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Motivation
Probabilistic models of biological sequences are classical tools used to design drugs [SJCK21, SRK+21],
make predictions about human health [FND+21], and learn basic biology [RIM18, TGN+22]. Sequence
data is high dimensional so a probabilistic model must make biological assumptions to predict and
infer. However, these assumptions can come at the cost of the flexibility of the model, fundamentally
limiting its ability to make accurate predictions and learn new biology. Modern sequencing efforts
and high-throughput experimentation are generating an ever-increasing amount of sequence data, in
principle providing increasing information to learn the complexity of real sequence data. To leverage
this wealth of data I plan to build nonparametric models and tests of sequences that incorporate prior
biological knowledge while remaining flexible using modern machine learning methods. I will build
methods to perform efficient, flexible, and reliable prediction and inference from DNA and protein
data, at large and small scale, and in supervised and unsupervised settings.

Current work
* denotes equal contribution.

Building flexible models for sequence data

Amin A N*, Weinstein E N*, Marks D S. A generative nonparametric Bayesian model
for whole genomes, NeurIPS, 2021

Huge sequencing experiments have generated a wealth of genomics data in human populations,
microbiomes, and across life [HEM+21, TLH+07, PTM07]. To compare, test, and interpret these
datasets, and use these datasets to design and predict the properties of new sequences, we wish to fit
them with generative probabilistic models. Parametric autoregressive models are commonly used to
fit large genomic datasets as they can incorporate biological priors and scale to large sequence datasets
[CSIT04]. However these models are strongly misspecified – that are not nearly flexible enough to
accurately fit genomic data. In this paper we developed a scalable nonparametric Bayesian model for
sequence data that is flexible in theory and in practice. The model is based on a conjugate prior on
the space of all autoregressive models. This prior has two hyperparameters: first, a particular para-
metric autoregressive model is “embedded” as the centre of the prior, so a practitioner can build in
their biological assumptions; the second hyperparameter determines how “concentrated” the prior is
around its centre, allowing the posterior to relax away from the embedded model if it is misspecified.
We proved that our model is flexible in theory – it converges to data distribution under very weak
assumptions. To demonstrate the practical utility of this method, we scaled our model to giga-bases
of genomic data using large-scale k-mer counters and showed substantially higher accuracy than para-
metric autoregressive models. Lastly, we used the model to interpret complex variation and test for
changes in large genomic datasets.

Amin A N, Weinstein E N*, Marks D S*. Biological Sequence Kernels with Guaranteed
Flexibility. preprint, 2023

Sequence kernels are applied extensively in biology for a number of statistical procedures including
regression for drug design [SMG+22] and hypothesis testing to learn biology [BGR+06]. Their appeal
is that they 1) make biological assumptions and 2) are in principle flexible and can therefore reliably
leverage large modern datasets to learn complex patterns. Given this appeal, there are a variety
of sequence kernels that make diverse biological assumptions. However, the purported flexibility of
these kernel procedures has not been demonstrated theoretically. Surprisingly we find that using
most popular off-the-shelf kernels can result in inconsistent statistical procedures in theory and in
practice. The issue is that these kernels can fail to have certain desirable theoretical properties, such as
“universality”; there is however a lack of theoretical tools to prove these properties for kernels in infinite
discrete spaces. We proved that one property previously described in the literature - ”having discrete
masses” - implies many desirable kernel properties and can be proven using symmetries possessed
by many popular sequence kernels. We proved if and when four popular types of sequence kernels
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have discrete masses: kernels that compare sequences position-by-position [SRR07], alignment kernels
[Hau99], k-mer spectrum kernels [LEN02], and deep kernels [YWBA18]. For kernels that do not have
discrete masses, we developed alternative kernels that capture the same biological assumptions but
have discrete masses. Finally, we showed that the alternative kernels fix severe pathologies in previous
tests and models.

Evaluating density estimation models of sequence data

Weinstein E N*, Amin A N*, Frazer J, Marks D S. Non-identifiability and the blessings
of misspecification in models of molecular fitness and phylogeny. NeurIPS (Oral), 2022

Unsupervised models of protein sequences learn the distribution of sequences seen in nature to
accurately predict how mutations affect the fitness of a protein [FND+21, RIM18]. Model predictions
are based on an assumed relationship between density estimation and fitness – that sequences are
observed in nature in proportion to their fitness. However, this assumption is problematic in theory
as nuisance effects – such as the phylogenetic relatedness of sequences and biased sequencing efforts
– may perturb the observed distribution of sequences in nature. In this paper we ask when fitness is
identifiable in theory and what allows its accurate prediction in practice. We showed that, in theory,
fitness is almost never identifiable from phylogenetically correlated data; however, in practice, models
make accurate fitness effect predictions. One hypothesis that explains this paradoxical observation is
that phylogenetic and other nuisance effects are small. If this were the case then better density estima-
tion would lead to better fitness prediction. To address this, we compared a panel of popular sequence
models and observed the opposite – models that performed worse density estimation performed sub-
stantially better fitness effect prediction. We argue that better density estimators fit nuisance effects
which harms their fitness estimation; some models however are misspecified in such a way that they
cannot fit nuisance effects such as phylogeny. We demonstrated this effect in simulation and found
that models that perform good fitness estimation do so because they are misspecified in a helpful way.
This suggests that to build better fitness prediction models one should think about misspecification or
devise alternative identification strategies.

Amin A N, Weinstein E N*, Marks D S*. A Kernelized Stein Discrepancy for Biological
Sequences. ICML, 2023

Once a generative model has been fitted to sequence data, it is necessary to assess the quality
of the fit. The standard way is to draw sequences from the model and test whether they match
training sequences using a set of statistics such as the number of hydrophobic residues in a protein
sequence [SRK+21, ZFM+22]. However, a generative model that passes this test may still poorly fit
the data by not capturing biology outside of these statistics. As well, for some models it is difficult
to sample sequences to perform the test. To evaluate generative models in a flexible way, we built
a nonparameteric goodness-of-fit test for models of biological sequences. This test is consistent and
does not require sequences from the model. The test is based on 1) building a stochastic process for
sequences that is stationary for the model distribution, 2) applying it to the data points, and 3) using
a kernel to evaluate ”how stationary” the datapoints are. Biological assumptions about how the model
fails to fit the data can be incorporated in the choice of kernel. We carefully built the stochastic process
and choose kernels such that the test is also flexible in theory – it is consistent – given assumptions
that are satisfied by popular models of biological sequences. Lastly, we tested the fit of state-of-the-art
deep learning models on protein sequence families and showed that our test is very sensitive, often
requiring fewer than 100 sequences to detect that these models do not fit the data they were trained
on.

Future work
Flexible models with biological priors make accurate predictions and learn new biology. Designing
general methods to build such models is a machine learning challenge whose solution would greatly
impact how biologists learn from sequences. Two future practical projects addressing this problem
involve building flexible models to learn the biology of the most poorly understood proteins across life;
and building neural network architectures that incorporate biological assumptions to learn the biology
of the 98% of the human genome that does not code for proteins. Two future theoretical projects
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addressing this problem involve finding realistic assumptions that establish practical convergence rates
for optimization and sampling algorithms, and kernel approximations of sequences.

Causal, flexible models of protein function and evolution
To learn how a protein acts or evolves, biologists experimentally measure the effects of mutations on

the function of the protein. However, experiments can be too time-consuming when measurements of
viral proteins are needed quickly, like early in a pandemic [TGN+22]. Experiments can also be impos-
sible to design for poorly understood “disordered” proteins which are connected to neurodegeneration
[Uve15]. To quickly and automatically predict the impact of mutations on a protein’s fitness, biologists
have long turned to learning from sequence data: they use generative probabilistic models to infer pat-
terns that are conserved across sequences observed in nature – patterns that are conserved are likely
important for the fitness of the protein. In practice, these models struggle to make accurate predictions
in the settings where they can have the largest impact: viral and disordered proteins [RIM18]. The
poor performance of these models is due to inductive biases that do not hold for viral and disordered
proteins. One may build models with biases appropriate for viral and disordered proteins to get better
predictions. However, these biases may be too restrictive to make accurate predictions, especially as
there is little domain knowledge; they also fundamentally restrict the biology one can infer to known
phenomena built into the parameters. Ideally one could use modern machine learning methods to
learn the correct biases with more flexible models. However, we have shown that this approach is
fundamentally limited in practice due to a lack of identifiability [WAFM22]: in theory, it is impossible
to distinguish patterns that are conserved across sequences in nature because they determine protein
fitness from patterns that are conserved due to phylogentic correlations – that some proteins happen
to come from related organisms.

To accurately infer fitness and learn new biology with flexible models, I propose to build new
methods of learning from sequences in nature that are not limited by non-identifiability. To do so,
I will build causal identification strategies for fitness. I will devise identification strategies based on
observing many proteins from the same organisms; I will use some proteins as proxies for confounding
non-fitness effects [WB21, PPR20]. Once I have built an identifications strategy, I will infer fitness
with modern machine learning methods that fit into this identification strategy, and are also flexible.
Identifying harmful mutations of a sequence is a task in identifying out-of-distribution (OOD) data.
A central challenge in building accurate OOD detection methods is incorporating accurate inductive
biases [KIW20]. Thus I will build methods that incorporate accurate inductive biases. I will test
the ability of models to predict experimental measurements of these proteins; models that predict
experiments well can replace experiments for biologists. Finally, I will use these models to infer the
biology governing viral protein evolution and disordered protein function.

Biologically inspired neural network architectures for sequence data
To understand the mechanisms of disease and make diagnoses in the clinic, biologists build models

and perform experiments to predict whether mutations in human proteins cause disease. However,
only 2% of the human genome codes for proteins; the remaining 98% is not tractable to the same
models and experimentation [AWM21, KAI+20] but is responsible for most heritable common disease
[FBSG+15]. To predict the effects of mutations in the “non-coding” 98%, biologists now use high-
dimensional, high-resolution experimental measurements of “epigenetic features”: biologists first fit a
deep neural network model to predict epigenetic features from sequence; then they use the model to
predict the effect of a mutation on the features – if a mutation is predicted to strongly disrupt the
epigenetic features then it is likely to cause disease [AWS+21, ZPT+19, ZTY+18, CWTZ22]. While
these models make accurate predictions for human genomic sequences they were trained on, in practice,
they generalize poorly to predict the effects of new mutations [LSP+19]. They are thus strongly limited
in their ability to predict whether new mutations cause disease. For models to generalize well, they
require accurate inductive biases so that they may fit simple explanations of the data. Deep learning
models in other domains incorporate inductive biases such as equivariance [KT18] and Gaussian process
priors [SZSG19]. However models for predicting epigenetic features lack even the most basic inductive
biases for biological sequences. For example, insertions and deletions are common mutations in the
human genome [KFT+20] that often do not cause disease but result in large changes to the input of
neural networks. To build models that learn the biology of the non-coding genome and generalize to
accurately predict disease, I propose to build neural network architectures with biases for biological

3



sequences.
A promising way to build in such biases is to take inspiration from sequence kernels which encode

diverse biological assumptions in their architectures; for example, the parameters of the alignment
kernel control the assumed effect of an insertion or deletion [Hau99]. Using the theory of sequence
kernels we have developed [AWM23a], I will combine the two types of models by building “neuralized”
sequence kernels [WHSX16] as well as neural network architectures that limit to sequence kernels at
infinite width [JGH18]. Once I have built these biased models, I will test their ability to predict ex-
perimental measurements of non-coding mutations. These models will allow for a unique and powerful
way for predicting disease and inferring the biology governing the non-coding genome.

Theoretical guarantees for optimization, sampling, and kernels for sequences
A crucial step in designing biological sequences is often optimizing a function or sampling from

a distribution. However, optimizing and sampling are notoriously challenging in discrete space due
to high-dimensionality, lack of derivatives, and multimodality. To address each of these challenges, a
number of diverse sampling algorithms have been built for discrete data [Zan20, GSH+21, SDXR22].
To pick the correct algorithm for each situation, and develop new algorithms, it is important that
we have theoretical results that describe how quickly each algorithm converges under different real-
istic assumptions. For algorithms for Euclidean data, there are convergence results that come from
assumptions such as convexity [MTB22, WWJ16, MCC+21]. Algorithms for sequence data on the
other hand do not come with convergence rate guarantees as it is not yet clear what assumptions are
appropriate to make. In [AWM23c], on the way to proving the consistency of a hypothesis test, we
found assumptions that 1) guarantee fast convergence for an MCMC algorithm and 2) are obeyed by
popular sequence distributions. We proved our results by using a Lyapunov function approach that
was previously used to study random walks on infinite graphs and groups [Woe00]. To analyze the
properties of existing algorithms and develop new practical algorithms for sequences under different
realistic assumptions, I will extend my theoretical methods to prove convergence rates for different
sequence optimization and sampling methods.

Kernels are useful tools for practical machine learning, and for theoretically studying or designing
neural network architectures. Different kernels learn better under different assumptions. Theoretical
results help guide us to pick the correct kernel for each situation. However, beyond recently proving
consistency under very general conditions [AWM23b], we have no such results for commonly used
sequence kernels. For kernels on Euclidean space, there are results describing which functions each
kernel can approximate more quickly [GKKW02]: by calculating the eigenvalues in Mercer’s theorem,
we can obtain convergence rates. To evaluate which kernels should be used under which assumptions,
and design new kernels and kernel-inspired neural networks appropriate under different assumptions,
I will prove approximation rates for sequence kernels.

During my PhD I developed theoretical tools to build methods that reliably learn from sequences
under very general assumptions. These future theoretical directions will find the specific assumptions
that describe the setting of biological sequences and use them to build methods that learn efficiently
on real data.
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