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The multiple vehicle routing problem with time windows (VRPTW) is a hard and extensively studied combinatorial
optimization problem. This paper considers a dynamic VRPTW with stochastic customers, where the goal is to maximize
the number of serviced customers. It presents a multiple scenario approach (MSA) that continuously generates routing
plans for scenarios including known and future requests. Decisions during execution use a distinguished plan chosen,
at each decision, by a consensus function. The approach was evaluated on vehicle routing problems adapted from the
Solomon benchmarks with a degree of dynamism varying between 30% and 80%. They indicate that MSA exhibits dramatic
improvements over approaches not exploiting stochastic information, that the use of consensus function improves the quality
of the solutions significantly, and that the benefits of MSA increase with the (effective) degree of dynamism.
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1. Introduction
The multiple vehicle routing problem with time windows
(VRPTW) is a hard combinatorial optimization problem
with many important applications in distribution and trans-
portation. It has received considerable attention in the last
decades, and sophisticated local search procedures are now
quite effective in finding near-optimal solutions in reason-
able time. In recent years, increased attention has been
devoted to dynamic and/or stochastic versions of the prob-
lem (e.g., Burckert et al. 2000; Gendreau et al. 1999, 1995;
1996a, b; Ichoua et al. 2000; Novaes and Graciolli 1999;
Psaraftis 1995; Savelsbergh and Sol 1998; Secomandi
2000; Yang et al. 2000). The stochastic and dynamic ver-
sions are motivated by the inherent uncertainties arising in
many industrial problems and technological developments
such as onboard computers and communication systems,
which give transportation systems the opportunity to update
plans even after the vehicle has been deployed.
Almost all existing work, which we review later in the

paper, focuses either on the stochastic version or on the
dynamic version exclusively. In stochastic optimization,
the goal is to find, given a VRPTW where some data
are stochastic, an a priori routing plan that minimizes the
expected objective function. These approaches often have
a recourse function to correct the plan when constraints
are violated. In dynamic optimization, customer requests
are not known in advance and become available incremen-
tally over time. Typically, optimization is performed on
the known quantities until an event (such as a customer
request) occurs. The plan is then adapted to accommo-
date the new request (if possible). Of course, in general,

stochastic information is also available, or can be made
available, for the dynamic version of the VRPTW, either
through historical data (as suggested, for instance, in
Gendreau et al. 1998, 1999 and Kilby et al. 1999) or
through some available probabilistic models (as advocated,
for instance, in Gendreau et al. 1996b and Yang et al.
2000). (See also Psaraftis 1995 for a review of several
interesting dynamic vehicle routing applications.) How to
exploit the stochastic information to meet as many cus-
tomer requests as possible is the main issue addressed in
this paper, and it is often mentioned as a fundamental open
research problem in this area (e.g., Bianchi 2000, Gendreau
et al. 1999, Gendreau and Potvin 1997, Kilby et al. 1999).
This paper considers the partially dynamic vehicle rout-

ing problem with time windows, where some customers
are known at planning time while others are dynamic. The
goal is to service as many customers as possible given a
fixed number of vehicles. Moreover, stochastic information
is assumed to be available on the dynamic (or stochas-
tic) customers. Note that partially dynamic vehicle routing
problems may vary greatly in complexity according to the
degree of dynamism, i.e., the ratio dynamic customers/total
customers (Larsen et al. 2002).
To tackle this dynamic stochastic vehicle routing prob-

lem, the paper proposes a multiple scenario approach
(MSA). The key idea behind MSA is to continuously gen-
erate and solve scenarios which include both static and
dynamic requests. Decisions during plan execution are
based on a distinguished plan which also evolves over time.
The distinguished plan is selected by a consensus func-
tion that selects the plan most similar to the current pool
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of routings. The consensus function implements a least-
commitment approach, a well-known heuristic in the artifi-
cial intelligence community (Stefik 1981).
This paper evaluates the effectiveness of MSA on a col-

lection of tightly constrained dynamic vehicle routing prob-
lems with time windows. These problems are based on
a subset of the Solomon benchmarks and can be viewed
as a generalization of the experimental setting of Gen-
dreau et al. (1999) that introduces stochastic information.
Practical applications similar to this model include courier
service applications, which were the motivation for Gen-
dreau et al. (1999), dynamic maintenance/repair services,
and intermodal services (e.g., Psaraftis 1995).
Experimental results on these dynamic stochastic routing

problems with a degree of dynamism between 30% and
80% indicate that MSA produces dramatic improvements
over approaches not using stochastic information. They also
indicate a strong synergy between MSA and the use of
a consensus function, especially for problems with a high
degree of dynamism or a large number of late dynamic
customers (i.e., a high effective degree of dynamism in the
terminology of Larsen et al. 2002). It is also important to
stress that the approach is essentially domain-independent,
and we expect that many other dynamic applications may
benefit from these techniques, although our experimental
results consider only our original VRPTW application.
The main contributions of this paper can be summarized

as follows.
• This paper shows that MSA produces dramatic ben-

efits in terms of solution quality by exploiting stochas-
tic information on dynamic customers. This answers an
open research issue mentioned in a variety of prior work
(e.g., Bianchi 2000, Gendreau et al. 1999, Gendreau and
Potvin 1997, Kilby et al. 1999), at least for problems with
a degree of dynamism between 30% and 80% (the moder-
ately dynamic problems of Larsen et al. 2002).
• This paper shows that it is beneficial to use the consen-

sus function for choosing the distinguished plan instead of
travel distance, especially for problems with high degrees
of dynamism. In fact, it is the synergy between stochas-
tic information and the consensus function that seems to
be responsible for the dramatic improvements over other
approaches.
• This paper also shows that maintaining multiple rout-

ing plans is fundamental in obtaining high-quality solu-
tions in dynamic routing problems, even when no stochastic
information is available. This confirms and abstracts the
results of Gendreau et al. (1999) by making them indepen-
dent of a specific local search.
The rest of this paper is organized as follows. Section 2

describes the problem formulation. Section 3 presents the
traditional greedy approach. The main contributions of the
paper are presented in the next three sections. Section 4
introduces the multiple plan approach (MPA) that continu-
ously generates and maintains a pool of solutions but does
not use stochastic information. Section 5 presents the MSA

approach that generalizes MPA with stochastic information.
Section 6 gives the experimental results. The last two sec-
tions present the related work and conclude the paper.

2. Problem Formulation

Customers. Each problem contains N customer
regions (regions for short) and N ′ customer service requests
from the regions (customers for short). The customers are
numbered 1� � � � �N ′, in the (chronological) order of their
requests. The regions are numbered 1� � � � �N . A depot is
represented by the number 0. The set �0�1� � � � �N ′� repre-
sents all the sites in the problem. The travel cost between
sites i and j is represented by cij . These travel costs sat-
isfy the triangle inequality, i.e., ∀i� j� k
cik � cij+cjk�. Every
request has a demand qi � 0 and a service time si � 0.

Vehicles. Each problem has m identical vehicles avail-
able for use, each with capacity Q.

Routes. A vehicle route, or route for short, starts at
the depot, serves some number of customers at most once,
and returns to the depot. Formally, a route is a sequence
�0� v1� � � � � vn�0�� where 1� vi �N

′ and all vi are distinct.
The demand of a route is denoted by q
r�=∑n

i=1 qi. The
travel cost of a route r is denoted by c
r� and is the cost of
visiting all of its customers, i.e., c
r�= c0v1 + cv1v2 + · · · +
cvn−1vn + cvn0.
Routing Plan. A routing plan, or plan for short, is a

set of routes �r1� � � � � rm� servicing each customer exactly
once. A routing plan assigns a unique successor and pre-
decessor for each customer. For a plan, � , the successor of
customer i is denoted by succ
i��� and the predecessor is
denoted by pred
i���. The travel cost of a plan is denoted
by c
��, i.e., c
��=∑m

r=1 c
r�. We also use cust
r� and
cust
�� to denote the customers of a route r and a plan � .

Time Windows. Each site i has a time window spec-
ified by an interval �ei� li�, which represents the earli-
est and latest possible arrival times, respectively. Vehicles
must arrive by li but can arrive before ei. However, they are
required to wait until ei to begin service. Observe that e0 rep-
resents the earliest time vehicles can leave the depot and l0
represents the time all the vehicles must return to the depot.
A routing plan implicitly specifies the earliest possible

service time ai of each customer i, as well as the earliest
possible arrival time a
r� of each route r . These values
are computed using simple recursive equations (Kindervater
and Savelsbergh 1997). A plan also specifies the earliest
and latest departure times from each customer and these
quantities are used later in the paper.
A solution to the offline VRPTW is a routing plan � =

�r1� � � � � rm� that satisfies the capacity and time window
constraints, i.e.,



q
rj��Q 
1� j �m��

a
rj�� l0 
1� j �m��

ai � li 
∀i ∈ cust
����
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The objective here is to find a solution maximizing the
number of served customers �cust
���, i.e., a routing plan
satisfying all constraints and servicing as many customers
as possible.
In the dynamic VRPTW, customer requests are not

known in advance and become available during the course
of the day. In general, a number of requests are available
initially, while others become available during plan execu-
tion. We assume that the distribution of the requests—or
an approximation thereof—is available either through his-
torical data, as suggested in Gendreau et al. (1998, 1999)
and Kilby et al. (1999), or through some available proba-
bilistic models as advocated in Gendreau et al. (1996b) and
Yang et al. (2000). For each incoming request, the dynamic
algorithm must decide whether to accept or reject the cus-
tomers. Once a request is accepted, it must be serviced.
(We also experimented with the simpler problem, in which
requests were not necessarily serviced. The results were,
in fact, rather similar in our limited experiments.)

3. The Greedy Algorithm
The greedy algorithm (e.g., Bianchi 2000, Gendreau and
Potvin 1997, Lund et al. 1996, Larsen et al. 2002) is the
traditional approach to dynamic vehicle routing. (We are
referring to instances based on the Solomon benchmarks,
which are tightly constrained; see Krumke et al. 2002 for
an application with fundamentally different properties.) It
starts with a routing plan accommodating as many initial
requests as possible and tries to insert new requests as they
become available. The initial routing plan is, in general,
obtained by a sophisticated local search, which is the only
viable alternative for large-scale problems. When a request
for customer c arrives, the greedy algorithm determines
whether there is a feasible insertion point in the plan. If no
such insertion point exists, the request is rejected. Other-
wise, the new customer is inserted to minimize travel cost.
It is important to say a few words about plan execution.

In general, a routing plan does not specify unique depar-
ture dates for customers, but rather it constrains the earliest
and the latest feasible departure times. In the dynamic set-
ting, it is important to delay decisions as much as possible
(because new requests may materialize) while not inducing
any delay in service. Hence, the traditional strategy is to
depart from a customer to arrive at the next customer as
early as possible but not before the start of its time win-
dow. In other words, a vehicle never waits at a customer
site before being serviced but may wait before departing to
the next customer.
It is also interesting to observe that, in general, simple

extensions to the greedy approach do not work well for
vehicle routing with time windows based on the Solomon
benchmarks. For instance, in our experiments, reoptimizing
the plan after an insertion (using the state-of-the-art vehicle
routing algorithm presented in Bent and Van Hentenryck
2004) often led to solutions of poorer quality. The intuitive

reason is that optimized solutions tends to produce tight
schedules for the vehicles in use, which reduce their abil-
ity to accommodate future (late) customers. New, or less
appropriate, vehicles must then be used for servicing these
customers. More creative solutions must be used such as
the adaptive memory approach of Gendreau et al. (1999).
Note, however, that Krumke et al. (2002) report a success-
ful application of reoptimization for a large-scale problem
of a different type of applications, where optimal solutions
produce short routes.

4. The Multiple Plan Approach
MPA is a fundamental generalization of the greedy ap-
proach. Its key idea is to maintain a set of plans at every
execution step. MPA was motivated by the seminal work
of Gendreau et al. (1999), which proposed a parallel tabu-
search algorithm organized around multiple solutions and
an adaptive memory. MPA abstracts and generalizes their
approach by making it independent of the search procedure
used to generate solutions, because different search tech-
niques may be appropriate for particular applications (e.g.,
Krumke et al. 2002). More precisely, MPA continuously
generates routing plans that are consistent with the current
decisions and deletes incompatible ones. Maintaining mul-
tiple plans is not sufficient in itself, because decisions must
be taken regarding a specific plan to guarantee service of
accepted requests. As a consequence, MPA maintains a dis-
tinguished plan at each execution step. The distinguished
plan obviously evolves over time, and all the plans main-
tained by MPA must be consistent with it. How to select
the distinguished plan is a critical aspect of MPA, which
we discuss later in the section.
More precisely, MPA handles four types of events:

(1) customer requests, (2) vehicle departures, (3) plan gen-
erations, and (4) timeouts. Customer requests update the set
of plans to accommodate the new request. Vehicle depar-
tures may render some routing plans invalid. The gener-
ation of a new plan may change the distinguished plan.
Finally, some plans may become invalid over time. This
arises when a plan specifies a vehicle departure (the latest
departure time from a customer has been reached), while
the distinguished plan specifies that the vehicle should wait
at its current location. Timeouts capture these events. We
now specify how to handle each event in more detail and
discuss how to rank the plans next.

4.1. Event Handling

At each time t, MPA maintains a set of plans St and a
distinguished plan �∗

t . For each event, we specify how to
compute St+1 and �∗

t+1 from past decisions, St and �
∗
t .

Each event type is specified in isolation, although several
of them may occur simultaneously. It is easy to order them
appropriately when this happens by selecting the events in
the following order: timeouts, plan generations, customer
requests, and vehicle departures. We make use of a set
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of functions ft to rank the plans. Given a time t and a
plan � , ft
�� returns a real value. Finally, observe that the
implementation is event driven. In other words, although
we specify St and �

∗
t for all t, the implementation considers

only the times where an actual event occurs.

Timeout. At time t, some plan � may become infea-
sible. This happens when a vehicle v is waiting at a cus-
tomer r , while plan � specifies that t is the latest departure
for r .

St+1 �= �� ∈ St � feasible
�� t���
�∗
t+1 �= �∗

t �

where feasible
�� t� holds if � is feasible at time t:

∀r ∈Depart
t� � ldt
�� succ
�� r��� t�

where ldt
�� r� is the latest departure time from cus-
tomer r in � and Depart
t� denotes the set of customers
from which a vehicle departed before or at time t.

Plan Generation. When a new plan � is generated at
time t, it is added to St and the new distinguished plan
is recomputed. Note that plans are guaranteed to be com-
patible with the current distinguished plan because they
include all existing decisions, and plan generation is can-
celed whenever customer requests and vehicle departures
occur.

St+1 �= St ∪ ����
�∗
t+1 �= argmax
� ∈ St+1�ft
���
Customer Request. For a customer request r at time t,

MPA must determine which plan in St can accommodate r .
If none of them can, the request is rejected. Otherwise, the
request is accepted, and St+1 is the set of plans where the
request has been inserted at minimal travel cost.

F �= �insert
�� r� � � ∈ St & feasibleInsert
�� r���

if F �= 
 then

St+1 �= F �
�∗
t+1 �= argmax
� ∈ St+1�ft
���

else

St+1 �= St�
�∗
t+1 �= �∗

t �

where feasibleInsert
�� r� returns true iff there is an
insertion point in plan � for customer r that satisfies the
constraints, and where insert
�� r� returns a plan � ′ (if it
exists) where r has been inserted in � to minimize travel
cost while satisfying the constraints.

Vehicle Departure. When plan �∗
t specifies that vehi-

cle v must depart from customer r , it is necessary to remove

all plans in St that are incompatible with this departure.

St+1 �= �� ∈ St � compatible
���∗
t � t���

�∗
t+1 �= argmax
� ∈ St+1�ft
���
where compatible
���∗

t � t� is true if plan � is com-
patible with plan �∗

t up to time t. More formally,
compatible(���∗

t � t) holds iff

∀r ∈Depart
t� � succ
�∗
t � r�= succ
�� r��

4.2. The Consensus Function

MPA is parametrized by the ranking functions ft , which
select the distinguished plan at each time t. An obvious
choice for ft would be to select the plan with the smallest
travel cost. However, it is possible to do substantially better
on our collection of benchmarks, especially on instances in
which there are many late customers and/or many dynamic
requests. The key idea is to use a consensus function that
selects a plan most similar to other plans in St . Because
the resulting distinguished plan does not depart from other
plans too dramatically, consensus functions may be viewed
as a least commitment strategy, a well-known heuristic in
the artificial intelligence community (Stefik 1981). More
precisely, at each time t, the algorithm maintains a two-
dimensional matrix Mt , and Mt�v� r� denotes the number
of plans in St where vehicle v departs for customer r next.
More formally, the matrix Mt is defined as

Mt�v� r�= #�� ∈ St � succ
��ldc
v��= r��
where ldc
v� is the last customer from which vehicle v
departed in the plan execution. The consensus function ft
is then defined as

ft
��=
m∑
v=1
Mt�v� succ
��ldc
v����

5. The Multiple Scenario Approach
MPA with the consensus function produces dramatic im-
provements in quality compared to the greedy algorithm.
This section introduces MSA, which significantly outper-
forms MPA by exploiting stochastic information.
The key idea behind MSA consists of generating new

routing plans for scenarios that include both existing
requests as well as possible future requests. Future requests
are simply obtained by sampling their probability distribu-
tions. Once a routing � is obtained for such a scenario,
MSA projects � on the known requests by removing future
customers from the plan. The resulting projected plan �−

leaves room for accommodating future requests if they
materialize and is added to the pool St . MSA closely resem-
bles MPA, because its basic event-handling procedures are
essentially the same. Only plan generation differs in that it
uses scenarios involving future requests (instead of known
requests only). The solution to these scenarios are then pro-
jected on known requests before being inserted in St .
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6. Experimental Results
This section presents the experimental results. We first
describe how we adapted the traditional Solomon bench-
marks (Solomon 1987) to the dynamic setting. We then
specify a few parameters for the algorithms. We then com-
pare the various approaches and analyze the role of stochas-
tic information and the consensus function in the results.
We also give some interesting observations on the scenario
survival rates.

6.1. The Experimental Setting

The dynamic problems are generated from the Solomon
benchmarks (Solomon 1987). Each customer in the Solomon
instances becomes a customer region in our stochastic prob-
lems. Our instances are generated so that the expected
number of customer requests n is 100 and the expected
number of requests from a particular customer region is 1.
As a consequence, the instances preserve much of the struc-
ture of the Solomon instances, many of which are very
challenging.

Request Arrivals. To specify the arrival distribution of
customer requests, the time horizon H = l0− e0 is divided
into four time periods. Period 0 corresponds to known
requests (requests available before e0). Periods 1 to 3 can
be thought of as representing morning, early afternoon, and
late afternoon. Each customer region is labeled with a time
region according to its time window and its distance to the
depot. The distance to the depot is taken into account to
avoid generating requests that clearly cannot be serviced.
There are no requests labeled with period 3 (late after-
noon). If region i is labeled with period 0, then this region
requests service before e0. If the region is labeled with
period 1, there is a request for service before e0 with prob-
ability 0.5 and a request for service in period 1 with proba-
bility 0.5. If the region is labeled with period 2, then there
are four possibilities, leading to four classes of instances.
Problems in Class 1 have many initial requests and few late
requests. Problems in Class 2 have many initial requests
and many late requests. Problems in Class 3 have many ini-
tial requests and a mix of early and late requests. Finally,
problems in Class 4 have few initial requests and a lot
of late requests. More precisely, in Class 1, there is a
request before e0 with probability 0.5, a request in period 1
with probability 0.4, and a request in period 2 with prob-
ability 0.1. In Class 2, there is a request before e0 with
probability 0.5, a request in period 1 with probability 0.1,
and a request in period 2 with probability 0.4. In Class 3,
a request is generated according to Class 1 with proba-
bility 0.5 and according to Class 2 with probability 0.5.
In Class 4, there is a request before e0 with probability 0.2,
a request in period 1 with probability 0.2, and a request
in period 2 with probability 0.6. Observe that these proba-
bilities are independent as to allow multiple or no requests
from a particular region.

The instances were generated using these probabilities. If
there is a request in time period k, then the request arrival
time for customer c is drawn uniformly at random from
the time interval �
k − 1� ∗ H/3, min
"c� k ∗ 
H/3�− 1��,
where "c is the latest time a vehicle can depart from the
depot, service c, and return to the depot. The probabilities for
each customer region are available to a dynamic algorithm.

Instance Data. The instances take their data (customer
locations, time windows, demands, service times) from the
class RC in the Solomon benchmarks. RC problems have a
mix of clustered and randomly distributed customers, which
makes them particularly interesting. Moreover, we selected
problems with diverse time windows. In particular, RC101
problems have a good mix of short and long time win-
dows and have a high percentage of 1-region customers.
RC102 problems have many regions with short time win-
dows, 45 1-region customers, and 45 2-region customers.
RC104 problems have regions with extremely long time
windows and 83 2-region customers. Figure 1 shows the
location of the customer regions in Solomon’s RC class. As
a result, the instances cover a wide spectrum of possibilities
and structures.
The number of vehicles available for the dynamic algo-

rithms was determined by solving the offline problems (i.e.,
assuming that all requests are known in advance) and adding
two vehicles. The offline and plan generation problems
were solved using the state-of-the-art vehicle routing algo-
rithm (local search) presented in Bent and Van Hentenryck
(2004).
In the Solomon RC instances, the horizon is 240 time

units, which is too short for the units to be seconds. To run
a large number of experiments, the units cannot be minutes,
either. As a consequence, to obtain a realistic experimen-
tal setting, we scaled all spatial positions, time windows,
travel costs, and service times by the factor y/H . By choos-
ing y = 30 and minutes as units, we obtain meaningful
instances that can be experimented within reasonable time.

Figure 1. Customer region locations.
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Table 1. Class 1 problem results.

Offline Greedy MPAd MPAc MSAd MSAc

V C V C V C V C V C V

RC101-1 14 4�0 16�0 1�6 15�8 1�8 16�0 1�0 16�0 0�6 16�0
RC101-2 14 10�0 16�0 3�2 16�0 3�0 16�0 1�8 16�0 2�6 16�0
RC101-3 13 9�0 15�0 1�6 15�0 1�2 15�0 1�8 15�0 1�0 15�0
RC101-4 15 3�0 17�0 0�2 16�8 0�0 17�0 0�0 17�0 0�2 17�0
RC101-5 15 5�0 17�0 2�0 17�0 1�4 17�0 0�4 17�0 1�0 17�0
Avg 14�2 6�20 16�2 1�72 16�1 1�48 16�2 1�00 16�2 1�08 16�2

RC102-1 12 6�0 14�0 3�0 14�0 2�2 14�0 2�0 14�0 2�4 14�0
RC102-2 11 8�0 13�0 1�0 13�0 2�4 13�0 0�4 13�0 0�8 13�0
RC102-3 13 11�0 15�0 2�4 15�0 4�8 15�0 1�0 15�0 0�8 15�0
RC102-4 12 8�0 14�0 1�8 13�8 1�8 14�0 1�2 14�0 1�4 14�0
RC102-5 13 5�4 15�0 1�8 15�0 2�2 15�0 1�2 15�0 0�6 15�0
Avg 12�2 7�68 14�2 2�00 14�2 2�68 14�2 1�16 14�2 1�20 14�2

RC104-1 9 5�0 11�0 1�4 11�0 0�2 11�0 0�0 11�0 0�2 11�0
RC104-2 10 15�6 12�0 0�8 12�0 1�0 12�0 0�0 11�8 0�0 12�0
RC104-3 11 17�2 13�0 0�0 12�6 0�0 12�8 0�0 12�4 0�0 13�0
RC104-4 10 12�2 12�0 0�0 11�4 0�4 12�0 0�0 11�8 0�2 12�0
RC104-5 9 7�6 11�0 0�0 11�0 0�8 11�0 0�0 10�8 0�0 11�0
Avg 9�8 11�52 11�8 0�44 11�6 0�48 11�8 0�00 11�6 0�04 11�8

Avg 12�07 8�47 14�07 1�39 14�0 1�55 14�1 0�72 14�0 0�77 14�1

Note that all results are reported in the original units for
readers who are familiar with the Solomon benchmarks.

Algorithms. All algorithms were run on a Sun Ultra 10
with Sun’s c++ compiler. The MPA and MSA algorithms
generate 50 initial plans using the local search algorithm
mentioned earlier. Each plan is optimized for 30 seconds.
During plan execution, plans are generated by using the
local search algorithm for 10 seconds.

Table 2. Class 2 problem results.

Offline Greedy MPAd MPAc MSAd MSAc

V C V C V C V C V C V

RC101-1 11 2�0 13�0 0�6 13�0 2�0 13�0 0�0 13�0 0�2 13�0
RC101-2 13 3�0 14�0 2�0 14�0 2�0 14�0 1�0 14�0 1�4 14�0
RC101-3 15 7�0 17�0 0�4 17�0 0�8 17�0 0�0 17�0 0�0 17�0
RC101-4 15 6�0 17�0 1�8 17�0 2�2 17�0 0�6 17�0 0�8 17�0
RC101-5 14 6�0 16�0 1�8 16�0 1�4 16�0 1�6 16�0 1�4 16�0
Avg 13�6 4�80 15�4 1�32 15�4 1�68 15�4 0�64 15�4 0�76 15�4

RC102-1 13 8�2 15�0 0�0 15�0 0�4 15�0 0�0 14�6 0�4 15�0
RC102-2 12 8�6 14�0 1�4 14�0 1�2 14�0 0�6 14�0 1�2 14�0
RC102-3 12 10�0 14�0 3�0 14�0 3�2 14�0 2�0 14�0 2�0 14�0
RC102-4 13 6�0 15�0 0�6 15�0 0�8 15�0 0�2 15�0 0�4 15�0
RC102-5 12 8�0 14�0 3�0 14�0 3�4 14�0 2�6 14�0 2�8 14�0
Avg 12�4 8�16 14�4 1�60 14�4 1�80 14�4 1�08 14�3 1�36 14�4

RC104-1 10 15�2 12�0 11�2 12�0 8�6 12�0 6�2 12�0 3�0 12�0
RC104-2 10 17�8 12�0 9�4 12�0 10�0 12�0 5�4 12�0 2�6 12�0
RC104-3 10 16�4 12�0 7�8 12�0 7�2 12�0 2�0 12�0 0�8 12�0
RC104-4 11 11�0 13�0 2�4 13�0 2�0 13�0 0�8 13�0 0�6 13�0
RC104-5 10 14�6 12�0 5�2 12�0 9�0 12�0 4�2 12�0 0�2 12�0
Avg 10�2 15�00 12�2 7�20 12�2 7�36 12�2 3�72 12�2 1�44 12�2

Avg 12�07 9�32 14�0 3�37 14�0 3�61 14�0 1�81 14�0 1�19 14�0

6.2. The Results

Comparison of the Approaches. Tables 1 through 4
compare the quality of the results produced by each
approach. Time is not an issue here because vehicle travel
is significantly larger than the computation time of our
local search algorithm. The tables report the performance
of the greedy, MPA, and MSA approaches on each class of
instances. A line in the tables reports the average numbers
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Table 3. Class 3 problem results.

Offline Greedy MPAd MPAc MSAd MSAc

V C V C V C V C V C V

RC101-1 13 8�0 15�0 1�6 15�0 1�2 15�0 0�6 15�0 0�8 15�0
RC101-2 14 8�8 16�0 1�4 16�0 1�2 16�0 2�2 16�0 1�4 16�0
RC101-3 12 6�0 14�0 1�0 14�0 1�0 14�0 0�6 13�8 0�8 14�0
RC101-4 15 7�6 17�0 1�4 17�0 2�0 17�0 0�6 17�0 1�0 17�0
RC101-5 14 4�0 16�0 0�6 16�0 1�2 16�0 0�0 15�4 0�8 16�0
Avg 13�6 6�88 15�6 1�20 15�6 1�32 15�6 0�80 15�6 0�96 15�6

RC102-1 13 6�0 15�0 1�8 15�0 2�2 15�0 1�6 15�0 1�6 15�0
RC102-2 12 5�0 14�0 2�4 14�0 3�8 14�0 0�8 14�0 1�8 14�0
RC102-3 11 9�0 13�0 2�0 13�0 1�6 13�0 0�8 13�0 0�8 13�0
RC102-4 13 6�0 15�0 3�2 15�0 2�6 15�0 0�8 15�0 1�8 15�0
RC102-5 13 7�0 15�0 1�2 15�0 2�6 15�0 1�4 15�0 1�6 15�0
Avg 12�4 6�60 14�4 2�12 14�4 2�56 14�4 1�08 14�4 1�52 14�4

RC104-1 10 20�2 12�0 8�2 12�0 5�6 12�0 4�8 12�0 2�4 12�0
RC104-2 10 9�0 12�0 1�6 12�0 1�0 12�0 1�0 12�0 0�2 12�0
RC104-3 10 12�0 12�0 2�8 12�0 1�8 12�0 1�4 12�0 0�4 12�0
RC104-4 10 12�0 12�0 2�4 12�0 2�2 12�0 1�6 12�0 0�2 12�0
RC104-5 10 17�4 12�0 2�8 12�0 4�4 12�0 2�2 12�0 0�6 12�0
Avg 10�0 14�12 12�0 3�56 12�0 3�00 17�0 2�20 17�0 0�76 12�0

Avg 12�0 9�20 14�0 2�29 14�0 2�29 14�0 1�36 14�0 1�08 14�0

of unserviced customers (C) and the average numbers of
used vehicles (V) in the final plans for five runs of the algo-
rithms on the instance. The number of vehicles for the
offline solutions are also provided (recall that C= 0 for the
offline solutions). We report the number of vehicles because
some algorithms are able to reduce the number of vehicles
and do not use all available vehicles. For MPA and MSA,
we report results when travel distance (MPAd and MSAd)

Table 4. Class 4 problem results.

Offline Greedy MPAd MPAc MSAd MSAc

V C V C V C V C V C V

RC101-1 14 3�0 16�0 0�0 15�8 1�0 16�0 0�0 16�0 1�0 16�0
RC101-2 13 8�0 15�0 2�2 15�0 3�4 15�0 2�8 15�0 3�6 15�0
RC101-3 14 4�0 16�0 0�6 16�0 1�6 16�0 0�0 16�0 1�6 16�0
RC101-4 15 11�0 17�0 1�0 17�0 1�2 17�0 1�0 17�0 1�4 17�0
RC101-5 14 11�8 16�0 2�8 16�0 3�2 16�0 2�0 16�0 2�2 16�0
Avg 14�0 7�56 16�0 1�32 16�0 2�08 16�0 1�16 16�0 1�96 16�0

RC102-1 13 6�0 15�0 0�2 14�2 0�0 15�0 0�0 14�8 0�4 15�0
RC102-2 13 9�0 15�0 1�8 15�0 1�4 15�0 1�6 15�0 1�4 15�0
RC102-3 13 15�6 15�0 1�8 15�0 1�0 15�0 0�2 15�0 1�4 15�0
RC102-4 12 3�6 14�0 0�4 13�8 0�0 14�0 0�0 14�0 0�0 14�0
RC102-5 13 5�0 15�0 0�2 15�0 1�4 15�0 0�6 15�0 0�6 15�0
Avg 12�8 7�84 14�8 0�88 14�6 0�76 14�8 0�48 14�8 0�68 14�8

RC104-1 11 41�0 13�0 16�8 13�0 15�0 13�0 15�6 13�0 3�2 13�0
RC104-2 12 41�0 14�0 18�2 14�0 15�8 14�0 16�0 14�0 3�4 14�0
RC104-3 11 26�0 13�0 16�4 13�0 15�2 13�0 13�8 13�0 5�6 13�0
RC104-4 10 23�0 12�0 16�0 12�0 18�2 12�0 15�6 12�0 2�4 12�0
RC104-5 9 27�8 11�0 14�4 11�0 11�0 11�0 8�2 11�0 2�0 11�0
Avg 10�6 31�76 12�6 16�36 12�6 15�04 12�6 13�84 12�6 3�32 12�6

Avg 12�47 15�72 14�5 6�19 14�5 5�96 14�5 5�16 14�5 1�99 14�5

and the consensus function (MPAc and MSAc) are used as
ranking functions.
The results can be informally summarized as follows.
1. MPA produces significant improvements over the

greedy algorithm. On average, MPA has about 1.5, 3.5, 2.3,
and 6 unserviced customers for Classes 1 to 4, while the
greedy algorithm has about 8.5, 9, 9, and 16 unserviced
customers. This confirms the results of Gendreau et al.
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(1999) because MPAd is a generalization and abstraction
of their work.
2. MSA produces significant improvements over MPA.

On average, MSA has about 0.75, 1.2, 1, and 2 unserviced
customers for Classes 1 to 4. The benefits are particularly
clear on the RC104 instances from Class 4, where the num-
ber of unserviced customers drops from about 15 to about
3.5 on average. More generally, the improvements of MSA
over MPA increase with the degree of (effective) dynamism.
(Note that RC104 instances have many customers with late
time windows and with large time windows, two features
that seem to magnify the benefits of MSA.)
3. The consensus function brings substantial benefits

over travel distance for high degree of (effective) dynamism
and seems very robust in general. It is slightly outper-
formed by travel distance for low degree of dynamism
in general. It produces significant improvements for high
degree of dynamism. In fact, it is the synergy between
stochastic information and the consensus function that
seems to be responsible for the dramatic improvements over
other approaches.

The Benefits of Stochastic Information. We now
study the benefits of stochastic information in more detail.
Figures 2 and 3 compare the quality of the solutions of
greedy, MPA, and MSA approaches as a function of the
degree of dynamism and as a function of the percentage
of late stochastic customers, which is related to the effec-
tive degree of dynamism. The results indicate that the
benefits of MSA are particularly dramatic for large per-
centages of stochastic customers and/or large percentages
of late stochastic customers. Both the MPA and the MSA
approaches use the consensus function here.

The Benefits of Consensus. We now try to under-
stand the impact of the ranking function on the quality

Figure 2. Quality with respect to the degree of
dynamism.
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Figure 3. Quality with respect to percentage of late
stochastic customers.
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of the results. Figures 4 and 5 compare the quality of
the MSA algorithm with two ranking functions: travel dis-
tance and the consensus function. The experimental results
clearly show the value of the consensus function, espe-
cially when the degree of dynamism and/or the percentage
of late stochastic customers increase. As a consequence,
the experimental results indicate that both stochastic infor-
mation and the consensus function are critical in obtain-
ing good quality solutions in these dynamic vehicle routing
instances. The use of a consensus function makes the MSA
approach much more robust and allows it to accommodate
many more (late) stochastic customers.
As a consequence, the synergy between MSA and the

consensus function allows MSA to scale up to a higher

Figure 4. Quality with respect to the degree of
dynamism.
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Figure 5. Quality with respect to percentage of late
stochastic customers.
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degree of dynamism, an open issue mentioned in Larsen
et al. (2002).

Survival Rates. It is interesting to understand how
many plans are kept by MSA and the survival time of these
plans. Figure 6 shows the size of S over time for a Class 3
problem. During plan execution, 244 distinct plans were
generated. Observe the large drops in the size of S at time
0, 2, 5, 10, and 20. These drops were preceded by vehi-
cle departure events, indicating that vehicle departures are
the most likely events to trigger large reductions in S. Fig-
ure 7 shows the average, minimum, and maximum survival
times of scenarios generated during 1 minute intervals for
the same Class 3 problem. The -1 block represents the sce-
narios generated before e0. From both figures, it is clear
that the one scenario to survive until the end (at time 21,
when the size of S dropped to 1) was created at time 19,

Figure 6. Size of S for Class 3 Problem RC104-3.
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Figure 7. Average survival time for Class 3 Problem
RC104-3.
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as indicated by the large spike in the plot of the maximum.
The general trend of survival time of the scenarios is to
increase over time. This indicates that there is less variabil-
ity in the possible plans as time goes on, which also points
to how important early decisions are. This is more evidence
that stochastic information is of clear benefit for dynamic
vehicle routing.

7. Related Work
There are very few papers in which stochastic information
is used to solve dynamic vehicle routing problems. In gen-
eral, papers focus either on static stochastic problems or on
dynamic problems.
Most research on stochastic vehicle routing minimizes the

expected travel distance. Generally, a simple recourse func-
tion (i.e., returning to the depot) is available during execu-
tion when feasibility constraints are violated. The recourse
function adds some cost to the expectation. (See Bertsimas
1992 and Laporte et al. 1992 for some early work and Gen-
dreau et al. 1996b for an overview of the various models
and approaches.) More recently, Yang et al. (2000) studied
the standard stochastic demand problem and adds the abil-
ity to preemptively return to the depot to unload capacity if
the expectation makes it a better choice than a likely forced
return later. Gendreau et al. (1995) approach the problem
with stochastic demand and stochastic customers and solve
the expectation optimally using linear programming tech-
niques. Gendreau et al. (1996a) use the same model but
use tabu search to solve larger instances of the problem.
The recourse function in these problems is to return to the
depot for unloading whenever capacity is violated. Novaes
and Graciolli (1999) treat the problem as a space partition-
ing problem. Each vehicle is assigned regions of space, and
the goal is to create the regions such that the probability of
failing to service all customers in the regions is below some
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threshold. Secomandi (2000) formulates the problem as a
stochastic dynamic program and uses a reinforcement learn-
ing to approximate good solutions.
Most research in dynamic vehicle routing ignores

stochastic information. (See Psaraftis 1995 for a survey of
dynamic vehicle routing.) The most relevant work is prob-
ably the parallel tabu-search algorithm of Gendreau et al.
(1999). This algorithm is based on an adaptive memory
that stores potential solutions. As new customer requests
arrive, the algorithm uses those solutions that allow service
of the customer. The algorithm may violate time windows
but there is a penalty incorporated into the objective func-
tion for late arrivals. As a consequence, feasibility is greatly
simplified, but the objective function is more complex. The
algorithm does not exploit stochastic information and uses
travel time to choose between different solutions. Thanks to
the use of the adaptive memory and the maintenance of mul-
tiple solutions, the algorithm significantly outperforms the
greedy approach on moderately dynamic problems. It moti-
vated the design and implementation of our MPA approach,
which can be seen as a generalization and abstraction of this
algorithm by isolating the component for searching solu-
tions and the ranking function. See also Gendreau et al.
(1998), who apply similar ideas to a dynamic pick and deliv-
ery problem and suggest adding historical/stochastic infor-
mation as an avenue of future research. The other most rel-
evant work is the excellent paper by Larsen et al. (2002),
which defines the notion of “degree of dynamism,” i.e., per-
centage of dynamic customers, and the notion of “effec-
tive degree of dynamism,” which captures the lateness of
the dynamic customers, as well as its generalization to time
windows (see also Larsen 2000). Our experimental setting
is precisely based on these critical concepts. The paper
also studies a dynamic problem where service time is an
independent random variable. It compares several heuris-
tics: first come/first serve, stochastic queue median, near-
est neighbor, and partitioning. The nearest neighbor heuris-
tic, which is essentially our greedy heuristic, performs the
best. Observe that the paper also indicates that little work
has been done on incorporating stochastic information in
a dynamic setting. The work by Krumke et al. (2002) is
another interesting paper, which addresses a large (1,600
vehicles) real-world problem. The application is concerned
with a large automobile club that provides service for club
customers whose vehicles break down. The goal is to min-
imize a cost function which is a linear combination of
operational costs (service, driving, overtime, contractors)
and lateness costs with respect to soft time windows. The
authors study how to optimize the objective functions given
the known information (the approach can thus be viewed
as an MPA approach with a single plan). They propose a
mixed integer program (MIP) approach based on column
generation to find optimal or near optimal solutions. Note
that the authors mention that the instances are sufficiently
well behaved for a MIP approach to be successful, which is
not the case for the Solomon benchmarks.

Bertsimas and van Ryzin (1991, 1993) report some of the
earliest work in mathematically studying some models of
dynamic vehicle routing. They look at a model with Poisson
arrival rates for customers that are uniformly distributed in
the plane. The goal is to find a policy that minimizes the
total system time of an infinite horizon (where system time
is, for each customer, the total time spent servicing a cus-
tomer and the waiting time of a customer). The policies
developed here (and a finite time model version of this) are
assessed in Larsen et al. (2002). Swihart and Papastavrou
(1999) use the same model as Bertsimas and van Ryzin
(1991, 1993) and apply similar techniques and analysis to
the pick-up and delivery problem. Gendreau et al. (2001)
present an algorithm for ambulance relocation, which con-
sists of two subproblems. The first subproblem is to send
an ambulance when a call comes in, and the second prob-
lem is to relocate ambulances such that areas of the region
are covered by at least two ambulances. The objective func-
tion is to minimize the region that is not double-covered and
the cost of relocation to double-cover more of the region.
Ichoua et al. (2000) explore the benefits of allowing vehi-
cles to change their destinations (diversion) when traveling.
Savelsbergh and Sol (1998) use integer programming tech-
niques to optimize the current state of information, while
Burckert et al. (2000) decompose every entity of the problem
(i.e., vehicles, customers) into interactive agents working
together to satisfy the current state of information. Zhu and
Ong (2000) present another agent-driven approach to react
to traffic jams. There has also been some work in proving
competitive-ratio bounds for various versions of the vehi-
cle routing problem. These include work by Ascheuer et al.
(2000) for finding an optimal 2-competitive algorithm for
the online single vehicle dial-a-ride problem that minimizes
the completion time. Other work on this problem has been
performed by Hauptmeier et al. (2000).
As mentioned, very little work uses stochastic information

for dynamic vehicle routing. A notable exception is Seco-
mandi (2001), who considers stochastic demands and only
one vehicle. All customers are known, and there are no time
windows. They apply a rollout algorithm to approximate
good solutions every time new information becomes avail-
able.
Finally, observe that in the related field of resource allo-

cation and assignment problems, there has been some recent
work to incorporate stochastic and forecasted information
into dynamic models (e.g., Powell 1996, Powell et al. 2001).
Their work and our research both confirm the usefulness and
applicability of utilizing stochastic information.

8. Conclusion
This paper proposed a multiple scenario approach (MSA)
to dynamic stochastic vehicle routing with time windows.
MSA continuously solves scenarios that include both exist-
ing and future requests. Decisions use a distinguished
plan selected by a consensus function. Experimental results
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indicate that MSA produces dramatic improvements over
approaches not using stochastic information. They also indi-
cate a strong synergy between MSA and the consensus
function, especially for problems with many stochastic
customers.
There are many research avenues to explore in this area.

An intriguing question, which arises when demand exceeds
capacity, is to develop strategies to reject customers if such
a decision is likely to improve the quality of the plan. It
is also important to evaluate the effectiveness of MSA on
unconstrained or loosely constrained dynamic vehicle rout-
ing problems (e.g., Larsen 2000) because they have a fun-
damentally different structure. Similarly, generalizing the
algorithm for additional stochastic data (e.g., demands, ser-
vice times) is important in practice. Finally, as mentioned,
the solutions presented in this paper are essentially domain-
independent, and we expect that many other dynamic appli-
cations may benefit from them.
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