
libGDX Crossplatform Game

Development Workshop

Flappy Plane

Alberto Cejas Sánchez
David Saltares Márquez

Why libGDX?

Crossplatform

Community

Open source

Fast

Well-documented

Multiples levels of abstraction

Active development

Free!!

Yes, but… really libGDX?

Total apps in Google Play: 1.400.719

Total libGDX apps in Google Play: 21.851

Top categories in Google Play:
1. Education

2. Entertainment

3. Lifestyle

13 – 11 – 2014

This workshop

Estructure

Arquitecture

libGDX

application

lifecycle

Game States

Start Running GameOver

static enum GameState {

Start, Running, GameOver

};

Viewports

StretchViewport FitViewport

FillViewport ScreenViewport

ExtendViewport

Ok, but… which one today?

SpriteBatch

Step 1

PlaneGame

GameState: Start

Draw world (Map)

Draw User Interface (Get

ready)

Map

Load background.png

Draw background.png

To do:Result:

Step 1
Clues:
- Load ready.png as a Texture within create()

- Instantiate Map within create()

- Switch to GameState.Running when user touches the screen
(Gdx.input.justTouched() within updateStart())

- Load background.png as a Texture within create() of Map

- Implement Map draw method using batch.draw(Texture texture, float x, float y, float width, float

height). Make use of it within drawWorld() in PlaneGame

- Implement drawUI() which is responsible for drawing ready in the middle of the screen while the

game is in GameState.Start state. Make use of batch.draw(Texture texture, float x, float y). You

will need getWorldWidth() and getWorldHeight() from Viewport class , besides of getWidth() and

getHeight() from Texture class.

- Free resources in dispose()

PlaneGame

GameState: Start

Draw world (Map)

Draw User Interface (Get
ready)

Map

Load background.png

Draw background.png

Step 2

Entity

To do:

- The origin of a body must be its center: body.setOrigin(x,y)

- setPosition, setRotation and translate must apply to the body too

- Use draw(TextureRegion region, float x, float y, float width, float
height) in order to implement entitiy.draw(SpriteBatch batch)

- Use boolean Intersector.overlapConvexPolygons(Polygon p1, Polygon
p2) in order to check if two bodies collide/overlap

Clues: Original Rotated

180`

Origin

Origin

Step 3

Plane

PlaneGame

GameState: Running

Add plane and update it

Draw plane

To do:Result:

Step 3 – introduction

Animation

t = 0 t = 0.05 t = 0.1

- 1 - - 2 - - 3 -

statetime = 0.03

statetime = 0.08

statetime = 0.24 static Polygon createShape()

(1,0) (PLANE_WIDTH - 1, 0)

(PLANE_WIDTH - 1,

PLANE_HEIGHT)(1, PLANE_HEIGHT)

Step 3 – part 1
Clues:

- Within the constructor of Plane, load plane1.png into frame1 which is an
instance of Texture class. Repeat it with frame2 y frame3.

- Within the same constructor, initialize animation through

Animation(float frameDuration, TextureRegion... keyFrames),

where frameDuration is 0.05 seconds and keyframes are frame1, frame2 y frame3.

Make the animation loops: animation.setPlayMode(PlayMode.LOOP);

- Within reset(), set the starting velocity for the Plane to (0,0) and a desired starting position

- Within update(float delta), increase stateTime with delta time. Add gravity force to velocity vector through

add method and scale it to the aforementioned delta time with scl. Then move the Plane instance with

translate according to its resulting velocity.

- Within draw(), set the region to draw according to the current stateTime, making use of setRegion

(previously defined in the Entity class) and animation.getKeyFrame. Don’t forget to call draw from Entity ->

super.draw(batch)

- Free resources with dispose()

Plane

PlaneGame

GameState: Running

Add plane and update it

Draw plane

Step 3 – part 2
Clues:

- touchdown method from PlaneController will be executed

whenever the user touches the screen, therefore this is the place

to update the plane’s velocity, keeping the same X velocity but

setting its Y velocity to PLANE_JUMP_IMPULSE

- Instantiate Plane and PlaneController within create() from PlaneGame

- Implement updateCamera() so as the camera stays in the same position as the plane, but adding 20

to its X value. Then call camera.update()

- Within updateStart(), set PlaneController as the input processor and set a starting speed for plane

- Within updateRunning(), update plane with the elapse delta time

- Draw plane within drawWorld()

- Free resources in dispose()

Plane

PlaneGame

GameState: Running

Add plane and update it

Draw plane

Step 4

Rock

PlaneGame

GameState: Running

Map

rocks, ceiling, ground

To do:Result:

Paso 4 – introduction

static Polygon createShape()

(1,0) (ROCK_WIDTH, 0)

(ROCK_WIDTH * 0.5 + 1.2, ROCK_HEIGHT)Texture

TextureRegion TextureRegion TextureRegion

Paso 4 – introduction

cameraPosXplanePosX

+20

rockPosX

if (cameraPosX – rockPosX > SCENE_WIDTH*0.5 + ROCK_WIDTH) {

// If not visible, translate the rock

}

cameraPosX - rockPosX

Step 4 – part 1
Clues:

- Implement Rock, making use of the received position (x,y) in its

constructor. Moreover, implement createShape() according to

the previous slide.

- Extend Mapa with the Texture and TextureRegion from the Rock (rock.png) and the

ground(ground.png). Take into account that we must have a flipped region for each of

them. We can use: flip(true, true)

- Implement reset(), clearing the rocks Array with clear() and creating 5 new instances. To this

end, a random boolean will be generated through MathUtils.randomBoolean(). The rock’s X

position will be 60 + i * 25, where i is the rock’s number. The Y position will depend on the

former boolean, if true, 30, otherwise 0. The boolean will also be useful to determine if we

are rotating the body 180º and using the flipped region. Do not forget to add the rocks to the

Array.

Rock

PlaneGame

GameState: Running

Map

rocks, ceiling, ground

Step 4 – part 2
Clues:

- Implement update() from Map so as the hidden rocks increase

their X position in 5 * 25. Take into account that the boolean

stuff from the previous paragraph applies to to this one.

Moreover, don’t forget to reset the rotation to 0 before applying a new one.

- Add an extra parameter offsetX to draw from Map class. Also draw the rocks through its

base method draw(SpriteBatch batch). Then draw twice the ground and the ceiling. The

first one in the X position that offsetX determines. The second one in offsetX +

GROUND_WIDTH

- Within updateRunning() from PlaneGame, increase the flown distance in the acumulator

groundOffsetX with SCENE_WIDTH everytime that the plane flies SCENE_WIDTH 1.5 times.

Then, call update from Map with X position of the camera.

- Free resources in dispose()

Rock

PlaneGame

GameState: Running

Map

rocks, ceiling, ground

Step 5

PlaneGame

GameState: Running

Collisions

Score

GameState: GameOver

Music y effects

To do:Result :

Step 5 – part 1
Clues:

- Create a score variable with 0 value

- Instantiate music.mp3 as Music with
Gdx.audio.newMusic(Gdx.files.internal(“music.mp3”)). Make it loop with
setLooping(true) and call play().

- Repeat the previous instructions with explode.wav. Take into account that instead of being of type Music, it’s
a Sound.

- Within update from Map, set counted to false for each Rock that you translate.

- Implement checkCollisions() so as it checks whether every and each of the rocks collide with the plane. If so,
setInputProcessor(null), set the plane’s velocity to 0 and switch to GameState.GameOver (play explode too).
Finally, you can take advantage of the necessary loop to increase the score whenever the plane has left
behind the position of the current Rock. Don’t count twice the same Rock!. Check collisions with ceiling y
ground, but instead of using collide, the top limit will be SCENE_HEIGHT - GROUND_HEIGHT + 2 while the
bottom limit will be GROUND_HEIGHT -2.

- Free resources in dispose()

PlaneGame

GameState: Running

Collisions

Score

GameState: GameOver

Music y effects

Step 5 – part 2
Clues :

- Instantiate arial.fnt as aBitmapFont called font

using Gdx.files.internal. Set its Color to Color.BLACK with setColor

- Load gameover.png as a Texture within create()

- Draw gameover while the game is under GameState.GameOver just as done before with

ready.

- Draw the score in the position (SCENE_WIDTH * 0.5, SCENE_HEIGHT – 60).

- Free resources in dispose()

PlaneGame

GameState: Running

Collisions

Score

GameState: GameOver

Music y effects

Improving the game

Lights

Increasing velocity

Explosions

Engine smoke

More obstacles

Coins

Mastering libGDX?

