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a b s t r a c t 

We present the stochastic-dynamic inventory routing problem for bike sharing systems (SDIRP). The ob- 

jective of the SDIRP is to avoid unsatisfied demand by dynamically relocating bikes during the day. To 

anticipate potential future demands in the current inventory decisions, we present a dynamic lookahead 

policy (DLA). The policy simulates future demand over a predefined horizon. Because the heterogeneous 

demand patterns over the course of the day, the DLA horizons are time-dependent and autonomously 

parametrized by means of value function approximation, a method of approximate dynamic program- 

ming. We compare the DLA with conventional relocation strategies from the literature and lookahead 

policies with static horizons. Our study based on real-world data by the bike sharing system of Min- 

neapolis (Minnesota, USA) reveals the benefits of both anticipation by lookaheads as well as the time- 

dependent horizons of the DLA. We additionally show how the DLA is able to autonomously adapt to the 

demand patterns. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

We consider a station-based bike sharing system (BSS) where

users can rent and return bikes spontaneously. Stations are dis-

tributed in the city. BSSs are particularly used by commuters

and/or as a complement to public transportation. We typically ob-

serve one-way trips where rental and return demands do not oc-

cur at the same station. Further, rental and return demands are

uncertain and subject to heterogeneous spatial-temporal patterns

( Büttner et al., 2011 ). The success of BSSs strongly depends on two

factors: density of stations within the city and a reliable availability

of bikes and free bike racks any time and at any station ( Gauthier

et al., 2013 ). At an empty station, rental demands cannot be served

because of the absence of bikes. At a full station, return demands

cannot be served because all bike racks are used. It is mandatory

to return a bike at a station to indicate that the trip has ended

and that the bike is available again. Thus, the users need to ap-

proach neighboring stations. To allow a sufficient number of racks

and bikes at every station and time, providers dynamically dis-

patch transport vehicles to relocate bikes between stations. 

With the advent of IT-supported station-based BSSs, it quickly

became apparent that relocating bikes is mandatory in order to

satisfy user demand. The satisfied user demand in terms of bike
∗ Corresponding author. 
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rips performed is recorded in great detail for invoicing. The provi-

ion of this anonymized data to the public has attracted data anal-

sis as well as optimization research with the goal of either max-

mizing service level or minimizing relocation costs. Data analy-

is provides insights into demand patterns ( Borgnat et al., 2011;

’Brien et al., 2014; Vogel et al., 2011 ). Further, detailed data of

ser bike trips is aggregated into typical bike flows ( Vogel et al.,

017 ). Optimization counteracts these flows by means of bike re-

ocations. Static deterministic models assume bike relocations dur-

ng periods of non-activity, i.e., over night. Here, flows are incor-

orated in order to determine appropriate distributions of bikes as

tarting point for the next morning (we refer to Espegren et al.,

016 for a survey). It must be noted that over-night activities can

t best empty or fill a station to its number of bike racks pro-

ided. This maximum number of bikes typically does not suffice

n order to satisfy for instance commuting demand over the day.

herefore, periodic deterministic models aim at optimizing reloca-

ion activities over the course of the day ( Brinkmann et al., 2016 ).

 solution derived from such a model, however, may at best serve

or the determination of regular day to day relocation activities

n terms of service network design. Static models, based on ag-

regated historical data, will not be able to accurately depict fu-

ure bike relocations in the real-world. To this end, an opera-

ional control is needed to address realized user demand on short

otice. 

The problem at hand is an inventory routing problem (IRP) and

ontains both stochasticity and dynamism ( Coelho et al., 2014b ). As

https://doi.org/10.1016/j.cor.2018.06.004
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n IRPs, customers consume certain commodities (bikes and racks)

rovided by vehicles. In contrast to conventional IRPs, the num-

ers of bikes within the system and bike racks at every station are

xed. Further, the availabilities of bikes and free bike racks at ev-

ry station are interdependent since every bike within a station

locks a bike rack. Thus, two dependent resources, namely bikes

nd free bike racks, need to be balanced: Both, not enough and too

any bikes (in the sense of not enough bike racks) lead to failed

emands and, in this way, to penalties. Another challenge for the

onsidered problem is that demands are uncertain and subject to a

eterogeneous spatio-temporal stochastic pattern. This results in a

tochastic IRP. Finally, due to the high variability of demand, sud-

en imbalances may occur on short notice. Thus, dynamic decision

aking is applied to take advantage of revealed information and to

eact to sudden imbalances. As a result, we consider a stochastic-

ynamic inventory routing problem (SDIRP) for bike sharing sys-

ems ( Brinkmann et al., 2015 ). In the SDIRP, a vehicle and a set

f capacitated stations with initial fill levels are given. Over the

ay, users stochastically demand rentals or returns of bikes at sta-

ions. To provide a sufficient number of bikes and free bike racks

t every station, the vehicle is dynamically dispatched to transport

ikes between stations. Decisions are made about the inventory of

he station a vehicle is currently located at and about the next sta-

ion the vehicle visits. A demand fails if a bike (to rent) or bike rack

to return a bike) is not available at the station and the time the

ser demands. From the operational view, vehicles and drivers are

aid. Thus, we neglect transportation costs. The goal is to minimize

he expected amount of unsatisfied demand. 

For the SDIRP, we provide a stochastic and dynamic optimiza-

ion approach to alleviate unsatisfied user demand. The approach

ubsequently decides on the relocations of bikes based on realized

nd expected future user demand. Stations requiring relocation ac-

ivities are subsequently determined by lookahead policies (LAs).

As simulate future user demand starting in the system’s current

tate. Future user demand is sampled from historical data. In this

ay, the dynamic online control is augmented with information

ained from a reasonable lookahead. 

One challenge for LAs applied in dynamic routing problems is

he determination of suitable lookahead horizons. Short horizons

f one or two hours may not be able to capture many important

uture developments while long horizons over several hours may

ead to a significant discrepancy between simulated and actually

ealized outcome ( Ghiani et al., 2009; Voccia et al., 2017 ). Thus,

e experience a tradeoff between amount of information and its

ccuracy. Both too short and too long horizons can lead to inferior

ecision making. Furthermore, suitable LA horizons are dependent

n the structure of the underlying data - in our case, the user de-

and. Ulmer (2017) shows that more predictable demand patterns

equire different horizons than demand patterns blurred by statis-

ical noise. Thus, this phenomenon is of particular importance for

he SDIRP because the demand patterns vary over the day. As an

xample, demand patterns induced by commuter behavior during

ush hours differ from demand patterns around lunchtime in both

olume and noise. 

To account for this challenge, we develop dynamic LAs (DLAs)

ith time-dependent lookahead horizons. The horizons per hour

re determined a priori by means of value function approxima-

ion (VFA), a method of approximate dynamic programming (ADP,

owell, 2011 ). The VFA approximates the DLA’s outcome for

ach point of time and potential horizon and selects the DLA-

arametrization leading to the smallest amount of failed demands.

n comprehensive computational studies based on real-world data

f the BSS in Minneapolis (Minnesota, USA, MN, 2016 ), we show

hat the VFA-parametrized DLA significantly outperforms LAs with

tatic horizons and manually parametrized DLAs as well as bench-

ark policies from the literature. In a detailed analysis, we show
ow the high solution quality is enabled by the DLA’s adaption to

he demand patterns. 

Our contributions are as follows. We present a comprehensive

arkov decision process-model for the stochastic-dynamic inven-

ory routing problem for station-based BSSs. For the SDIRP, we de-

elop anticipatory methods autonomously adapting to the demand

attern of the historical data and significantly reducing the amount

f unsatisfied demand compared to benchmark policies from the

iterature. Methodologically, we present a new and general method

f using VFA to determine suitable horizons and to assign a hori-

on to a subset of states. This can be seen as a non-parametric

olicy search. Given a set of potential horizons, this method allows

 state-dependent policy selection based on a set of state parame-

ers. A non-parametric policy search may provide value particularly

or stochastic-dynamic decision problems of high complexity as of-

en experienced in the fields of transportation and routing. 

The remainder of this paper is structured as follows. In

ection 2 , we present the related literature. The SDIRP is presented

n Section 3 . In Section 4 , we define the DLA and the VFA. The

omputational studies and the detailed analysis of the results are

resented in Section 5 . The paper concludes with a summary and

n outlook in Section 6 . 

. Literature 

In this section, we present the related literature from the fields

f bike sharing systems and stochastic inventory routing. We first

resent a classification for the analysis and then embed the rele-

ant literature. 

.1. Classification 

In the following, we develop a classification to compare our

ork and highlight our contribution. The classification is used in

able 1 . 

The SDIRP is stochastic and dynamic as defined by Kall and

allace (1994) . The problem is stochastic because the demand

s not known in advance and follows a stochastic distribution. It

s dynamic because subsequent decisions are made over a plan-

ing horizon. Thus, we analyze literature with respect to Stochas-

icity and Dynamism . A “� ” in the corresponding column indi-

ates that the work considers a stochastic or dynamic problem.

or the SDIRP, demand is stochastic and occurs over the course

f the day. Some other works on BSSs consider relocation routing

ithout any stochastic or deterministic user demand. We highlight

ork considering demand in the Demand -column. In the SDIRP,

he demand is continuously revealed over time while for many

nventory routing problems, demand is revealed once per period

r day. We highlight work considering continuous demand in the

ontinuity -column. Work without demand have an “n/a”-entry in

he Continuity -column. Work where demands are realized over the

ourse of the day but only in time steps (for example in hours), is

ndicated with “( � )”. While for the SDIRP inventory decisions need

o be made, other works on BSSs do not consider inventory lev-

ls but just determine stops at imbalanced stations. We indicate

ork addressing inventory decisions in the Inventory -column. Be-

ide the inventory decisions, the SDIRP also requires a routing deci-

ion. Work considering routing is indicated by a ”� ” in the Routing -

olumn. Finally, our proposed DLA method anticipates future de-

ands in both inventory and routing decision. We highlight work

nticipating stochastic demand in the Anticipation -column. Notably,

nticipation is only applicable in a stochastic problem. Thus, all

eterministic problems have an ”n/a”-entry in the Anticipation -

olumn. In the following, we use the classification to describe the

ork on BSSs and stochastic inventory routing. 
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Table 1 

Literature classification. 

Stochasticity Dynamism Demand Continuity Inventory Routing Anticipation 

Bike sharing Contardo et al. (2012) � � � � n/a 

Chemla et al. (2013) n/a � � n/a 

Raviv et al. (2013) n/a � � n/a 

Kloimüllner et al. (2014) � � � � n/a 

Erdo ̌gan et al. (2015, 2014) n/a � � n/a 

Vogel et al. (2014) � ( � ) � n/a 

Kloimüllner et al. (2015) n/a � n/a 

Neumann Saavedra et al. (2015) � ( � ) � n/a 

Brinkmann et al. (2016) � ( � ) � � n/a 

Espegren et al. (2016) n/a � � n/a 

Neumann Saavedra et al. (2016) � ( � ) � � n/a 

Schuijbroek et al. (2017) n/a � � n/a 

Fricker and Gast (2016) � � � 

Lu (2016) � � ( � ) � � 

Yan et al. (2017) � � ( � ) � � 

Brinkmann et al. (2015) � � � � � � 

Ghosh et al. (2017) � � � � � 

IRP Godfrey and Powell (2002) � � � � � � 

Adelman (2004) � � � � � � 

Toriello et al. (2010) � � � n/a 

Bertazzi et al. (2013) � � � � � � 

Papageorgiou et al. (2014) � � � n/a 

Coelho et al. (2014a) � � � � � � 

SDIRP, DLA � � � � � � � 
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2.2. Bike sharing systems 

Works on BSSs mainly focus on static and deterministic prob-

lems. In these problems, relocation operations often take place

over night where no demand is assumed. The objective is to find

a routing to reach satisfying fill levels at stations. Examples are

works by Chemla et al. (2013) , Raviv et al. (2013) , Erdo ̌gan et al.

(2014) , Erdo ̌gan et al. (2015) , Kloimüllner et al. (2015) , Espegren

et al. (2016) and Schuijbroek et al. (2017) . To achieve a suit-

able routing, either mixed-integer programming methods or meta-

heuristics are developed. 

Other static and deterministic works develop master tours to

meet typical daily user demand, for example, Contardo et al.

(2012) , Kloimüllner et al. (2014) , Neumann Saavedra et al.

(2015) and Neumann Saavedra et al. (2016) . The demand is as-

sumed to be known and time-dependent. The relocation problems

become time-dependent as well. These problems are still static be-

cause determining the routing and the relocation operations are

made in a single decision point. Contardo et al. (2012) use mixed-

integer programming to determine suitable inventory and routing

decisions. Kloimüllner et al. (2014) apply metaheuristics to find a

suitable routing and inventory solution avoiding as much failed de-

mand as possible. Vogel et al. (2014) and Neumann Saavedra et al.

(2016, 2015) relax the routing problem into a transport problem

and solve this problem by means of matheuristics. 

There are a few papers considering stochastic demand in a

static context ( Fricker and Gast, 2016; Ghosh et al., 2017; Lu, 2016;

Yan et al., 2017 ). These works aim on developing suitable routes

given uncertainty in the user demand. Fricker and Gast (2016) con-

sider a stochastic system in a steady state and calculate the per-

centage of critical stations where demand may not be fulfilled.

They analyze how incentives are able to avoid failed demand. Lu

(2016) address a problem with stochastic demands. They use a

time-space network of bike flows to determine robust solutions

given a set of potential demand realizations. Yan et al. (2017) also

use a time-space network and address the stochasticity of the

problem with a threshold-based heuristic. 

The two works on BSSs closest to the work presented in this

article are presented by Brinkmann et al. (2015) and Ghosh et al.
2017) . Both problems address the stochastic and dynamic reloca-

ions of bikes. Brinkmann et al. (2015) present a policy function

pproximation based on safety buffers. The vehicle is sent to the

losest stations where the safety buffer is violated. We use this

olicy as a benchmark in our computational study. Ghosh et al.

2017) reduce their problem by means of aggregation. Both sta-

ions and trips are aggregated. Further, future stochastic demand

s not considered. To approach the simplified static problem, a

ixed-integer linear program is developed and solved by means

f dual decomposition on a rolling horizon. The runtimes per de-

ision point comprise several minutes. A real-time implementation

s therefore challenging. 

.3. Inventory routing 

The SDIRP is further related to work on stochastic inventory

outing presented in this section. 

Godfrey and Powell (2002) address a stochastic and dynamic

esource allocation problem where stochastic demand is revealed

very period. A relocation of resources requires one period. They

pply a VFA to anticipate potential future demand in their deci-

ion making. In the SDIRP, demand is continuously revealed. To

apture this demand, a detailed simulation is required. Adelman

2004) presents a problem where a set of customers needs to be

erved over a set of days. Each customer has a stochastic demand

er day. For each day, a routing and inventory decision is deter-

ined. For anticipation of future routing costs, the authors present

 VFA based on dual relaxations. A VFA is also applied by Toriello

t al. (2010) and Papageorgiou et al. (2014) for deterministic inven-

ory routing problems. 

Bertazzi et al. (2013) apply a rollout algorithm (RA) to a similar

tochastic dynamic inventory routing problem. The idea of an RA

s to look ahead into the future and use a base policy within the

ookahead. While RAs often draw on simulation for the lookahead,

ertazzi et al. (2013) use the solution of a mixed-integer program

ased on average values. The advantage of RAs is that both poten-

ial future stochastic demand as well as potential future decisions

an be anticipated. However, RAs require a significant amount of

untime, a scarce resource in real-time decision making. In our
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Table 2 

Notation of the Markov decision process. 

Symbol Description 

K = (0 , . . . , k max ) Sequence of decision points 

S = { s 0 , . . . , s max } Set of decision states 

X s = { x 1 , . . . , x max | x = (ιx , n x ) } , ∀ s ∈ S Sets of feasible decisions 

s x 
k 

= (s k , x ) , ∀ s ∈ S, x ∈ X s Post-decision states 

ω: S × X → S Transition function 

t k ∈ T Point in time in state s k 
f v 
k 

∈ N 0 Vehicle’s load in time t k 
n v 

k 
∈ N Vehicle’s station in time t k 

f k = 

(
f n 0 
k 

, . . . , f n max 

k 

)
Stations’ fill levels in time t k 

ιx ∈ Z Inventory decision 

n x ∈ N Routing decision 

p : S × X → N 0 Penalty function 

� = { π0 , . . . , πmax | π : S → X } Set of policies 
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omputational study, we compare our DLA with an RA. We show

hat the RA is not able to achieve competitive results within rea-

onable runtime. Coelho et al. (2014a) address a stochastic and dy-

amic inventory routing problems where a route through a set of

ustomers needs to be determined every day. Therefore, they solve

he deterministic problem based on average demand over a lim-

ted time horizon. This procedure is similar to the DLA, but instead

f using average demand, we draw on simulation. Further, we vary

he lookahead horizon over the decision states and determine suit-

ble horizons by means of VFA. 

Additionally, the relocation process in BSSs in related to empty

ontainer management (ECM). Containers are used in maritime

 Erera et al., 2009 ) as well as road-based transport ( Shintani et al.,

007; Song and Carter, 2009 ) to wrap commodities. When a com-

odity is picked up, an empty container is used. When it is deliv-

red, the container becomes empty. Due to asymmetric pick-ups

nd deliveries, empty containers need to be relocated. However,

he uncertainty in ECM is much lower than in stochastic and dy-

amic IRP. Thus, we neglect this domain in our classification. 

In essence, our method DLA is the first anticipating continuous

tochastic demand changes in dynamic inventory and routing de-

isions for BSSs. 

. Stochastic-dynamic inventory routing for bike sharing 

ystems 

In this section, we define the SDIRP ( Brinkmann et al., 2015 ).

e first formulate the SDIRP and the notation in Section 3.1 . In

ection 3.2 , we model the SDIRP as Markov decision process. An

xample is presented in Section 3.3 . 

.1. Formulation 

We consider a BSS consisting of a depot n 0 and stations n i ∈ N,

 > 0: N = { n 0 , . . . , n max } . User demand is reflected in stochastic

ental and return demand for bikes over a time horizon T =
(t 0 , . . . , t max ) which is discretized into points in time t . Every sta-

ion has a capacity c ( · ). A rental demand is successful if the as-

ociated station is not empty. A return demand is successful if the

ssociated station is not full. A successful demand impacts the as-

ociated station’s fill level. If a demand fails, the user is sent to

he nearest station that can serve the demand. 1 A transport vehi-

le relocates bikes between stations. The fleet size is fixed. Because

river wages account for a majority of costs, driving costs are ne-

lected. For safety reasons, dispatcher and driver do not communi-

ate during travel. Thus, diversions from a current destination are

ot possible while the vehicle is on the road. The vehicle starts and

nds its tour at the depot. The vehicle capacity is given by c v . The

ehicle travels with constant speed leading to travel times between

wo stations of τ ( · , · ). Every relocation operation consumes a ser-

ice time of τ r per bike. Time for parking is neglected. In order to

ffer a reliable system and to maximize the users’ satisfaction, the

bjective for the dispatcher is to route the vehicle in a way that as

ew demand fails as possible. 

.2. Markov decision process 

The SDIRP can be modeled as a Markov decision process (MDP,

uterman, 2014 ). The components of an MDP are depicted in Eq.

1 ): 

 k 
x −→ s x 

ω −→ s k +1 . (1) 
k 

1 For a detailed depiction of this process, the interested reader is referred to 

ppendix D . i
In an MDP, decisions are made for a number of decision

oints k . An associated decision state s k defines the parameters on

hich a decision x ∈ X s k is made. The deterministic post-decision

tate s x 
k 

represents the combination of decision state and decision.

efore the next decision point occurs, a stochastic transition func-

ion ω alters state parameters. 

The MDP’s notation for the SDIRP is described in Table 2 . In

he SDIRP, a decision point k occurs when the vehicle arrives at a

tation. A decision state s k ∈ S comprises the point in time t k , the

tations’ fill levels f k = 

(
f 

n 0 
k 

, . . . , f n max 

k 

)
, the vehicle’s current sta-

ion n v 
k 
, and the vehicle load f v 

k 
: 

 k = 

(
t k , f k , n 

v 
k , f 

v 
k 

)
. (2) 

The current fill level of a station n is f n 
k 

. All fill levels are sum-

arized in f k . The station where the vehicle currently is located is

enoted by n v 
k 
. The number of bikes loaded on the vehicle in time

 k is given by f v 
k 

. 

Every decision x = (ιx , n x ) contains an inventory decision ιx ∈ Z

t the current station and a next station n x ∈ N to visit. If ιx < 0, the

ehicle picks up bikes at the current station. If ιx > 0, the vehicle

elivers bikes. The overall time for relocation is | ιx | · τ r . The travel

ime between stations is given by τ ( n i , n j ) for any two stations

 i , n j ∈ N . In the post-decision state s x 
k 

= (s k , x ) , the fill levels have

een stepwise 2 adapted according to relocations and the vehicle

as traveled to the next station. Before the next decision state oc-

urs, altered fill levels are revealed by the stochastic transition ω( · ,

) due to successful demands. However, some demands may have

ailed. The penalty function p ( s k , x ) reflects the expected amount

f failed demand between two decision states given post-decision

tate s x 
k 
. The penalty function p ( s k , x, ω) reflects the amount of

ailed demand based on realization ω. 

At the end of the time horizon, the vehicle returns to the depot.

hus, the final decision point k max occurs if returning to the depot

s the only feasible decision 

 = k max ⇔ X s k = { (0 , n 0 ) } . (3)

A solution for the SDIRP is a policy π ∈ � assigning every

tate to a decision. The optimal policy π ∗ minimizes the expected

mount of unsatisfied demand. Let s 0 be the initial decision state.

he objective is to identify an optimal policy π ∗ ∈ � leading to the

inimum expected amount of unsatisfied demand: 

∗ = arg min 

π∈ �
E 

[ 

k max ∑ 

p 
(
s k , π(s k ) 

)∣∣∣s 0 ] 

. (4) 
2 Because one relocation operation takes τ r minutes per bike, the adaption is not 

nstantaneous. 
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Fig. 1. Exemplary decision state, post-decision state, and resulting decision state. 
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3.3. Example 

Fig. 1 presents an example for the MDP. On the left-hand

side, decision point s k is depicted. The center shows post-decision

state s x 
k 
. The following decision state s k +1 is depicted on the right-

hand side. The system has three stations. For stations n 1 , n 2 , n 3 ,

and vehicle v , light boxes represent empty bike racks, dark boxes

represent bike racks filled with a bike. Stations n 1 and n 2 have a

capacity of 6 racks, station n 3 of 5 racks. The vehicle capacity is

4. In state s k , occurring at time t k = 12 , n 1 contains f 
n 1 
k 

= 5 bikes,

n 2 contains f 
n 2 
k 

= 3 bikes, and n 3 is empty, f 
n 3 
k 

= 0 . The vehicle is

located at n v 
k 

= n 1 and has one bike loaded, f v 
k 

= 1 . The inventory

decision ιx is made about how many bikes to pick up at or de-

liver to station n 1 . The routing decision n x is made about which

station to serve next, or idling at the current station. Here, the ap-

plied decision x = ( - 2 , n 3 ) is to pick up two bikes and travel to n 3 .

The resulting post-decision state s x 
k 
, including the decisions made,

is depicted in the center of Fig. 1 . Given τr = 2 min, two pick-ups

consume four minutes of time. Furthermore, given τ (n 1 , n 3 ) = 5 ,

the next decision point k + 1 occurs in t k +1 = 12 + 4 + 5 = 21 . The

stochastic transition ω reveals new fill levels and a realization of

the penalty function. At n 1 , the fill level has increased by one due

to one successful return. At n 2 , the fill level has decreased by one

due to one successful rental. Station n 3 remains empty. For the

purpose of presentation, the user trips are not depicted in Fig. 1 .

We assume that one rental demand failed at station n 3 resulting

in a penalty of p(s k , x, ω) = 1 . The associated user will soon ap-

proach n 2 since it is the nearest non-empty station. The resulting

new decision state s k +1 = ω(s k , x ) is shown on the right side of

Fig. 1 . 

3.4. Challenges 

According to the Bellman equation ( Bellman, 1957 ), in every de-

cision state s k , π
∗ returns the optimal decision π ∗(s k ) ∈ X s k . It min-

imizes the expected number of unsatisfied future demand, i.e., the

expected penalty: 

π ∗(s k ) = arg min 

x ∈ X s k 
E 

[ 

k max ∑ 

k ′ = k 
p(s k ′ , x ) 

∣∣s k ] 

. (5)

The expectations on future unsatisfied demand can be determined

recursively by dynamic programming and backwards induction. To

do this, perfect information on the decision tree is required. Gath-

ering this amount of information is hardly possible due to the

three curses of dimensionality ( Powell, 2011 ): 

The state space: The number | S | of states s ∈ S grows with the

state parameters’ attributes. Let | T | be the number of points

in time. The stations’ fill levels and the vehicle load can oc-

cur in any combination. The vehicle can be located at every

n ∈ N . Then, | S| ≤ | T | · ∏ 

n ∈ N ( c(n ) + 1 ) · (c v + 1) · | N| . 
The decision space: For every state s ∈ S , a set of feasible de-

cisions X s is given. Decisions are about realizing relocations

at the vehicle’s current station and to go to a next station

n ∈ N . Therefore, | X s | ≤ (c v + 1) · | N| , where c v + 1 is an up-

per bound on all feasible relocation operations and | N | is the

number of feasible next stations. 

The outcome space: The transition function ω depicts demands

by mapping a decision state and a decision to a subsequent

decision state. The number of feasible transitions is (nearly)

unbounded since in any point in time, any demands may oc-

cur. 

The decision tree’s size is approximately the Cartesian prod-

ct of the state space, the decision space, and the outcome space.

dentifying π ∗ analytically is not possible. Therefore, we introduce

ookahead policies (LAs) drawing on online simulation in Section 4 .

. Dynamic lookahead policies 

In this section, we motivate and define dynamic lookahead poli-

ies (DLAs) to solve the SDIRP. We first give an overview on the

teps taken. We then define the dynamic lookahead in detail as

ell as the value function approximation (VFA) to tune the DLA. 

.1. Overview 

In the following, we give an overview on the functionality of

he DLA to prepare the definition of the method. The DLA consists

f two parts. The first part is the lookahead as foundation of the

LA. The second part is the parametrization of the DLA by means

f VFA. The first part is described by Fig. 2 . The second part is de-

cribed by Fig. 3 . 

We start with the procedure of the dynamic lookahead as de-

icted in Fig. 2 . Given a state in the MDP, the DLA simulates into

he future to derive a decision. This is conducted by simulating

ser demand online over a predefined horizon. Based on the out-

ome of the simulation, the inventory decision at the current sta-

ion as well as the routing decision to the next station are de-

ermined. More specific, the DLA selects the inventory decision

eading to the smallest amount of unsatisfied demand at the cur-

ent station within the horizon. Further, the vehicle is routed to

he station where the largest amount of unsatisfied demand can

e avoided within the horizon. Beside the simulated demand, this

mount also depends on the number of loaded bikes on the vehi-

le and the travel time between the vehicle’s current location and

he potential next station. 

As aforementioned, different horizons may be suitable with re-

pect to the time of the day and the corresponding demand pat-

ern. Thus, the DLA draws on different horizons for different peri-

ds of the day. In our setting, we determine an individual horizon

or periods of one hour length. Given 24 hours of the day, a DLA
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Fig. 2. Overview of the dynamic lookahead. 

Fig. 3. Approximation run of the value function approximation. 
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3 For a detailed depiction of this process, we again refer to Appendix D . 
an therefore be parametrized by a vector of 24 horizons, i.e., one

orizon per hour. 

In Fig. 2 , the horizons are externally given and stored in the

Horizons”-black box. In a state, the lookahead accesses this black

ox to obtain the corresponding horizon for the current hour.

owever, to successfully apply the lookahead, the horizons per

our need to be determined. This determination of suitable hori-

ons is challenging for two reasons. First, the horizons depend on

he demand patterns. These patterns are complex and change over

he day. An analytical determination of the horizons is challenging.

econd, a decision at one point of time impacts the future devel-

pments of the MDP. Thus, the horizons cannot be determined in

solation but only in combination. To this end, we use VFA. The

FA draws on offline simulations of the MDP to approximate the

nsatisfied demands for each hour-horizon combination. The ap-

roximation for each combination is stored in a look-up table. To

isualize the procedure, we extend Fig. 2 to Fig. 3 . Fig. 3 shows the

rocedure for one approximation run of the MDP. In an approxima-
ion run, the MDP is simulated. Within a state of the simulation,

he lookahead requests the horizon for the hour. The procedure

ither returns the currently ”best” horizon for the corresponding

our or a different horizon based on Boltzmann exploration. After

ach simulation run, the observed values are used to update the

urrent approximation in the look-up table. Subsequently, the ap-

roximation becomes more accurate and the policy improves. 

In the remainder of this section, we define the two components

f the DLA in detail. First, we describe the lookahead procedure in

ection 4.2 . We then describe how the DLA is parametrized by the

FA in Section 4.3 . 

.2. Lookahead algorithm 

In the following, we describe the lookahead as shown in Fig. 2 .

or the algorithmic procedure, we refer to Appendix B.1 . We as-

ume that we are in a decision state s k and the horizon δ of the

ookahead is predetermined externally. 

The lookahead is used to determine the two parts of the deci-

ion x = (ιx , n x ) . We recall ιx as the inventory decision determining

he amount of bikes delivered to or picked up at the current sta-

ion n v 
k 
. Parameter n x describes the next station the vehicle visits. 

.2.1. Inventory decision 

The lookahead first determines ιx by analyzing (at most) three

otential inventory decisions with respect to the fill level of station

 

v 
k 
. We consider three potential percentages leading to three differ-

nt target fill levels: low ( μ1 = 25% of station’s capacity), medium

 μ2 = 50% ), or high ( μ3 = 75% ). We denote the associated inven-

ory decisions ι1 , ι2 , ι3 and the resulting fill levels μ1 · c(n v 
k 
) , μ2 ·

(n v 
k 
) , μ3 · c(n v 

k 
) . There may be states where a fill level cannot be

ully reached because we additionally have to consider the station’s

ll level f 
n v 

k 

k 
, the vehicle load f v 

k 
, and the vehicle capacity c v . We

hen modify the inventory decisions in accordance to Eq. (6) : 

i = 

⎧ ⎨ ⎩ 

min { μi · c(n 

v 
k 
) − f 

n v 
k 

k 
, f v 

k 
} , if μi · c(n 

v 
k 
) > f 

n v 
k 

k 

max { μi · c(n 

v 
k 
) − f 

n v 
k 

k 
, c v − f v 

k 
} , if μi · c(n 

v 
k 
) < f 

n v 
k 

k 
0 , else. 

(6) 

The number of bikes to deliver is limited to the number of bikes

urrently loaded on the vehicle. The number of bikes to pick up

s limited to the number of bikes that can additionally be loaded

nto the vehicle. The first case of Eq. (6) occurs if bikes need to be

elivered to realize the target fill level. The second case occurs if

ikes need to be picked up to realize the target fill level. The third

ase occurs if the current station’s fill level is equal to the target

ll level. 

Starting from these three potential fill levels, the algorithm re-

eatedly simulates future realizations of demand over the horizon

. These simulations are consecutive realizations of the MDP’s tran-

ition function and follow the event handling procedure described

n Appendix D . Based on the simulations, we can approximate the

mpact of the inventory decisions ιi . 

According to preliminary tests, we set the number of simulation

uns per fill level to 32. The inventory decision ιx is set to the one

f the three leading to the least amount of unsatisfied demand as

he sum of failed rental and failed return demands at this station.

o this end, the lookahead counts the numbers of failed rentals γ −
ι,n 

nd returns γ + 
ι,n for every ι and for every station n ∈ N and deter-

ines the average over 32 simulations j . Let k j be the first decision

oint in simulation j and k 
j 
max be the last. The failed rentals and

eturns in simulation j are depicted by p −
j 
(·, ·) , or p + 

j 
(·, ·) , respec-

ively. 3 Then, we can determine γ −(ι, n ) , γ + (ι, n ) , ∀ ι, n ∈ N accord-
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Fig. 4. Observed cumulated failed demand in an exemplary lookahead. 
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m  
ing to Eq. (7) and Eq. (8) : 

γ −
ι,n = 

1 

32 

·
32 ∑ 

j=1 

k j max ∑ 

k j = k 
p −

j 
(s k j , n ) , (7)

γ + 
ι,n = 

1 

32 

·
32 ∑ 

j=1 

k j max ∑ 

k j = k 
p + 

j 
(s k j , n ) . (8)

Finally, we select the inventory decision ιx minimizing the

failed rentals and returns at the current station n v 
k 
: 

ιx = arg min 

ι∈{ ι1 ,ι2 ,ι3 } 
{ γ −

ι,n v 
k 

+ γ + 
ι,n v 

k 

} . (9)

An example is given by Fig. 4 . The decision point k occurs at

09:00. We assume a lookahead horizon of δ = 360 min utes. Thus,

we analyze the failed demand at the current station until 15:00.

The solid and dashed lines refer to the failed demand caused by

inventory decisions of 25% and 50% fill level. For the sake of sim-

plicity, we omit the fill level of 75% in this example. The dotted

line depicts the difference of failed demand between the solid and

dashed lines. According to the lookahead, until 10:00 both realized

fill levels can serve the demand. Then, a we observe a slight in-

crease in failed demand in the case of 25% fill level due to rental

demand. The fill level of 50% is suitable until 13:00. From 14:00 on,

the difference of failed demand is more or less constant. The obser-

vations are captured by γ −
ι1 ,n 

v 
k 

> γ −
ι2 ,n 

v 
k 

. Thus, we select the decision

leading to the fill level of 50%, ιx = ι2 . 

Fig. 4 gives an impression of the impact of horizon δ. If δ ≤ 60,

the lookahead would be limited to 10:00. Until this time, no de-

mand fails for both decisions. Thus, the decisions cannot be dif-

ferentiated. If δ ≥ 300, the difference of failed demand is constant.

Thus, the lookahead does not provide more information if it simu-

lates further than 14:00. 

4.2.2. Routing decision 

Based on the inventory decision ιx , the lookahead then deter-

mines the next station to visit, again, by means of online simula-

tion over the horizon δ. The algorithm selects the station n where

relocations can prevent the largest amount of unsatisfied demand.

To this end, the algorithm tracks all failed rentals and returns at

every station n ∈ N over the horizon δ. Here, we draw on the simu-

lations originally conducted for the inventory decisions. When ap-

proximating the failed rentals and returns, γ −
ιx ,n 

, γ + 
ιx ,n 

, ∀ n ∈ N \ { n v 
k 
} ,

the inventory decision ιx has been realized at the current sta-

tion n v 
k 
. In the case of failed demand, the demand at a station

is subject to the fill levels of neighboring stations ( Rudloff and

Lackner, 2014 ). Therefore, considering the adapted fill level of n v 
k 

achieves more accurate approximations. 

Given a specific station n , the algorithm considers the travel

time τ (n v 
k 
, n ) between the current station n v 

k 
and n . Failed de-

mands in the time before the vehicle’s arrival at station n are

ignored because they cannot be prevented. Thus, γ −
ιx ,n 

and γ + 
ιx ,n 
epresent the amount of failed demand in the time interval

t k + τ (n v 
k 
, n ) , t k + δ

]
(compare Eqs. 7 and 8 ). 

Beside the expected failed rentals γ −
ιx ,n 

and returns γ + 
ιx ,n 

ob-

erved in the simulations, we further have to consider the vehicle’s

urrent fill level f t v in combination with inventory decision ιx that

ill be conducted at n v 
k 
. To prevent rentals from failing, bikes need

o be delivered. The vehicle is able to deliver at most f t v − ιx bikes.

hus, the number of prevented failed rentals is the minimum of
−
ιx ,n 

and f t v − ιx . To prevent returns from failing, bikes need to be

icked up. The vehicle is able to pick up at most c v − f t v − ιx bikes.

hus, the number of prevented failed returns is the minimum of
+ 
ιx ,n 

and c v − f t v − ιx . The number of potentially prevented demand

s the maximum of potentially prevented failed rentals and failed

eturns as shown in Formula (10) : 

 

x = arg max 
n ∈ N 

⎧ ⎪ ⎨ ⎪ ⎩ 

min 

{
γ −

ιx ,n , f 
t 
v − ιx 

}︸ ︷︷ ︸ 
prevented failed rentals 

, min 

{
γ + 

ιx ,n , c v − f t v − ιx 
}︸ ︷︷ ︸ 

prevented failed returns 

⎫ ⎪ ⎬ ⎪ ⎭ 

. 

(10)

Eventually, ( ιx , n x ) is the decision made by DLA in s k . 

Fig. 5 provides an example. The vehicle stays at a station in

he same district as n 1 . Station n 2 is located at the other side of

he city. According to the lookahead, the development of cumu-

ated failed rental demand is more or less the same. Station n 1 can

e reached at 16:15. At this time, only a small amount of demand

as failed. Given that the vehicle’s load is sufficient, all future de-

and can be served. Station n 2 can be reached at 16:45. At this

ime, much more demand has failed. This failed demand cannot be

aved. These observations are reflected by γ −
ιx ,n 1 

> γ −
ιx ,n 2 

. Thus, the

ehicle’s next station is n x = n 1 . 

Notably, our method operates directly on the MDP’s decision

tate. Thus, we only select the inventory at the current station and

he next location to visit. There are dynamic vehicle routing meth-

ds extending the decision space to a set of tentative route plans

 Ulmer et al., 2017b ). A route plan is a sequence of future decisions,

or example, stops at customers. Instead of only the next customer

o visit, a route plan is evaluated and selected by these methods in

very state. The implemented decision can then be extracted from

his plan. The advantage of route plans is that they allow to incor-

orate a sequence of potential future decisions into the evaluation

f the current decision. However, as we show in Section 5.6 , incor-

orating potential route plans, i.e., a sequence of additional inven-

ory and routing decisions, by means of a rollout algorithm is not

dvantageous because of the highly stochastic and dynamic nature

f the SDIRP. 

.3. Dynamic lookahead horizons 

As motivated in the introduction, suitable lookahead horizons

ay depend on the demand pattern and may therefore change



J. Brinkmann et al. / Computers and Operations Research 106 (2019) 260–279 267 

Fig. 5. Observed cumulated failed demand in an exemplary lookahead. 
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Table 3 

Notation of the value function approximation. 

Symbol Description 

P = { ρ0 , . . . , ρmax } Set of hours 


 = { δ0 , . . . , δmax } Set of lookahead horizons 

k 
ρ ∈ K Hour ρ ’s first decision point 

k ρ ∈ K Hour ρ ’s last decision point 

ν : P × 
 → R 
+ 
0 

Value function 

˜ ν : P × 
 → R 
+ 
0 

Approximated value function 

α : P × 
 → N 0 Occurrences of hour/horizon pairs 

l

ν

 

h  

fi  

s  

t  

i  

r

 

t  

d  

m  

2  

p  

o  

a  

c

 

t  

a  

f  

t

4  

t  

A  

t  

D  
ver the course of the day. In this section, we describe how we

efine and determine a DLA with time-dependent horizons. 

.3.1. Definition: dynamic lookahead 

To vary the lookahead horizons, we subdivide the overall time

orizon into a set of hours P = { ρ0 , . . . , ρmax } . Then, we can as-

ign every point of time, and therefore every decision state, to an

our. We consider a set of lookahead horizons 
 = { δ0 , . . . , δmax } .
his set contains seven potential horizons of δ0 = 0 min utes, δ1 =
0 min utes, up to δ6 = 360 min utes. In the special case of δ0 , no

imulations are conducted. Because in that case, no decisions could

e derived, the lookahead is replaced by a conventional heuristic

ased on safety buffers of 20%. This heuristic is described in more

etail in Section 5.2 . 

In essence, a DLA-parametrization can be defined by a sequence

f horizons: 

(δρ0 , δρ1 , . . . , δρmax ) ∈ 
| P | . (11)

In hours 0 – 18, we can select every simulation horizon. From

he hour 19, we cannot select the long simulation horizons since

t would exceed the time horizon. Given | P | = 24 h ours and | 
| =
 horizons, we achieve approximately 7 19 · 6! > 8.2 · 10 18 different

arametrizations. The challenge is to find the parametrization lead-

ng to the lowest amount of expected unsatisfied demand. 

.3.2. Value function approximation 

As we show in Appendix C , an manual derivation of

he parametrization is challenging. Thus, we determine the

arametrization by value function approximation (VFA). This

rocedure can be seen as non-parametric policy search. Non-

arametric policy search focuses on identifying parameters of a

olicy without assuming any functional dependency between state

ttributes and decisions to make. For an overview on parametric

olicy search, we refer to Powell (2011) . 

Technically, we aim on applying a value function ν . Given an

our ρ i ∈ P and an horizon δj ∈ 
, the value ν( ρ i , δj ) is defined as

he expected number of unsatisfied demand until the end of the

ay. The left term of Eq. (12) refers to the expected failed demand

n the current hour ρ i in which horizon δj is selected. k 
ρi 

and k 
ρi 

efer to the first and last decision point of hour ρ i . The right term

efers to the expected failed demand in future hours, if hour ρ ’s
i 
ast decision point k 
ρi is not the final decision point k max . 

(ρi , δ j ) = E 

[ 

k 
ρi ∑ 

k = k ρi 

p 
(
s k , π

δ j (s k ) 
)∣∣∣s k ρi 

] 

︸ ︷︷ ︸ 
current hour 

+ 

{
min δ∈ 
 ν(ρi +1 , δ) , if k 

ρi 
 = k max 

0 , else ︸ ︷︷ ︸ 
future hours 

(12) 

Notably, the selection of lookahead horizons in subsequent

ours has an impact on the DLA’s performance. Further, the bene-

t of selecting a lookahead horizon may pay off very late. For in-

tance, lookahead horizon δi may lead to less unsatisfied demand

han δj in the current hour ρ . Still, horizon δj might be preferred

f it leads to less unsatisfied demand in the future hours. This is

eflected by ν( ρ , δj ) < ν( ρ , δi ). 

We are not able to determine the exact value function ν due

o the curses of dimensionality (compare Section 3.4 ). Thus, we

raw on an approximated value function ˜ ν ≈ ν . VFA approxi-

ates the value function by means of offline simulations ( Powell,

011 ). Within the simulations of the MDP, the VFA selects DLA-

arametrizations based on the approximated values. To avoid local

ptima, we draw on Boltzmann exploration, balancing exploitation

nd exploration by selecting potentially inferior horizons with a

ertain probability ( Powell, 2011; Rothlauf, 2011 ). 

The notation of the VFA is shown in Table 3 . VFA comprises

wo phases. In the approximation phase, the value function ˜ ν is

pproximated. In the application phase, the value function is used

or real-time decision making. We will describe the two phases in

he following. 

.3.2.1. Approximation phase . Fig. 3 provides an overview on

he approximation phase. The formal procedure is given in

ppendix B.2 . The approximation of ν bases on a training sets of

rips. For every set of trips, a trajectory of the MDP is traversed.

ecisions are made by an DLA. To select this DLA’s parametriza-
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tion, the MDP commits the current hour ρ to the look-up table.

The look-up table is a data structure storing the values for ev-

ery hour and horizon. The values ˜ ν(ρ, δ) , ∀ δ ∈ 
 are returned to

the Boltzmann exploration which selects the DLA’s horizon for the

current hour. Unlike the Bellman equation, the Boltzmann explo-

ration does not always choose the horizon comprising the min-

imum value but may force exploration. We refer the interested

reader to Appendix A providing detailed information on the Boltz-

mann exploration. When the final decision state in one simulation

run occurs, the realized unsatisfied demand is used to update the

values. Let δρ be the lookahead horizon selected in hour ρ , let α( ρ ,

δρ ) be the number of selections of δρ in ρ over all trajectories, and

let ̂ γ (ρ) be the amount of unsatisfied demand observed starting in

hour ρ . Then, the selected lookahead horizons’ approximated val-

ues are updated as follows: 

˜ ν(ρ, δρ ) := 

α(ρ, δρ ) − 1 

α( ρ, δρ ) 
· ˜ ν( ρ, δρ ) ︸ ︷︷ ︸ 

old approximation 

+ 

1 

α( ρ, δρ ) 
· ̂ γ ( ρ) ︸ ︷︷ ︸ 

new observation 

. (13)

As a termination criterion, we analyze the development of the

parametrizations provided by both Boltzmann and Bellman. If both

provide the same unaltered parametrization for successive 1,0 0 0

trajectories, we assume that the procedure converged (In our com-

putational study that is the case after 34,649 simulation runs). As

soon as this termination criterion occurs, the approximation phase

ends. 

4.3.2.2. Application phase . In the application phase, we select the

best parametrization (δρ0 , δρ1 , . . . , δρmax ) for our DLA. More spe-

cific, we apply the approximate Bellman Eq. (14) to select the

lookahead horizons minimizing the expected number of future

failed demands: 

δρ := arg min 

δ∈ 

˜ ν(ρ, δ) , ∀ ρ ∈ P . (14)

We denote this parametrization DLA(VFA). 

5. Computational studies 

In this section, we analyze the performance of the DLA. We

show that the DLA is able to reduce the amount of unsatisfied de-

mand compared to benchmark policies. We specifically show the

value of the DLA’s autonomous adaption to the demand pattern

and how the horizons reflect the varying demand pattern over the

day. We also show that integrating routing decisions in our simu-

lations is challenging. Finally, we show how the DLA’s advantages

decline when we systematically increase the percentage of noise in

the user demand. 

In the following, we present the instances based on real-word

data of the bike-sharing system of Minneapolis in Section 5.1 . We

then define the benchmark policies in Section 5.2 . We compare

the results in Section 5.3 and show the impact of anticipation in

Section 5.4 . We analyze the structure of the DLA in Section 5.5 and

provide results of a rollout algorithm integrating routing decisions

in the simulation in Section 5.6 . Finally, in Section 5.7 , we show

how the advantages of the DLA decrease when the demand pat-

tern is dissolved in noise. 

5.1. Instances 

We draw on real-world data offered by Minneapolis’ (Min-

nesota, USA) bike sharing system “Nice Ride MN” ( MN, 2016 ). The

data set comprises 483,229 trips recorded in the year 2015. We

follow the preprocessing steps proposed by Vogel et al. (2011) .

We focus on trips occurred between June and September, where

the user activity intensity is highest. Since the demand patterns
f working days and weekends differ significantly, we select only

rips occurred between Mondays and Fridays. Further, we removed

ll stations (and associated trips) where only a few trips have been

ecorded or which were installed or removed from the BSS in the

onsidered time period. The resulting data set comprises 88 work-

ng days, 169 stations, and 197,726 trips. The stations’ capacities

iffer between 15 and 35. The number of bikes within the BSS

s 1510 which corresponds to a bike racks and bikes ratio of 2:

. On average, approximately 2246 trips occur per day. By ran-

omly drawing trips with replacement from the set, we can create

97, 726 2, 246 > 9.1 · 10 11, 895 different subsets preserving the spatio-

emporal pattern. A subset represents a realization of a working

ay and serves as an instance for the SDIRP. Fig. 6 depicts the tem-

oral distribution of trips per hour in the course of the day. We

bserve two peaks at hours 8 and 17 due to commuters. An addi-

ional peak appears at noon, presumably due to leisure activities.

or the initial fill levels, we distribute the bikes over all stations

qually. 

Between stations, we consider Euclidean distances. The vehicle

s well as cyclists move with a constant speed of 15 km 

h 
. This rel-

tively conservative speed selection reflects travel through a street

etwork, traffic, and time for parking. Pedestrians move with 5 km 

h 
.

 relocation operation consumes a service time of 2 min utes per

ike. The vehicle capacity is 10 bikes. 

Based on these parameters, we simulate 10,0 0 0 non-

oncatenated working days to evaluate the policies. 

.2. Benchmark policies 

We define two benchmark policies to analyze the impacts of

ookaheads in general and the advantages of time-dependent LA

orizons. To analyze the impact of incorporating historical data by

eans of lookaheads, we define a conventional short-term reloca-

ion policy (STR) based on safety buffers as suggested in Coelho

t al. (2014a) and Brinkmann et al. (2015) . For the STR, percentual

afety buffers β for bikes and free bike racks are defined for every

tation. If a station’s fill level is between both safety buffers, we

ssume the station to be balanced. If one of the safety buffers is

iolated, we assume the station to be imbalanced. In every deci-

ion state, the vehicle will serve the nearest imbalanced station to

alance as many stations as possible. A pseudo code formulation of

TR is provided in Appendix B.4 . For tuning, we vary STR( β) with

∈ { 0 . 1 , . . . , 0 . 5 } . 
To analyze the benefits of time-dependent lookahead horizons,

e compare the DLA to lookahead policies with static horizon

SLA). Thus, SLA is a special case of DLA with the horizon δ identi-

al for every hour of the day. We define a set of SLAs with SLA( δ)

enoting the SLA of δ ∈ { 60 , . . . , 360 } minutes horizon. 

.3. Results 

The experiments are conducted on an Intel Core i5-3470 with

.2GHz and 32GB RAM. The implementation bases on Java 8.0u121.

he individual results are depicted in Appendix E . We compare the

verage failed demands achieved by DLA(VFA) with the SLAs and

ith the best tuning of the STR, provided by 20% safety buffers, in

ig. 7 . 

Policy STR(0.2) achieves 145.126 failed demands on average. We

bserve that DLA and SLAs outperform the STR significantly. The

LA leads to 97.091 failed demands given simulation horizons of

80 minutes. The DLA reduces the failed demands even to 85.405.

hus, the anticipation of the lookaheads is highly beneficial. 

Notably is the varying performance of the SLAs. As aforemen-

ioned, we experience a tradeoff between too short and too long

orizons. For horizons of only 60 min utes, the improvement is rel-

tively low. For longer horizons of more than 180 minutes, the
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Fig. 6. Temporal distribution of trips of Minneapolis’ BSS “Nice Ride MD”. 

Fig. 7. Results of short-term relocation policy and lookahead policies. 

Fig. 8. Relocations per hour. 
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mprovement decreases as well. This confirms the observation of

occia et al. (2017) that long horizons may lead to inferior deci-

ion making. 

.4. The value of anticipation 

In the following, we analyze how anticipation by the LA

hanges decision making compared to STR. To this end, we ana-

yze when relocations are conducted and when failed demand is

bserved. We show that the LAs shift workload in hours with less

emand to prepare for hours with increasing demands. To this end,

e analyze the amount of relocated bikes over the course of the

ay for DLA(VFA), SLA(180), and STR(0.2) as depicted in Fig. 8 . On

he abscissa, the time in hours is depicted. The ordinate shows the

verage numbers of relocated bikes for the three policies. We ob-

erve that in the time between hours 2 and 7, the LAs relocate

any bikes while STR conducts only a few relocations. Comparing

he relocations to the average number of trips in this time span

epicted in Fig. 6 , we see that the LAs prepare for the increase

n demand of the morning peak around hour 8. This preparation

hen leads to less unsatisfied demand around that time as shown

n Fig. 9 . The ordinate depicts the average numbers of failed rentals

nd returns per hour. For all three policies, we observe an increase

round hour 8 and later around hours 17 and 18 reflecting the high
emands in peak hours. Nevertheless, due to the aforementioned

reparations of the LAs, the peaks are substantially lower than for

he STR. 

.5. Horizons 

In this section, we analyze the horizons of the DLA and show

ow they reflect the demand pattern of the instances. 

The LA horizons are shown in Fig. 10 . The ordinates depict the

urrent hour. The abscissas depict the lengths of the horizons. The

eft-hand side shows the horizons for SLA(180). Since here the

orizons are static, we observe a constant horizon of 180 min utes,

.e., three hours. The DLA’s horizons selected by VFA are depicted

n the right-hand side. We observe two significant peaks in the

LA horizons. One peak is around hour 8, another around hour 17.

e further see a small peak around hours 11 and 12. The DLA

nly conducts simulations up to these peaks. Thus, the horizons

eflect the temporal pattern of trips depicted in Fig. 6 . In the early

orning, the simulations comprise the hours until the first com-

uter peak. In the following hours, the simulations last until the

unchtime peak around noon. Then, the simulations comprise the

ours until the second commuter peak. All in all, the VFA learns

o simulate up to but not further than the peak hours. A simu-

ation up to the commuter peaks is necessary to anticipate the
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Fig. 9. Failed demand per hour. 

Fig. 10. SLA(180) and DLA(VFA) horizons. 

Table 4 

Rollout algorithm’s results: avg. failed demand and standard error. 

Simulation runs 

Horizon 16 32 64 

60 211.93 ( ± 3.37) 188.59 ( ± 3.35) 165.67 ( ± 3.04) 

120 190.52 ( ± 3.30) 195.54 ( ± 3.76) 164.63 ( ± 3.37) 

180 207.76 ( ± 3.42) 209.58 ( ± 5.35) 172.04 ( ± 3.08) 

240 205.12 ( ± 4.13) 209.37 ( ± 4.48) 168.19 ( ± 3.24) 

300 214.66 ( ± 4.02) 225.22 ( ± 5.13) 177.08 ( ± 4.01) 

360 211.97 ( ± 3.87) 223.87 ( ± 4.89) 177.33 ( ± 3.40) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

Rollout algorithm’s runtimes: maximum and overall runtime in minutes. 

Simulation runs 

16 32 64 

Horizon Max. Compl. Max. Compl. Max. Compl. 

60 0.36 17.65 0.68 41.92 1.24 87.11 

120 0.51 26.07 0.92 54.72 2.15 109.66 

180 0.73 31.62 1.34 67.57 2.73 134.55 

240 0.94 38.18 2.00 81.44 3.89 168.04 

300 1.24 43.42 2.60 100.22 4.81 203.77 

360 1.55 54.80 2.97 120.55 6.01 244.70 
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commuters’ demands. In these hours, the numbers of demands

are high and the transitions are therefore highly stochastic. An an-

ticipation further than these hours leads therefore to inaccuracy

and to inferior decisions. VFA is able to capture these phenomena

adapting the horizons to the demand pattern and makes decisions

on accurate information. 

Given the knowledge that the temporal aspect of the demand

pattern can explain the simulation horizons, we parametrize the

DLA manually. In Appendix C , we define two manual-parametrized

DLAs and show how the manual parametrization leads to inferior

results. 

5.6. Simulation of routing decisions 

The presented lookahead methods ignore any routing within

the simulations. However, anticipation of future routing in the

evaluation of current decisions may provide additional benefit.

In this section, we analyze how the integration of routing de-

cisions impacts the performance of our lookaheads. To this end,

we draw on the concept of a post-decision state rollout algorithm

(for an overview of rollout algorithms, we refer to Goodson et al.,

2017 ). The idea of a rollout algorithm is to evaluate post-decision

states by using a base policy to approximate the expected future

value of a decision. Rollout algorithms for inventory routing are,

for example, presented by Bertazzi et al. (2013) . As Ulmer et al.

(2017a) show, the rollout improves the base policy given that the
xpected value of the base policy is known or given a sufficient

umber of simulation runs. 

To apply a rollout algorithm to the SDIRP, a base policy needs

o be selected. Because the runtime per simulation run is highly

imited, we are not able to use the DLA or an SLA. Thus, we use

TR(0.2) as base policy. Within our simulation runs, inventory and

outing decisions are made by STR(0.2). The obtained penalties are

hen used to decide in the current decision state. 

In our MDP, we have to make an inventory and a routing deci-

ion in every decision state. We still limit the inventory decisions

o 25, 50, and 75% of the current station’s capacity and consider

very station (expect for the current) to be the vehicle’s next sta-

ion. Thus, we have to evaluate each combination of inventory and

outing decision leading to 3 · (169 − 1) = 504 post-decision states.

very post-decision state is evaluated over 16, 32, or 64 simulation

uns. Following the idea of the SLA, the horizons in the simulations

re limited to δ ∈ { 60 , . . . , 360 } minutes. This leads to 3 · 6 = 18

ifferent tunings for the rollout algorithm. Because the rollout re-

uires extensive simulations, we only run 100 test days. To allow

n evaluation of the significance of our results, we also provide the

tandard errors. The results are depicted in Table 4 . We observe

 slight increase in solution quality with an increasing number of

imulation runs. The result for DLA(VFA) and STR(0.2) are 85.405,

r 145.126, respectively. Thus, even with 64 simulations runs, the

ollout algorithm is not able to achieve the results of the base pol-

cy. This indicates that the SDIRP is highly stochastic requiring a
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Fig. 11. Improvement of DLA and SLA compared to STR for varying amounts of noise. 
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ignificant number of simulation runs to obtain comparable re-

ults. However, already with 64 simulation runs, the runtimes are

ignificant as shown in Table 5 . The table shows the runtimes in

inutes. The first entry reflects the maximum runtime observed

n a decision point over all 100 runs. The second entry repre-

ents the average runtimes for the complete MDPs over all 100

uns. As expected, we observe a increased runtime with increas-

ng horizon lengths and increasing numbers of simulation runs.

he highest runtime observed for a horizon of 120 min utes and

4 simulation runs (which offers the best solution quality among

he 18 parametrizations) exceeds 2 min utes. Thus, real-time deci-

ion making is not possible for this policy. 

In summary, an integration of routing decisions in the simu-

ations does not improve the performance of the algorithm but

ven provides inferior results. Furthermore, the runtime required

or simulations is significant. 

.7. Limitations of the DLA 

In this final section of the computational studies, we analyze

he limitations of the DLA. We show that with a decrease in the

emand pattern’s distinction and an increase in noise, the advan-

ages of the DLA are diminished. We show that if the impact of

oise becomes too significant, anticipation is less possible and de-

ision making based on conventional safety buffers is advanta-

eous. To this end, we systematically construct instance settings

iffering in the demand pattern’s distinction and the amount of

oise. We focus on the point of times the demands occur. The

mount of noise is tuned by parameter λ∈ [0, 1]. Given λ, we

odify a percentage of λ of the sampled original trips based

n historical data. For this percentage, we maintain origin, des-

ination, and ride time of the observation but randomly draw

he point of time the trip occurred from a uniform distribution.

hus, we add noise in the point of time the trips occur. Param-

ter λ = 0 results in the original instance settings with the com-

uter peaks. Parameter λ = 1 results in trips equally distributed

ver time. For instance settings of λ ∈ { 0 , 0 . 2 , . . . , 1 } , we now com-

are the performances of DLA and SLA with STR. We must note

hat for DLA and every λ an approximation of the value func-

ion has been applied. The best SLA’s lookahead horizon is 180

inutes for λ≤ 0.2, 120 minutes for λ = 0 . 4 , and 60 minutes for

≥ 0.6. The best safety buffer percentage for STR remains 0.2 for

ll λ. 

The average improvements of the DLA and SLA are depicted

n Fig. 11 . On the abscissa, the percentage λ is shown. The ordi-
ate depicts the improvement to STR(0.2). We observe a constant

ecrease with increasing noise. Given a noise of λ≥ 0.8, STR(0.2)

ven outperforms the DLA. Thus, the DLA performs well when a

eterogeneous demand pattern can be experienced. In cases where

emand becomes more and more random, the anticipation is im-

eded. 

. Conclusion 

In this paper, we have presented the stochastic-dynamic inven-

ory routing problem for bike sharing systems (SDIRP). The objec-

ive of the SDIRP is to avoid unsatisfied demand by dynamically

elocating bikes. To anticipate potential future demands in the cur-

ent inventory decisions, we have presented a dynamic lookahead

olicy (DLA). The policy uses online simulations to look ahead for

 predefined horizon. Because the demand pattern changes over

he course of the day, the horizons are time-dependent and au-

onomously parametrized by means of value function approxima-

ion. Comparisons with conventional policies from the literature

nd LAs with static horizons reveal the benefits of both anticipa-

ion by the lookahead and time-dependent horizons of the DLA.

e have further shown how the DLA is able to autonomously

dapt to the demand pattern. 

Future research may focus on both model and method. For the

DIRP, a fleet of vehicles may be considered. In the consideration of

eets, two additional challenges arise. First, for a fleet, the vehicles

eed to be coordinated to avoid simultaneous service of stations

y different vehicles and to enable many suitable operations in the

ntire city. Second, decision states in the Markov decision process

ccur more frequently. Thus, the runtime available for simulations

ay be further restricted. 

The proposed method may further be transferred to larger in-

tance settings or instance settings with different demand pat-

erns. The method may be extended by making the horizons de-

endent on additional state parameters like vehicle locations. The

ethod of non-parametric policy search may further be general-

zed by assigning individual policies to a set of states dependent

n the states’ characteristics. 
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ally deviating from the currently found best solution. Thus, we apply 

able A.6 . In hour ρ , every lookahead horizon δi is assigned a probability 

tion. 

raversed trajectories 

 control exploitation and exploration 

 of choosing a lookahead horizon 

δi ) and a coefficient ε( ρ) controlling exploration and exploitation: 

(A.1) 

function leads to exponentially increasing probabilities. The coefficient, 

number of traversed trajectories η and on the difference of maximum 

˜ ν(ρ, δ) 
(A. 2) 

ut of the exponential function if the value remains constant. Thus, ex- 

he procedure is more and more forced to exploitation since the lowest 

d the second lowest is small. Further, the difference of maximum and 

 is large, the exponential function’s input is small and thus exploration 

y be selected to firm the approximation. If all values are the same, all 

ix B.3 . A lookahead horizon is selected with respect to the probabilities 

n the MDP’s current hour. 

kahead policy, the VFA-guided non-parametric policy search, the Boltz- 

head policy. 

s an inventory decision ιx and a routing decision n x . In the for-loop 

 μi (low, medium, and high). The associated inventory decisions ιi are 
 

v 
k 

 

and the vehicle’s load f v 
k 

and capacity c v . Before the simulations are 

returns γ + 
ιi ,n 

in lines 11 – 14. For every ιi , we traverse 32 simulations j 

e apply ιi to the current decision state s in line 17. To determine the 

sition function ω to sample demand (see Sections 3.2 and 3.3 ). Every 

 – 26. In lines 21 and 24, we steadily update the approximated failed 

ecision state. In line 29, we select the inventory decision ιx , minimizing 

elect the station where the vehicle can prevent as most failed demand. 
Appendix A. Boltzmann exploration 

Exploration of the search space can be supported by occasion

Boltzmann exploration in our VFA using the additional notation in T

Table A.6 

Notation of the Boltzmann explora

Symbol Description 

η ∈ N 0 Number of t

ε : P → R 
+ 
0 

Coefficient to

φ : P × 
 → R 
+ Probabilities

φ( ρ , δi ) to be selected. The probability depends on the value ˜ ν(ρ, 

φ(ρ, δ j ) = 

(
exp 

(
ε(ρ) · ˜ ν(ρ, δ j ) 

))- 1 

∑ 

δ∈ 


(
exp 

(
ε( ρ) · ˜ ν(ρ, δ) 

))- 1 
. 

According to Eq. (A.1) , linearly decreasing input of the exponential 

as defined in Eq. (A.2) , manipulates the values. It depends on the 

and minimum values: 

ε(ρ) = 

{
0 , if max δ∈ 
 ˜ ν(ρ, δ) = min δ∈ 


η · 0 . 01 
max δ∈ 
 ˜ ν(ρ,δ) − min δ∈ 
 ˜ ν(ρ,δ) 

, else . 

With ongoing trajectories, η linearly grows and so does the inp

ploration is allowed in the beginning of the approximation phase. T

values will dominate even if the difference between the lowest an

minimum values has an impact on the probability. If the difference

will be allowed. In this way, inferior lookahead horizons will likel

probabilities will be identical. For more details, we refer to Append

and a random variable. The selected lookahead horizon is applied i

Appendix B. Algorithms 

In this section, we provide formal definitions of the dynamic loo

mann exploration, and the short-term relocation policy. 

B1. Dynamic lookahead policy 

In this section, we present the algorithmic definition of a looka

The DLA receives a decision state s = (t, f k , n 
v 
k 
, f v 

k 
) and return

between lines 2 – 28, we evaluate the three fill level percentages

determined in lines 3 –10 with respect to the station’s fill level f 
n

k
started, we initialize the numbers of failed rentals γ −

ιi ,n 
and failed 

in lines 16 – 27. Since we aim on evaluating inventory decisions, w

initial decision state s k j of simulation j , we further apply the tran

simulation j has a number of decision points processed in lines 19

rentals and returns γ −, γ + . In line 25, we update the simulation’s d

the expected failed demand at the current station. In line 29, we s

The decisions are returned in line 31. 
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Algorithm 1: Dynamic lookahead policy. 

Input : (t, f k , n 

v 
k 
, f v 

k 
) = s ∈ S 

Output : (ιx , n 

x ) = x ∈ X 

1 for all μi ∈ { μ1 , μ2 , μ3 } ; // For all target fill level percentages 
2 do 

3 ιi ← 0 

4 if μi · c(n 

v 
k 
) > f 

n v 
k 

k 
; // If fill level lower than target 

5 then 

6 ιi ← min { μi · c(n 

v 
k 
) − f 

n v 
k 

k 
, f v 

k 
} ; // Define inventory decision 

7 else if μi · c(n 

v 
k 
) < f 

n v 
k 

k 
; // If fill level higher than target 

8 then 

9 ιi ← max { μi · c(n 

v 
k 
) − f 

n v 
k 

k 
, c v − f v 

k 
} ; // Define inventory decision 

10 end 

11 for all n ∈ N do 

12 γ −
ιi ,n 

← 0 

13 γ + 
ιi ,n 

← 0 

14 end 

15 for all j ∈ { 1 , . . . , 32 } ; // For 32 simulations 
16 do 

17 s k j ← ω(s, (ιi , n 

v 
k 
)) ; // Apply inventory decision 

18 while k j 
 = k j max ; // Until end of lookahead horizon 
19 do 

20 for all n ∈ N; // For all stations update failed demands 
21 do 

22 γ −
ιi ,n 

← γ −
ιi ,n 

+ 

1 
32 

· p 

−
j 
(s k j , n ) 

23 γ + 
ιi ,n 

← γ + 
ιi ,n 

+ 

1 
32 

· p 

+ 
j 
(s k j , n ) 

24 end 

25 s k j ← ω 

(
s k j , 

(
0 , n 

v 
k 

))
; // Apply no further decisions 

26 end 

27 end 

28 end 

29 ιx ← arg min ι∈{ ι1 ,ι2 ,ι3 } γ
−(ι, n 

v 
k 
) + γ + (ι, n 

v 
k 
) ; // Select inventory decision 

30 n 

x ← arg max n ∈ N max { min { γ −(ιx , n ) , f t v − ιx } , min { γ + ( ιx , n ) , c v − f t v − ιx } } ; // Select next station 
31 return (ιx , n 

x ) 

B

he values ˜ ν of combinations of hours ρ and lookahead horizons δ. 

T the VFA-guided non-parametric policy search. 

on selections α in lines 2 – 5. In lines 6 – 31, we traverse trajectories 

u , defining the DLA, are selected by the Boltzmann exploration in lines 8 

– line 12, we initialize the first decision point k . To this end, in lines 14 –

1  racks and bikes corresponds to 2: 1. In other words, the total number 

o
 

c(n ) . Then, the initial decision state s o is initialized in line 20. In lines 

2 ne 23, we determine the hour i . Every hour has a length of 60 min utes. 

I n δρi for hour ρ i to the current decision state s k . In lines 28 – 30, the 

a d demands in the current trajectory. In fact, we determine the averages 

o ted values ˜ ν are returned in line 32. 
2. VFA-guided non-parametric policy search 

The VFA-guided non-parametric policy search approximates t

able 3 provides an overview on all sets, objects, and functions of 

We initialize the approximated values ˜ ν and numbers of horiz

ntil a termination criterion occurs. At first, the simulation horizons

11. For every hour ρ ∈ P, we select one simulation horizon δρ . In 

7, we randomly distribute bikes over all stations. The ratio of bike

f bikes is equal to 50% of the sum of stations’ capacities: 1 
2 ·

∑ 

n ∈ N
2 – 26, decision points of the trajectory’s MDP are processed. In li

n line 23, we apply the lookahead policy with the selected horizo

pproximated values ˜ ν are updated according to the observed faile

ver all combinations of hours and horizons. Finally, the approxima
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Algorithm 2: VFA-guided non-parametric policy search. 

Input : P , 

Output : ˜ ν

1 for all ρ ∈ P , δ ∈ 
; // Initialize value function 
2 do 

3 α(ρ, δ) ← 0 

4 ˜ ν(ρ, δ) ← 0 

5 end 

6 repeat 
7 for all ρ ∈ P ; // For all hours select lookahead horizon 
8 do 

9 δρ ← boltzmann (ρ) ; // Boltzmann exploration selects horizon 
10 α(ρ, δρ ) ← α(ρ, δρ ) + 1 

11 end 

12 k ← 0 ; // Initialize first decision point 
13 for all b ∈ { 1 , . . . , 1 

2 
·∑ 

n ∈ N c(n ) } ; // Distribute bikes initially 
14 do 

15 n ← random { n 1 , . . . , n max } ; // Select random station 
16 f n 

k 
← f n 

k 
+ 1 ; // Increase selected stations fill level 

17 end 

18 n 

v 
k 

← n 0 ; // Vehicle starts at the depot 
19 f v 

k 
← 0 ; // Vehicle initial load initially is void 

20 s 0 ← 

(
k, f k , n 

v 
k 
, f v 

k 

)
; // Initialize first decision state 

21 while k 
 = k max ; // Until final decision point 
22 do 

23 i ←  t k 
60 

� ; // Determine hour 
24 s k +1 ← ω 

(
s k , π

δρi (s k ) 
)
; // Apply DLAs decision and transition 

25 k ← k + 1 ; // Go to next decision point 
26 end 

27 for all ρ ∈ P ; // For all hours update values 
28 do 

29 ˜ ν(ρ, δρ ) ← 

α(ρ,δρ ) −1 
α(ρ,δρ ) 

· ˜ ν(ρ, δρ ) + 

1 
α(ρ,δρ ) 

·
k max ∑ 

k = k ρ
p 

(
s k , π

δρ
(s k ) 

)
30 end 

31 until STOP ; 
32 return ˜ ν

n hour ρ . In lines 1 – 4, we define the parameter ε controlling explo- 

of the VFA and lowest and highest approximated values. In lines 6 –

terval [0,1] dependent on the values. In lines 12 – 16, we implement a 

. 
B3. Boltzmann exploration 

The Boltzmann exploration selects a lookahead horizon δ for a

ration and exploitation dependent on the number of trajectories η
8, every horizon δi is assigned a probability φ(ρ, δi ) ∈ R in the in

roulette wheel selecting a horizon with respect to the probabilities
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Algorithm 3: Boltzmann exploration. 

Input : ρ ∈ P 

Output : δ ∈ 

1 ε(ρ) ← 0 ; // Controls exploitation and exploration 
2 if max δ∈ 
 ˜ ν(ρ, δ) 
 = min δ∈ 
 ˜ ν(ρ, δ) then 

3 ε(ρ) ← 

η · 0 . 01 
max δ∈ 
 ˜ ν(ρ,δ) −min δ∈ 
 ˜ ν(ρ,δ) 

4 end 

5 for all δi ∈ 
; // For all horizons, determine selection probability 
6 do 

7 φ(ρ, δi ) ← 

(
exp 

(
ε(ρ) · ˜ ν(ρ,δi ) 

))- 1 

∑ 

δ∈ 


(
exp 

(
ε(ρ) · ˜ ν(ρ,δ) 

))- 1 

8 end 

9 w ← 0 

10 r ← random (0 , 1) 
11 i ← 0 

12 while w ≤ r; // Roulette wheel selection 
13 do 

14 w ← w + φ(ρ, δi ) 
15 i ← i + 1 

16 end 

17 return δi 

B

 n x with respect to the decision state s = (t, f k , n 
v 
k 
, f v 

k 
) . In lines 1 – 8, 

w s (line 3) and free bike racks (line 6) according to the safety buffer β . 

I ith respect to the vehicle’s load f v t and capacity c v . In lines 9 – 18, we 

d hicle could pick up or deliver bikes. In line 19, we choose the nearest 

s e 20. 

// If not enough bikes 

// If too many bikes 

// If not enough bikes 

// If too many bikes 
4. Short-term relocation policy 

The STR returns an inventory decision ιx and a routing decision

e detect if the current station n v 
k 

has a suitable numbers of bike

f a safety buffer is violated, we define an inventory decision ιx w

etect which other stations violate the safety buffers and if the ve

tation n x demanding relocations. The decisions are returned in lin

Algorith m 4: Short-term relocation policy. 

Input : (t, f k , n 

v 
k 
, f v 

k 
) = s ∈ S 

Output : (ιx , n 

x ) = x ∈ X 

1 ιx ← 0 

2 if f 
n v 

k 

k 
< 

⌈
β · c(n 

v 
k 
) 
⌉

; 

3 then 

4 ιx ← min 

{⌈
β · c(n 

v 
k 
) 
⌉

− f v 
k 

, f v 
k 

}
5 else if 

⌈
(1 − β) · c(n 

v 
k 
) 
⌉

< f 
n v 

k 

k 
; 

6 then 

7 ιx ← max 

{ ⌈ 

(1 − β) · c(n 

v 
k 
) − f 

n v 
k 

k 

⌉ 

, f v 
k 

− c v 

} 

8 end 

9 for all n ∈ N do 

10 σ (n ) ← 0 

11 if f n 
k 

< � β · c(n ) � ∧ 0 < f v 
k 

− ιx ; 
12 then 

13 σ (n ) ← 

1 
τ (n v 

k 
,n ) 

14 else if � (1 − β) · c(n ) � < f n 
k 

∧ f v 
k 

− ιx < c v ; 
15 then 

16 σ (n ) ← 

1 
τ (n v 

k 
,n ) 

17 end 

18 end 

19 n 

x = arg max n ∈ N σ (n ) 
20 return (ιx , n 

x ) 
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Fig. C.12. A-priori DLA’s and ex-post DLA’s lookahead horizons. 

Fig. C.13. Results of the lookahead policies. 

owledge gained in the computational studies. In Section 5.5 , we found 

peaks. Thus, we manually define the A-priori DLA, simulating exactly 

ate and apply STR(0.2) instead. We further observed that the policies’ 

fine the Ex-post DLA, selecting in every hour the lookahead horizon of 

ookahead horizons of both manually parametrized DLAs. 

180) and the DLAs. A-priori DLA achieves 99.577 failed demands and, 

114.931 failed demands and provides the lowest solution quality in this 

LA(VFA). For A-priori DLA, we only consider the temporal aspect of 

considers both aspects and, thus, provides a higher solution qual- 

ands in a hour are due to the selected lookahead horizon in this 

 hour’s failed demands are due to the decisions of the previous 

eturn demands between two decision points k and k + 1 . 

 ordered by the associated point in time. We handle all demands in 

 time t is handled first. We first have to distinguish rental and return 

ing station n , the user can rent a bike. Let n i be the destination station 

(n, n i ) at n i . Thus, a return demand is inserted in the queue. If no bike 

e nearest non-empty station n j . 
4 Thus, we insert a new rental demand 

iled, we increase the penalties between the two decision states by one. 

corresponding station n , the user can return the bike. In this case, the 

eturn the bike at the nearest non-full station n j . Thus, we insert a new 

e one demand has failed, we increase the penalties between the two 

’s first demand takes place after the next decision point k + 1 , or time 

t

Appendix C. Manual-parametrized dynamic lookahead policies 

In this section, we manually parametrize two DLAs using the kn

out that DLA(VFA) mostly does not simulate ahead the demand 

until the hour of the next peak. In a peak hour, we do not simul

performances heavily differ in distinct hours. Thus, we manually de

the best performing SLA or STR, respectively. Fig. C.12 depicts the l

Fig. C.13 depicts the average failed demands achieved by SLA(

thus, performs slightly worse than SLA(180). Ex-post DLA achieves 

collection. 

Both manual-parametrized DLAs perform much worse than D

the demand pattern. Thus, we neglect the spatial aspect. VFA 

ity. For Ex-post DLA, we allow the fallacy that the failed dem

certain hour. In fact, a decision often pays off late. Thus, an

hours. 

Appendix D. Handling demands 

In this section, we describe the process of handling rental and r

The process is depicted by Fig. D.14 . Demands are in a queue

the time interval [ t k , t k +1 ] . The demand with the earliest point in

demands. 

If it is a rental demand and a bike is available at the correspond

of the user. He or she will approach to return the bike in time t + τ
is available at n , the rental demand fails. The user will approach th

at n j in time t + τ (n, n j ) · 3 in the queue. 5 Since one demand has fa

If it is a return demand and a free bike rack is available at the 

trip ends. If no free bike rack is available at n , the user will try to r

return demand at n j in time t + τ (n, n j ) in the queue. Again, sinc

decision states by one. 

The process is repeated until the queue is empty or the queue

 k +1 , respectively. 
4 We assume that the stations are equipped with a terminal, providing real-time information on the stations’ fill levels. 
5 Function τ refers to 15 km 

h 
. We assume pedestrians to move with a speed of 5 km 

h 
. Thus, the travel time is multiplied by 3. 
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Fig. D.14. Handling demands. 

A

 our policies. 

R(0.2), SLA(180), and DLA(VFA) for every hour of the day. �p indicates 

t | ι| shows the average numbers of relocations. The numbers are also 

s

eters is provided by Tables E.8 , E.9 and E.10 . Here, we separate the 

n e rentals than returns fail. The user detours, occurring if a demand fails 

a or the solution quality. On average, a failed demand results in a detour 

o the STRs, the higher the safety buffer, the more stations are defined as 

i tions. For all STRs, we observe significantly more served stations than 

f  LAs, we experience a significantly higher number of relocated bikes 

p ry decisions, drawing on expected failed demands. Regarding the CPU 

t d a sequence K of decision points (representing one complete MDP, or 

o ince in a real-world application decisions are made in real-time. Thus, 

a en a vehicle arrives at a station. The numbers refer to the maximum 

C  the STRs, the CPU time is negligible. The longer the SLAs’ lookahead 

h mum CPU time per decision point is slightly higher than one second. 

T is perspective, all policies are suitable for real-world decision making. 

T the evaluation of policies and parameters. We observe high CPU times 

d

ppendix E. Results 

In this section, we present further details on results achieved by

Table E.7 depicts the average number of trips and results by ST

he average numbers of failed demands in the associated hour. �

hown in Figs. 6, 8 , and 9 ( Section 5 ). 

A comprehensive overview on results by all policies and param

umbers of failed rentals and returns. We observe that always mor

nd the user tries a neighboring station, are alternative measures f

f 4 . 0 − 4 . 5 minutes. Here, the policies are very similar. Regarding 

mbalanced, resulting in more relocated bikes and more served sta

or all LAs. This is due to STRs’ myopic routing decisions. For the

er station compared to the STRs. This is due to the LAs’ invento

imes, we distinguish the time for solving one decision point k an

ne working day, respectively). The CPU time per k is of interest, s

 decision support system needs to return a decision quickly wh

PU time observed for one k over all 10,0 0 0 instances solved. For

orizons, the higher the CPU times. Nevertheless, SLA(360)’s maxi

he DLAs always return decisions in less than 

3 
4 s econds. From th

he CPU time for one sequence K of decision points is relevant in 

emanding high computational effort to gain reliable results. 
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Table E.7 

Detailed Results. 

do nothing STR(0.2) SLA(180) DLA(VFA) 

Hour Trips �p �p �| ι| �p �| ι| �p �| ι| 

0 17 .458 0 .585 0 .327 9 .756 0 .239 11 .131 0 .243 11 .707 

1 10 .220 0 .216 0 .105 7 .051 0 .059 6 .858 0 .067 6 .079 

2 6 .524 0 .175 0 .059 4 .770 0 .031 5 .147 0 .039 9 .467 

3 2 .595 0 .064 0 .014 3 .254 0 .011 6 .324 0 .014 13 .479 

4 4 .053 0 .038 0 .006 1 .987 0 .004 9 .969 0 .006 11 .756 

5 13 .136 0 .136 0 .011 1 .210 0 .011 13 .644 0 .015 9 .217 

6 31 .218 0 .448 0 .055 2 .708 0 .048 12 .041 0 .042 10 .273 

7 99 .282 4 .182 1 .328 6 .619 0 .743 13 .835 0 .386 14 .727 

8 126 .756 27 .843 17 .207 14 .202 5 .906 20 .425 4 .236 19 .790 

9 96 .443 31 .160 20 .845 17 .279 8 .273 20 .549 6 .825 20 .251 

10 87 .894 19 .159 11 .360 17 .260 5 .217 19 .718 4 .377 17 .976 

11 115 .905 16 .433 7 .891 16 .562 4 .376 18 .765 3 .726 17 .975 

12 145 .760 15 .862 6 .273 15 .637 4 .610 18 .007 4 .292 17 .612 

13 134 .456 14 .839 5 .395 14 .971 4 .049 17 .224 4 .386 16 .871 

14 128 .645 12 .251 3 .923 14 .253 3 .561 17 .240 4 .060 15 .824 

15 139 .636 10 .130 2 .931 12 .842 3 .649 14 .904 3 .419 15 .369 

16 194 .032 10 .792 4 .002 11 .740 5 .523 15 .361 4 .239 16 .590 

17 223 .985 17 .291 13 .612 12 .913 11 .570 19 .723 9 .145 19 .199 

18 194 .556 21 .277 16 .868 13 .940 13 .026 19 .941 11 .405 19 .417 

19 160 .824 16 .884 11 .298 14 .371 9 .858 19 .304 9 .047 18 .989 

20 126 .248 13 .288 8 .038 14 .131 7 .127 18 .619 6 .725 18 .618 

21 88 .493 11 .063 6 .065 13 .817 4 .708 17 .524 4 .479 17 .203 

22 60 .674 9 .379 4 .734 13 .615 2 .959 16 .016 2 .759 15 .713 

23 37 .208 6 .300 2 .784 10 .230 1 .533 11 .749 1 .475 11 .549 

0 – 23 2,246 .0 0 0 259 .794 145 .126 265 .118 97 .091 364 .016 85 .405 365 .649 

Table E.8 

Short-term Relocation Policies’ Results. 

do nothing STR(0.1) STR(0.2) STR(0.3) STR(0.4) STR(0.5) 

Failed Demands 259 .794 146.699 145.126 166.358 187.945 210.758 

Rentals 138.139 80.237 81.716 91.268 103.009 117.995 

Returns 121.655 66.462 63.410 75.090 84.935 92.763 

User Detours [min] 1,110.196 631.163 635.423 722.527 829.983 944.189 

Detour per Failed Demand [min] 4.273 4.302 4.378 4.343 4.416 4.480 

Relocated Bikes – 180.721 265.118 371.453 433.500 471.698 

Served Stations – 128.395 146.264 170.902 179.553 196.967 

Relocations per Served Station – 1.408 1.813 2.173 2.414 2.395 

Max. CPU Time per k [sec] – 0.005 0.005 0.005 0.009 0.010 

Avg. CPU Time per K [sec] – 0.139 0.142 0.146 0.150 0.157 

Table E.9 

Stat ic Lookahead Policies’ Results. 

SLA(60) SLA(120) SLA(180) SLA(240) SLA(300) SLA(360) 

Failed Demands 120 .440 101 .433 97 .091 99 .272 104 .048 109 .625 

Rentals 65 .303 55 .374 53 .515 54 .687 57 .220 60 .259 

Returns 55 .138 46 .059 43 .576 44 .586 46 .828 49 .365 

User Detours [min] 492 .214 417 .963 405 .324 418 .354 442 .158 472 .246 

Detour per Failed Demand [min] 4 .087 4 .121 4 .175 4 .214 4 .250 4 .308 

Relocated Bikes 335 .682 361 .313 364 .016 353 .209 339 .556 323 .022 

Served Stations 48 .468 49 .279 49 .970 49 .259 47 .943 45 .821 

Relocations per Served Station 6 .926 7 .332 7 .285 7 .170 7 .083 7 .050 

Max. CPU Time per k [sec] 0 .265 0 .344 0 .500 0 .702 0 .843 1 .030 

Avg. CPU Time per K [sec] 7 .498 8 .894 12 .386 17 .541 24 .357 32 .720 

Table E.10 

D ynamic Lookahead Policies’ Results. 

DLA(VFA) A-priori DLA Ex-post DLA 

Failed Demands 85 .405 99 .577 114 .931 

Rentals 46 .407 54 .681 68 .484 

Returns 38 .998 44 .896 46 .447 

User Detours [min] 360 .446 425 .459 484 .571 

Detour per Failed Demand [min] 4 .220 4 .273 4 .216 

Relocated Bikes 365 .649 362 .644 375 .893 

Served Stations 54 .756 62 .969 57 .220 

Relocations per Served Station 6 .678 5 .759 6 .569 

Max. CPU Time per k [sec] 0 .702 0 .809 0 .702 

Avg. CPU Time per K [sec] 12 .809 12 .469 12 .004 
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