRate": 0.65
  }
}
Clear Cache

Endpoint: DELETE /api/cache/clear

Example:

curl -X DELETE http://localhost:3001/api/cache/clear

Response:

{
  "status": "success",
  "message": "Cache cleared successfully"
}

πŸ€– AI Integration

LensCore includes optional AI-powered analysis for accessibility issues, providing plain language explanations and tech-stack specific remediation steps.

Features

  • Plain Language Explanations: Convert technical accessibility issues into easy-to-understand explanations
  • Tech-Stack Specific Remediation: Get specific, actionable steps tailored to your technology stack
  • Dynamic Prompt Engineering: Intelligent prompt generation based on project context
  • Structured Response Parsing: Consistent JSON response format with fallback handling
  • Optional Processing: AI processing is opt-in and doesn't affect existing functionality
  • Cost Effective: Only processes AI when explicitly requested

Usage

Project Context (Recommended):

{
  "enableAI": true,
  "projectContext": {
    "framework": "React",
    "cssFramework": "Tailwind CSS",
    "language": "TypeScript",
    "buildTool": "Vite"
  }
}

Backward Compatibility (Tech Stack String):

{
  "enableAI": true,
  "projectContext": {
    "additionalContext": "React, TypeScript, Tailwind CSS"
  }
}

Response Fields

When AI is enabled, responses include additional fields:

  • aiExplanation: Plain language explanation of the accessibility issue
  • aiRemediation: Specific steps to fix the issue with code examples
  • userStory: Human-readable impact explanation for the accessibility issue
  • aiEnabled: Boolean indicating if AI processing was successful
  • aiError: Error message if AI processing failed

Configuration

Set your OpenAI API key in environment variables:

OPENAI_API_KEY=your-openai-api-key

AI Prompt Engineering

LensCore uses advanced prompt engineering to generate context-aware responses:

Automatic Tech Stack Detection:

  • Framework: React, Vue.js, Angular, Svelte, Next.js, Nuxt.js
  • CSS Framework: Tailwind CSS, Bootstrap, Material UI, Chakra UI
  • Language: TypeScript, JavaScript
  • Build Tools: Webpack, Vite, Rollup, Parcel

Response Format:

{
  "rule_id": "color-contrast",
  "plain_explanation": "This text has insufficient contrast for users with visual impairments.",
  "remediation": "Use Tailwind CSS classes like text-gray-800 or text-gray-900 for better contrast."
}

Fallback Handling:

  • Automatic fallback responses if AI fails
  • Graceful degradation without breaking the API
  • Consistent response structure

Examples

Test with AI (Project Context):

curl -X POST http://localhost:3001/api/test \
  -H "Content-Type: application/json" \
  -d '{
    "url": "https://example.com",
    "enableAI": true,
    "projectContext": {
      "framework": "Vue.js",
      "cssFramework": "Bootstrap",
      "language": "JavaScript"
    }
  }'

Test with AI (Backward Compatibility):

curl -X POST http://localhost:3001/api/test \
  -H "Content-Type: application/json" \
  -d '{
    "url": "https://example.com",
    "enableAI": true,
    "projectContext": {
      "additionalContext": "Vue.js, JavaScript, Bootstrap"
    }
  }'

Combined with AI:

curl -X POST http://localhost:3001/api/combined \
  -H "Content-Type: application/json" \
  -d '{
    "url": "https://example.com",
    "enableAI": true,
    "projectContext": {
      "framework": "Next.js",
      "cssFramework": "Tailwind CSS",
      "language": "TypeScript"
    }
  }'

🀝 Contributing

We welcome contributions! Whether you're fixing bugs, adding features, or improving documentation, your help makes LensCore better.

See our Contributing Guide for details on how to get started.


Code of Conduct

This project adheres to the Contributor Covenant Code of Conduct to ensure a welcoming and inclusive environment for all contributors. By participating in this project, you are expected to uphold this code. Please report any violations to the project maintainers.


πŸ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

πŸ™ Acknowledgments


Made with ❀️ by the AccessTime team

About

🌐 LensCore is an open-source, API-first platform for web crawling and automated accessibility testing. Easily scan websites, detect WCAG issues with axe-core, and store reports, all in a fast, scalable, containerized environment

Topics

Resources

License

Code of conduct

Contributing

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published