

Annals of DAAAM for 2011 & Proceedings of the 22nd International DAAAM Symposium, Volume 22, No. 1, ISSN 1726-9679

ISBN 978-3-901509-83-4, Editor B. Katalinic, Published by DAAAM International, Vienna, Austria, EU, 2011

Make Harmony between Technology and Nature, and Your Mind will Fly Free as a Bird

Annals & Proceedings of DAAAM International 2011

PARSING TABLE STRUCTURE AND ALGORITHM FOR THE LR(K) PARSING

METHOD

ILTSCHEV, V[elko] I[vanov]

Abstract: The LR(k)-method uses two tables, which describe the

behavior of a push-down authomat, used during the parsing

process. These two tables, called action table and goto table,

are sparse tables. Moreover, the data in them are not

homogeneous in structure since both item numbers and right

sides of productions are stored. This paper proposes: a new

parsing table structure, which is dense and homogeneous; a

parsing algorithm; and an algorithm for generation of this

table, based on the SLR(1)-method,.

Key words: language processors, compilers, LR parsing

method, LR parsing table

1. INTRODUCTION

LR(k)-parsers can be constructed to recognize virtually all

programming-language constructs for which context free

grammars can be written (Aho et al., 2006). The LR(k) parsing

method (Knuth 1965) is a table-driven method that uses a

bottom-up strategy. Despite of the recursive-descend method,

which uses the program stack, the LR(k)-method manages its

own stack. Two tables, called action table and goto table,

describe the behavior of a push-down automat, used for

parsing. These two tables are sparse tables. Moreover, the data

are not homogeneous, since both item numbers and right sides

of productions are stored.

This paper proposes: a new parsing table structure, which is

dense and homogeneous; a parsing algorithm; and an algorithm,

based on the SLR(1)-method, for generation of this table.

2. CURRENT PARSING TABLE STRUCTURE

The grammar of arithmetic expressions will be used to

explain the method.

│ E → E+T

│ E → T

│ T → T*F (1)

│ T → F

│ F → v

│ F → (E)

The graph, which describes the behavior of the push-down

automat, used for parsing of this grammar, is shown on Fig.1.

Currently, LR(k)-parsers use two tables to store the graph

information. Tab. 1 shows these two tables for the sample

grammar above. Because of lack of place, the tables are shown

here concatenated.

The disadvantages of this structure are obvios:

- even for such a small grammar (only 6 productions) the

tables are very sparse and the larger the number of productions

is, the sparser these tables will be;

- additional efforts are necessary to determine, what lies on

a crosspoint: a right-hand side of a production, a LR(0)-Item or

accept.

Modifications over these data structures can be found in

(Bonev 2004) and in (Kopp 1988), but they preserve the main

idea of two sparse tables with no homogenous structure of data.

.

Fig. 1. Graph of the push-down automat for the grammar of

arithmetic expressions

 Action table Goto table

 v + * () ; E T F

I0 I4 I5 I1 I2 I3

I1 I6 accept

I2 T I7 T T

I3 F F F F

I4 V V V v

I5 I4 I5 I8 I2 I3

I6 I4 I5 I9 I3

I7 I4 I5 I10

I8 I6 I11

I9 E+T I7 E+T E+T

I10 T*F T*F T*F T*F

I11 (E) (E) (E) (E)

Tab. 1. Action table and Goto table for the push-down automat

3. THE PROPOSED TABLE STRUCTURE

The proposed parsing table structure has 4 attributes:

- CurrentItem - the LR(0)-Item on the top the of stack

- NextSymbol - the next symbol from the input queue

- Result - an integer whose meaning depends on the value

of the attribute Action

- Action - if action is ‘S’, then Result contains the number

of a LR(0)-Item; if action is ‘R’, then Result contains the

number of a production; if action is ‘A’, then the input queue is

recognized as true.

Tab. 2 shows part of the parsing table for the same sample

grammar of arithmetic expressions. It is obvious that the

structure of data is both dense and homogenous.

4. THE PARSING ALGORITHM

The parsing algorithm uses a stack with two sections. The

first one contains parts of the input queue and results of

0411

reductions. The second one contains the LR(0)-Items the parser

has gone throught.

A search function has been written. It receives as

parameters: the next symbol from the input queue and the

LR(0)-Item on the top of the stack. This function performs a

search in the parsing table on attributes CurrentItem and

NextSymbol, and returns the value of the attribute Action.

A possible prototype of this function could be:

char ParsingTable::GetResult(char NextSymbol, int &Result);

The parameter Result is passed by reference. On call, the

LR(0)-Item on the top of the stack is passed through this

parameter. On return, the value of the table attribute Result is

returned through this parameter.

The particular steps of the parsing algorithm are:

1. Put into stack: the symbol for bottom of stack and the

starting LR(0)-Item (for example I0).

2. Call the search function with the next symbol from the

input queue and with the LR(0)-Item on the top of the stack. If

the search function returns:

2.1. an ‘S’, then the Result parameter contains the number

of a LR(0)-Item. In this case put this item, together with the

next symbol from the input queue, into the stack and return to

step 2.

2.2. an ‘R’, then the Result parameter contains the number

of production, on which a reduction must be made. In this case

pull from the stack the right-hand side of this production,

together with the corresponding LR(0)-Items. Perform a second

search with the left-hand side of this production and with the

LR(0)-Item on the top of the stack. If the search function

returns an ‘S’, then go to step 2.1. If the search function returns

an ‘E’, then a syntax error has been encountered.

2.3. an ‘A’, then the input queue has been recognized.

2.4. an ‘E’, then a syntax error has been encoutered.

5. PARSING TABLE GENERATION

5.1 Generating the collection of LR(0)-Items

The SLR(1)-Method, described in (DeRemer 1971) and

slightly modified in (Kopp 1988), is used to generate the

collections of LR(0)-Items.

Two functions HULL and GOTO are used for this purpose:

- GOTO describes the transition from one LR(0)-Item,

through a symbol, to a new LR(0)-Item. GOTO involves all

productions from the current LR(0)-Item where a pass over the

same symbol must be made. The GOTO syntax is:

NewItem = GOTO[OldItem, Symbol] (2)

- HULL builds the set of productions, before which the

reading head can stay, after a GOTO has been made. The

HULL syntax is:

HULL[<set of productions>]

 (3)

Fig. 2. LR(0)-Items for the grammar of arithmetic expressions

The process continues until the set of LR(0)-Items becomes

stable, i.e. no new items are generated. A proof that the process

of generating new items is convergent is provided in (DeRemer

1971).

Fig. 2. shows the process of generating the collection of

LR(0)-Items for the grammar of arithmetic expressions.

The FOLLOW sets for the 3 nonterminal symbols are:

FOLLOW(E) = {+,), ;}

FOLLOW(T) = {+, *,), ;} (4)

FOLLOW(F) = {+, *,), ;}

5.2 Filling out the parsing table

The algorithm is:

1. For each GOTO operation put: OldItem into

CurrentItem; Symbol into NextSymbol; NewItem into Result

and ‘S’ into Action.

2. For each Item, where the reading head has reached the

end of a production, a reduction has to be made. In such case,

for each symbol, that follows the left-hand side of the

production put: the Item into CurrentItem; the FOLLOW-

symbol into NextSymbol; the number of production into Result

and ‘R’ into Action.

3. For each Item, where the reading head has reached the

end of a production, which contains only the starting

nonterminal symbol of the grammar, put an ‘A’ instead of ‘R’

into Action.

Tab. 2. shows part the parsing table, generatged in this way.

CurrentItem NextSymbol Result Action

0 v 4 S

0 (5 S

1 + 6 S

1 ; 0 A

2 + 3 R

11 ; 7 R

Tab. 2. Part of the new parsing table for the push-down automat

6. CONCLUSION

The proposed data structure for the LR(k)-parsing table is

both dense and homogenous. This saves memory and simplifies

the parsing algorithm, since no additional efforts are necessary

to determine the type of action the parser must perform.

Furthermore, the proposed parsing table could be sorted by

both search attributes, namely CurrentItem and NextSymbol.

This provides an opportunity for a dichotomic search, resulting

in speeding up the search process to log2(N).

7. REFERENCES

Aho, A.V.; Lam M.S.; Sethi, R. & Ullman, J.D. (2006).

Compilers: Principles, Techniques, and Tools (2nd

Edition), Addison Wesley, ISBN: 0-321-48681-1, Boston

Bonev, S. (2004). A flexible table driven LR(1) parser,

Proceedings of the 5th international conference on

Computer systems and technologies CompSysTech '04, 17-

18 June, 2004, Rousse, Bulgaria, ISBN: 954-9641-38-4, pp.

IIIB.12.1 - IIIB.12.6, ACM, New York

DeRemer, F.L.(1971). Simple LR(k) grammars, Communi-

cations of the ACM, Vol. 14, No. 7, July 1971, page

numbers 453 - 460, ISSN: 0001-0782

Knuth, D.E. (1965). On the Translation of Languages from Left

to Right, Information and Control, Vol. 8, No. 6, December

1965, page numbers 607 - 639, ISSN: 0019-9958

Kopp H. (1988). Compilerbau: Grundlagen, Methoden,

Werkzeuge, Hanser Fachbuchverlag, ISBN: 3-446-15245-8,

Munchen

0412

