
Stock market-tweets-sentiment-analysis on basis of nlp

December 24, 2022

1 STOCK MARKET SENTIMENT ANALYSIS

2 Problem Statement
Euro Investment Bank has been around for several decades. Following the recent change in lead-
ership, there has been significant efforts to rebrand the company and bring it up to speed with
recent technological advancements in the the investment banking industry. The Managing Director
of Euro Investment recently read an article purplished on Lehner Investment website, which talks
about how Lehner Investment Company Limited uses Natural Language Processing to inform its
decisions that led to to significant profit in recent years.

While stock prices are driven by valuations in the long run, it is sentiment that drives the prices
in the short run and this creates attractive opportunities for long term investors to enter the
market and for active traders to eit or enter the market. The use of Natural Language Processing
complements the use of fundamental and technical analysis in guaging the market sentiment (Lehner
Investments(2022).

The Managing Director of Euro Investments has never heard of NaturalLanguage Processing before
so he calld the Lead Data Scientist to explain the concept to him and after the explanation,
instructed that he wants to see a demonstration of it. The lead Data Scientist came back from the
meeting and provided me with tweets data related to the market and instructed me to prepare an
NLP Pipeline for Stock Market Tweets Sentiment Analysis.

I was provided with an unlabelle dataset comrprising of tweets so this is an unsupervised learning
problem. Some of the packages I intend to use include seaborn, matplotlib and word cloud for
visualiation, while I will be using nltk.sentiment for the sentiment anaylsis.

3 Loading Libraries & Preparation of Data
In this section, all the packages used in this pipeline are imported and the data for the pipeline
will also be imported. We will also examine the data and familiarise ourself with the nature of the
data.

3.1 Import Libraries

[1]: import pandas as pd
import numpy as np
import matplotlib
import seaborn as sns

1

import matplotlib.pyplot as plt
%matplotlib inline
from wordcloud import WordCloud, STOPWORDS
from nltk.sentiment import SentimentIntensityAnalyzer
from textblob import TextBlob
import warnings
warnings.simplefilter("ignore")

3.2 Import Data

[2]: # Download data from https://www.kaggle.com/datasets/tejasurya/
↪→huge-stock-market-crash-2022

stkmkt_data = pd.read_csv("E:/adnan new/archive.zip")

3.3 Initial Data Exploration

[3]: # In this cell, we are viewing the first few cells in the dataset
stkmkt_data.head()

[3]: id text \
0 1538666561615015938 When will the #NYSE #stockmarketcrash happen?
1 1538665013799489536 Aaj ka gyan:\n\nIf a company isn't a quality c…
2 1538660868027830274 The stock market needs to crash hard to make i…
3 1538657239849836544 Those who are "Buying on DIP" will very soon b…
4 1538654339044196358 @rdrhwke I wish our so-called President were t…

text_sentiment username \
0 Neutral tradexlnc
1 Negative niftymonday
2 Negative kyle132313
3 Neutral ChintanRajput16
4 Positive DrPCJustice

hashtags \
0 ['NYSE', 'stockmarketcrash']
1 ['stockmarkets', 'stockmarketcrash', 'trading'…
2 ['stockmarketcrash', 'economy', 'rich', 'Fed']
3 ['stockmarketcrash', 'StocksToBuy', 'stockstow…
4 ['Bidenomics', 'inflation', 'recession', 'stoc…

created_at user followers count replycount retweetcount \
0 2022-06-19 23:34:29+00:00 10669 0 0
1 2022-06-19 23:28:20+00:00 100 0 1
2 2022-06-19 23:11:52+00:00 0 0 0
3 2022-06-19 22:57:27+00:00 54 0 2

2

4 2022-06-19 22:45:55+00:00 28 0 0

likecount quotecount language media retweetedTweet quotedtweet \
0 1 0 en NaN NaN NaN
1 8 0 en NaN NaN NaN
2 0 0 en NaN NaN NaN
3 2 0 en NaN NaN NaN
4 0 0 en NaN NaN NaN

inReplyToTweetId inReplyToUser \
0 NaN NaN
1 NaN NaN
2 NaN NaN
3 NaN NaN
4 1.538653e+18 https://twitter.com/rdrhwke

mentionedUsers
0 NaN
1 NaN
2 NaN
3 NaN
4 [User(username='rdrhwke', id=43753976, display…

[4]: # In this cell, we want to explore the metadata such as column names,␣
↪→datatypes, data counts, etc

stkmkt_data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 33946 entries, 0 to 33945
Data columns (total 18 columns):
Column Non-Null Count Dtype
--- ------ -------------- -----
0 id 33946 non-null int64
1 text 33946 non-null object
2 text_sentiment 33946 non-null object
3 username 33946 non-null object
4 hashtags 33945 non-null object
5 created_at 33946 non-null object
6 user followers count 33946 non-null int64
7 replycount 33946 non-null int64
8 retweetcount 33946 non-null int64
9 likecount 33946 non-null int64
10 quotecount 33946 non-null int64
11 language 33946 non-null object
12 media 0 non-null float64
13 retweetedTweet 0 non-null float64
14 quotedtweet 0 non-null float64

3

15 inReplyToTweetId 4948 non-null float64
16 inReplyToUser 4948 non-null object
17 mentionedUsers 5533 non-null object
dtypes: float64(4), int64(6), object(8)
memory usage: 4.7+ MB

[5]: # Here, a function is defined to tell us what percentage of data is missing in␣
↪→each column.

def percentage_missing_data(tweets):
total = tweets.isnull().sum()
percent = (tweets.isnull().sum()/tweets.isnull().count()*100)
table = pd.concat([total, percent], axis=1, keys=['Total', 'Percent'])
types = []
for col in tweets.columns:

dtype = str(tweets[col].dtype)
types.append(dtype)

table['Types'] = types
return(np.transpose(table))

[6]: # Here we implement the function to see what percentage of data is missing in␣
↪→each column

percentage_missing_data(stkmkt_data)

[6]: id text text_sentiment username hashtags created_at \
Total 0 0 0 0 1 0
Percent 0.0 0.0 0.0 0.0 0.002946 0.0
Types int64 object object object object object

user followers count replycount retweetcount likecount quotecount \
Total 0 0 0 0 0
Percent 0.0 0.0 0.0 0.0 0.0
Types int64 int64 int64 int64 int64

language media retweetedTweet quotedtweet inReplyToTweetId \
Total 0 33946 33946 33946 28998
Percent 0.0 100.0 100.0 100.0 85.423909
Types object float64 float64 float64 float64

inReplyToUser mentionedUsers
Total 28998 28413
Percent 85.423909 83.700583
Types object object

From the foregoing, we can see that the data has 33946 entries and an index range of 0 to 33945.
There are 18 columns but we will not using all the columns in the sentiment analysis.

We can also see from the missing data exploration that there are no media in the tweet data
provided, neither are there any retweeted tweets or quoted tweets. Other columns with high

4

percentage of missing data are ‘inReplyToTweetId’, ‘inReplyToUser’ and ‘mentionedUsers’. The
good for us is that we can go ahead with our sentiment analysis, without the columns with high
number of missing data.

3.4 Data visualization
As part of our data exploration, it is also a good idea to visualise the data so that we better
understand what we are dealing with. To achieve this, we will be using the wordcloud library.
After that, we will create a function to visualise the most prominent words in the data set.

[7]: # By using wordcloud,define a function to display the most prominent words in␣
↪→our dataset.

def most_prominent_words(tweets, title=""):
text = " ".join(t for t in tweets.dropna())
stopwords = set(STOPWORDS)

In addition to the stopwords, I have decided to update
the stopwords list to include some words associated with the stock market
stopwords.update(["stock", "market", "buy","sell", "trade", "money","nyse",

"stockmarket","crypto","BTC","stockmarketcrash","buying",
"selling", "bearmarket"])

Instantiating the Word Cloud package.
wordcloud = WordCloud(stopwords=stopwords, scale=5, max_font_size=60,␣

↪→max_words=400,background_color="black").generate(text)

Code for plotting the world cloud
fig = plt.figure(1, figsize=(15,15))
plt.axis('off')
fig.suptitle(title, fontsize=18)
fig.subplots_adjust(top=2.3)
plt.imshow(wordcloud, interpolation='bilinear')
plt.show()

[8]: # Display the word cloud
most_prominent_words(stkmkt_data['text'], title = 'Prominent words in Stock␣
↪→Market Tweets')

5

4 Sentiment analysis
Using nltk SentimentIntensityAnalyzer, we will be carrying out sentiment analysis of the stock
market data in this section.

[9]: # I have made reference to code from https://www.kaggle.com/pashupatigupta/
↪→sentiments-transformer-vader-embedding-bert

for this cell

Creating an instance of the nltk sentiment analyser
sia = SentimentIntensityAnalyzer()

Creating a function to harness the nltk sentiment analyser
def detect_tweet_sentiment(tweets):

if sia.polarity_scores(tweets)["compound"] > 0:
return "Positive_Tweets"

elif sia.polarity_scores(tweets)["compound"] < 0:
return "Negative Tweets"

else:
return "Neutral Tweets"

[10]: # After finding the sentiments of the tweets, the next step is to visualise
the sentiments of the tweets. To achieve this the following function is␣
↪→created

6

def plot_tweet_sentiments(tweets, feature, title):
counts = tweets[feature].value_counts()
percent = counts/sum(counts)

fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(16, 8))

counts.plot(kind='bar', ax=ax1, color='purple')
percent.plot(kind='bar', ax=ax2, color='indigo')
ax1.set_ylabel(f'Tweets Counts : {title} sentiments', size=14)
ax2.set_ylabel(f'Tweet Percentage : {title} sentiments', size=14)
plt.suptitle(f"Analysis of Stock Market Tweet Sentiment: {title}")
plt.tight_layout()
plt.show()

[11]: # In this cell, I employ both 'find_tweet_sentiment' and␣
↪→'plot_tweet_sentiments' functions

We have decided to plot both the counts and percentage for the tweets.
stkmkt_data['tweet_sentiment'] = stkmkt_data['text'].apply(lambda x:␣
↪→detect_tweet_sentiment(x))

plot_tweet_sentiments(stkmkt_data, 'tweet_sentiment', 'Tweets')

From the above plots, we can see that by count and percentage there are more positive tweets than
there are neutral tweets and there are more neutral tweets than there are negative tweets. This
tells us that the market sentiment is generally positive.However, lets dive a little deeper to explore
what constitutes the positive, neutral and negative tweets.

7

4.1 Exploring Positive Tweets
In this section, we explore the prominent words associated with positive tweets using the wordcloud
package.

[12]: most_prominent_words(stkmkt_data.loc[stkmkt_data['text_sentiment']=='Positive',␣
↪→'text'], title = 'Prominent words in texts (Positive sentiment)')

From the above word cloud we can see that the prominent words associated with positive tweets
include “time”, “today”, “NFT”, “Bitcoin”, “bear”, “Will” amongst others.

4.2 Exploring Negative Tweets
In this section, we explore the prominent words associated with negative tweets using the wordcloud
package.

[13]: most_prominent_words(stkmkt_data.loc[stkmkt_data['text_sentiment']=='Negative',␣
↪→'text'], title = 'Prominent words in texts (Negative sentiment)')

8

From the above word cloud, we can see that the priminent words associated with negative tweets
include “inflation”, “Will”, “crash”, “cryptocrash”, “people” amongst other words

4.3 Exploring Neutral Tweets
In this section, we explore the prominent words associated with neutral tweets using the wordcloud
package.

[14]: most_prominent_words(stkmkt_data.loc[stkmkt_data['text_sentiment']=='Neutral',␣
↪→'text'], title = 'Prominent words in texts (Neutral sentiment)')

9

From the above word cloud, we can see that the prominent words associated with neutral tweets
include “Bullish”, “Cryptocrash”, “Bitcoin”, “bear”, “NFT” amongts others.

5 Test for Polarity and Subjectivity
In addition to the sentiments of the stock martket tweets, we can also get more insights from our
dataset. In this case, we will be using TextBlob package to test the sentiments for polarity and
subjectivity. Typically, the polarity score is a float that falls within the range of -1.0 to 1.0 while
the subjectivity test score is also a float that falls within the range 0.0 to 1.0, where 0.0 is very
objective and 1.0 is very subjective (Dipanjan, 2018).

[15]: # Creating a function for polarity test using TextBlob
def tweet_sentiment_polarity_test(tweet):

blob = TextBlob(tweet)
polarity = 0
for sentence in blob.sentences:

polarity += sentence.sentiment.polarity
return polarity

Creating a function for subjectivity test using TextBlob
def tweet_sentiment_subjectivity_test(tweet):

blob = TextBlob(tweet)
subjectivity = 0
for sentence in blob.sentences:

subjectivity += sentence.sentiment.subjectivity
return subjectivity

10

[16]: # Performing the polarity and subjectivity tests
stkmkt_data['text_sentiment_polarity'] = stkmkt_data['text'].apply(lambda x:␣
↪→tweet_sentiment_polarity_test(x))

stkmkt_data['text_sentiment_subjectivity'] = stkmkt_data['text'].apply(lambda x:
↪→ tweet_sentiment_subjectivity_test(x))

[17]: # Creating function to visualise the results of the polarity and subjectivity␣
↪→tests.

def plot_sentiment_polarity_subjectivity(tweets, feature, title):
polarity = tweets[feature+'_sentiment_polarity']
subjectivity = tweets[feature+'_sentiment_subjectivity']

fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(8,4))

polarity.plot(kind='kde', ax=ax1, color='magenta')
subjectivity.plot(kind='kde', ax=ax2, color='green')
ax1.set_ylabel(f'Sentiment polarity : {title}', size=12)
ax2.set_ylabel(f'Sentiment subjectivity: {title}', size=12)
plt.suptitle(f"Sentiment analysis (polarity & subjectivity): {title}")
plt.tight_layout()
plt.show()

[18]: plot_sentiment_polarity_subjectivity(stkmkt_data, "text", 'Tweets')

From the plots above, we can see that the polarity plot appears to be balanced and close to zero.
This means that the sentiments are not polarised. We can also see that from the subjectivity plot
above, the tweet sentiments are more concentrated around the zero value, which means that the
sentiments are very objective.

11

6 Conclusion
We can see that using nltk library, we are able to analyse the stock market sentiment using tweets.
From the output of cell 11, we can see that there are more positive tweets than there are neutral
tweets and there are more neutral tweets than there are negative tweets. This implies that the
sentiment of the market is predominantly positive and this is associated with a rise in prices of
stocks and the likelyhood of a bull market. In conclusion, there is no doubt that Natural Langguage
Processing can be used to gauge the sentiment of the stock market.

7 References
1. Lehner Investments (2022) Sentiment Analysis – What is market sentiment and how does

it affect the stock market?. Available at: https://www.lehnerinvestments.com/en/sentiment-
analysis-stock-market-sentiment/ (Accessed: 11 September 2022).

2. Pashupati.G(2020) Sentiments[Transformer & VADER] + Embedding [BERT] Available
at: https://www.kaggle.com/pashupatigupta/sentiments-transformer-vader-embedding-bert
(Accessed: 11 September 2022).

3. Dipanjan, S.(2018) Emotion and Sentiment Analysis: A Practitioner’s Guide to NLP Avail-
able at: https://www.kdnuggets.com/2018/08/emotion-sentiment-analysis-practitioners-
guide-nlp-5.html (Accessed: 11 September 2022).

12

	STOCK MARKET SENTIMENT ANALYSIS
	Problem Statement
	Loading Libraries & Preparation of Data
	Import Libraries
	Import Data
	Initial Data Exploration
	Data visualization

	Sentiment analysis
	Exploring Positive Tweets
	Exploring Negative Tweets
	Exploring Neutral Tweets

	Test for Polarity and Subjectivity
	Conclusion
	References

