Advanced Technologies:

Di-

rectX11 First Person Shooter

Alexander Hillman
Student Number: 19021645

University of the West of England

January 9, 2023

T he aim of this report is to detail the process
of creating a first person shooter within Di-
rectX11. The final product, whilst no achieving
all of the goals established below, demonstrates the
steps required to produce a simple project within
DirectX11. This combines DirectX11 and c++ to
create an old school style level in which three di-
mensional cubes are rendered and a camera is able
to traverse the world.

1 Introduction

The set task is to create a first person shooter video
game using DirectX11. DirectX is a series of APIs that
run on Microsoft Windows operating systems which
provide low-level access to hardware components such
as the graphics and sound cards as well of the operating
system. As such, it allows for objects to be rendered to a
screen or audio to be played which is primarily required
for video games and other multimedia applications.

The final product should be in the style of old school
retro shooters such as Wolfenstein 3D or Duke Nukem
3D (3D Realms, 1996). The game should include bill-
boarded enemies and objects, the player should be able
to move around a generate game level, shoot and be
able to detect collision with other objects. Finally the
game should include texturing of assets and lighting.
Stretch goals for this project are to make a complete
game with completion conditions, audio and other
general polish.

LEUEL| SCORE [LIVES

= [HEALTH[AMMO

| 0| 3 | 1007 8

Figure 1: Wolfenstein 3D gameplay

2 Related Work

2.1 Similar work

Games which are similar to this work such as Wolfen-
stein 3D (id Software, 1992) and Doom (id Software,
1993) will be heavy inspiration for how the game looks,
feels and plays.

The level layout for Wolfenstein 3D (id Software,
1992) could be replicated with simple cubes rendered
with different textures and positions. For the character
movement, the player is able to move in forward and
backwards with the W and S keys and rotate with A
and D keys, holding shift with A and D allows for the
player to strafe left and right. Enemies are 2 dimen-
sional textures that are bill-boarded to constantly be
facing the direction of the player and shooting can be
handled by ray-casting from the player’s forward direc-
tion. These factors will be the main things to consider
when creating the game.

Advanced Technologies: DirectX11 First Person Shooter

Memory Resources
(Buffer, Taxture,
Constant Buffar)

Inpui-Assembler
Stage

Vertex-Shader
Stage)

Geometry-Shader
Slage

Stream-Cutput
Stage

L

Piwel-Shader
Slage

Output-Merger
Stage

Figure 2: Render stages for Direct3D

2.2 DirectX breakdown

The first stage of DirectX 11’s rendering pipeline is the
input assembler stage. This stage is where primitive
data is read in from data buffers such as index or vertex
buffers and assembled into primitives such as line lists
or triangle strips.

This data is then passed to a vertex shader to execute
transformations, skinning, morphing and vertex light-
ing.

The Rasterizer stage then takes the primitives and con-
verts it to pixel based raster image. This also clips ver-
tices to the view frustum, provides perspective, maps
primitives to a two dimensional viewport and deter-
mines how to carry out the pixel shader.

A pixel shader allows for pixel lighting and post-
processing. It combines constant variables and, texture
data and vertex values to produce per-pixel outputs
such as colour to which is written into a render target.
The final stage for rendering is the output merger stage,
this generates the final rendered pixel colour using the
pixel data generated by the pixel shaders, the contents
of the render targets and the contents of the depth and
stencil buffers. This also determines which pixels are
visible using the depth-stencil buffer and blends the
final pixel colours.

Figure 3: A triangle rendered using DirectX11

3 Method

3.1 Creating and Clearing a Window

After a window was set up and cleared using in
c++, DirectX’s Windows API and DirectX3D, a
renderer class was created to handle what was being
shown to the screen and . A swap chain allowed
for frames to be drawn to the back buffer and then
moved to the screen buffer to update and draw
frames to the window. The window was cleared
to a static colour and then presented to the screen
as a single frame. An application class was added
that contains an update function which runs while
the window is active to allowed for more than one
frame to be displayed. In combination with a timer
class to track the elapsed time, the update function
constantly updates the colour value that the screen
cleared and rendered the frame so that more than
one could be presented over the lifetime of the window.

3.2 Rendering a Triangle

To render an object to screen such as a two dimensional
triangle, structures were needed to store vertex infor-
mation as well as data concerning each of its individual
vertices. A vertex was defined as two floats to store x
and y positions. Then an array of three vertices was
used to store the three points of the triangle. A vertex
buffer then holds the data concerning the triangle’s
vertices and is bound to the input-assembler. Pixel and
vertex shaders are then created and set to the pipeline
stages.The end result was the back buffer cleared
to a block colour with a block white triangle (figure: 3).

Page 2 of 4

Advanced Technologies: DirectX11 First Person Shooter

B DirectX11 First Person Shooter - X

Figure 4: A complex shape rendered in DirectX11

3.3 Rendering a More Complex Shape

Colour values were added to the vertex structure
so that each vertex of the rendered object could be
coloured differently. More vertices were also added
to generate a more complex shape, however this
time each vertex in the array took 6 values, the x
and y coordinates as well as the RGBA values. With
an increased number of vertices, a index array was
needed to track and reuse vertices. This also meant
that an index buffer had to be created and bound to
store the index values. A constant buffer also was used
to store the transformation matrix. The result from
this was a multi-coloured polygon that rotated around
a point on screen (figure: 4).

3.4 Rendering a 3D Cube

The next step was to transition to rendering a three
dimensional cube. This required more vertices and
indices to be added since each face of the cube is
composed of two triangles. The constant buffer was
also updated to use the DirectXMath library so that the
object could be transposed on the x, y and z planes to
rotate the object in three dimensional space (figure: 2).

3.5 Rendering Multiple Objects

The colouration of the cube changed from per vertex
colour to per face so that each face was a uniform
colour. The colours were stored in a second separate

constant buffer, independent from the vertex position.

The position of the drawable was then taken out of
draw function within the renderer and instead was
used a arguments within the function call and as a
result of this the draw function can be called numerous
times with different parameters to draw multiple
cubes with different positions. With multiple objects

B DirectX11 First Person Shooter - X

Figure 5: A 3 dimensional cube rendered in DirectX11

being rendered to screen a depth stencil is needed so
that objects which are obscured by other objects can
be culled from rendering.

3.6 Generating a Game Level

To generate the map for the game, a text file was used
to store layout on a two dimensional plane. Different
characters were used to distinguish between different
aspects of the map. The hash character was used to
denote where a cube should be placed and the letter
e was used to identify the end of a line. The result
is a text file that can be altered to quickly and easily
change the layout of a level (figure: 6). To create the
objects from the text file, the level text file is opened
then iterated through until is reaches the end of the
file. If the character read is the same as the endline
character then the column index is incremented to go
to the line below and the line index is reset to zero to
start from the beginning of the next line. If character
being read is a block character then the draw function
is called with the line and column indexes used as two
of the cube’s positional values, each cube is drawn with
the same zero rotation and one positional value so that
the cubes are aligned and only offset of two dimensions
(figure: 6).

3.7 Camera and Movement Around the
Map

A keyboard class was implemented to handle input
for the game. This helps to keep track of keyboard
actions such as which keys have been pressed or re-
leased. This class was then used in conjunction with
the created camera class to maneuver around the scene.
The camera handles the transformation, rotation, view
and projection matrices. The camera can be moved
forward and backward using the W and s keys and
rotated using the A and D keys. The camera is set to

Page 3 of 4

Advanced Technologies: DirectX11 First Person Shooter

Render

Level.txt*

2 X

Figure 6: A text file detailing the layout of a level and a top
down perspective of the map generated

an initial position within the level and then then the
application constantly checks if one of the four keys
have been pressed which then in turn either moves or
rotates the camera around the scene.

4 Evaluation

From analysing the memory usage of the game running,
it is evident that the game runs at a constant memory
usage on average of 14MB with little to no impact on
frame-rate, there is however a spike in overall CPU
usage in which it increases to 43 percent, however it is
unclear what is causing this. This analysis of suggests
that more can be done for this game, such as intro-
ducing more memory taxing tasks. Aspects such as a
larger map or the introduction of enemies and bullets
on screen would be such possible next steps as there
would be memory free to allocate towards this.

Diagnostic Tools
2B Qah
Diagnostics session: 22 seconds (22.588 s selected)

| 10s

4 Events

1]
4 Process Memory (MB)

20s |

Snapshot @ Private Bytes

4 CPU (% of all processors)
100

Figure 7: Memory and and CPU usage of game running

5 Conclusion

The final result from this project is a level that is com-
posed of numerous three dimensional cubes placed
using a text file and a camera that is able to traverse
said level. Whilst not achieving all the goals that were
set out, the task has accomplish some.

7 DirectX11 First Person Shooter - x

Figure 8: The final product, a three dimensional level created
in DirectX11

References

3D Realms (1996). Duke Nukem 3D.

id Software (1992). Wolfenstein3D.

— (1993). Doom.

6 Appendix
https://youtu.be/CE7_X3_P5Ig - Week 1 video
https://youtu.be/8dCKehABoNE - Week 2 video
https://youtu.be/EgcOvUDnLLY - Week 3 video

https://youtu.be/mTFzQuANbIQ - Week 4 video

https://youtu.be/9WpUKG6XT6k - Week 5 video

Page 4 of 4

