A small math library aimed at gamedev that provides 4x4 float matrix, vector, and quaternion operations. Designed to be easy to interface with other languages.
make install
will install libhypermath in the PREFIX
defaulting to /usr/local
.
None
All matrices must be arrays of 16 floats (with sequential numbers representing a column), all vectors are arrays of 3 floats ((x, y, z)
), and quaternions are arrays of 4 floats ((x, y, z, q)
). While this setup does not provide the benefits of type checking and makes it awkward to access data if you wish to go through the structs, it was chosen for ease of foreign interfacing.
typedef struct {
float _11, _21, _31, _41,
_12, _22, _32, _42,
_13, _23, _33, _43,
_14, _24, _34, _44;
} HPMmat4;
typedef struct {
float x, y, z, w;
} HPMquat;
typedef struct {
float x, y, z;
} HPMpoint;
void hpmCopyMat4(const float *source, float *dest);
Copy the data from matrix source
into dest
.
void hpmPrintMat4(const float *m);
Print the given 4x4 matrix.
void hpmMultMat4(const float *A, const float *B, float *result);
Multiply matrix A
and B
into results
.
void hpmMultMat4S(const float *A, const float S, float *result);
Multiply matrix A
with scalar S
into results
.
void hpmAddMat4(const float *matA, const float *matB, float *result);
Add matrix A
and B
into results
.
void hpmSubMat4(const float *matA, const float *matB, float *result);
Subtract matrix B
from A
into results
.
void hpmIdentityMat4(float *m);
Turn the given matrix into an identity matrix.
void hpmTranslation(float *vector, float *mat);
Create the translation matrix given by vector (x, y, z)
in the given matrix.
void hpmTranslate(float *vector, float *mat);
Multiply the given matrix by the translation matrix created with (x, y, z)
.
void hpmXRotation(float rotation, float *mat);
Create the rotation matrix of rotation
radians around the X-axis in the given matrix.
void hpmRotateX(float rotation, float *mat);
Rotate the given matrix around the X-axis by rotation
radians.
void hpmYRotation(float rotation, float *mat);
Create the rotation matrix of rotation
radians around the Y-axis in the given matrix.
void hpmRotateY(float rotation, float *mat);
Rotate the given matrix around the Y-axis by rotation
radians.
void hpmZRotation(float rotation, float *mat);
Create the rotation matrix of rotation
radians around the Z-axis in the given matrix.
void hpmRotateZ(float rotation, float *mat);
Rotate the given matrix around the Z-axis by rotation
radians.
void hpmAxisAngleRotation(float *axis, float angle, float *mat);
Create the rotation matrix of angle
radians around the vector given by axis
in the given matrix.
void hpmRotateAxisAngle(float *axis, float angle, float *mat);
Rotate the given matrix around the vector given by axis
by angle
radians.
void hpmQuaternionRotation(float *quat, float *mat);
Create the rotation matrix given by the quaternion quat
in the given matrix.
void hpmRotateQuaternion(float *quat, float *mat);
Rotate the given matrix around the quaternion quat
.
void hpmYPRRotation(float yaw, float pitch, float roll, float *mat);
Create the rotation matrix given by rotating by roll
radians around the z-axis followed by pitch
radians around the x-axis followed by yaw
radians around the y-axis.
void hpmRotateYPR(float yaw, float pitch, float roll, float *mat);
Rotate the given matrix by roll
radians around the z-axis followed by pitch
radians around the x-axis followed by yaw
radians around the y-axis.
void hpm2DScaling(float scaleX, float scaleY, float *mat);
Create the scaling matrix created by multiplying the x and y axis by scaleX
and scaleY
in the given matrix.
void hpmScale2D(float scaleX, float scaleY, float *mat);
Scale the x and y axis of the given matrix by scaleX
and scaleY
.
void hpm3DScaling(float scaleX, float scaleY, float scaleZ, float *mat);
Create the scaling matrix created by multiplying the x, y and z axis by scaleX
, scaleY
, and scaleZ
in the given matrix.
void hpmScale3D(float scaleX, float scaleY, float scaleZ, float *mat);
Scale the x, y, and z axis of the given matrix by scaleX
, scaleY
, and scaleZ
.
void hpmScaling(float factor, float *mat);
Create the scaling matrix created by multiplying the x, y and z axis by factor
in the given matrix.
void hpmScale(float scale, float *mat);
Scale the x, y, and z axis of the given matrix by scale
.
void hpmFlipX(float *mat);
Flip (mirror) the given matrix along the x-axis.
void hpmFlipY(float *mat);
Flip (mirror) the given matrix along the y-axis.
void hpmFlipZ(float *mat);
Flip (mirror) the given matrix along the z-axis.
void hpmTranslateRotateScale2D(float *vec, float angle, float scale, float *mat);
Efficiently create a matrix translated by vec
, rotated around the z-axis by angle
then scaled by scale
.
void hpmTranspose(const float *mat, float *result);
Transpose the given matrix into result
void hpmInverse(const float *mat, float *result);
Invert the given matrix into result
void hpmFastInverseTranspose(const float *mat, float *result);
Inverse then transpose the given matrix into result
much faster than if hpmInverse
and hpmTranspose
were used. This will not produce correct results on matrices that have been scaled. Instead hpmInverse
and hpmTranspose
should be used.
void hpmOrtho(int width, int height, float near, float far, float *mat);
Create an orthographic projection matrix.
void hpmOrthoViewport(float left, float right, float bottom, float top, float near, float far, float vLeft, float vRight, float vBottom, float vTop, float *mat);
Create an orthographic projection matrix mapping the left
, right
, top
, bottom
, near
, far
cube to a viewport of vLeft
, vRight
, vTop
, vBottom
.
void hpmPerspective(int width, int height, float near, float far, float angle, float *mat);
Create an perspective projection matrix with a field of view of angle
degrees
void hpmFrustum(float left, float right, float bottom, float top, float near, float far, float *mat);
Create a perspective projection matrix defined by a frustum with a near side of left
, right
, top
, bottom
, near
, and the far side at far
.
void hpmFrustumViewport(float left, float right, float bottom, float top, float near, float far, float vLeft, float vRight, float vBottom, float vTop, float *mat);
Create a perspective projection matrix mapping the left
, right
, top
, bottom
, near
, far
frustum to a viewport of vLeft
, vRight
, vTop
, vBottom
.
void hpmLookAt(float *eye, float *cam, float *up, float *mat);
Create a “look-at” style camera matrix. The camera is positioned at eye
, pointing towards obj
. up
defines the camera’s up vector.
void hpmCameraInverse(const float *camera, float *inverse);
Invert camera
in an efficient fashion. This allows the camera to be constructed in an intuitive fashion by translating and rotating before inverting in order to position the scene properly. This function is far faster than the general hpmInverse
function, but the matrix camera
must only be a matrix representing a translation and a rotation (no scaling).
void hpmCopyVec(const float *source, float *dest);
Copy the vector source
into dest
.
void hpmMultVec(const float *A, float m, float *result);
Multiply the vector A
by the scalar m
to produce result
.
void hpmAddVec(const float *A, const float *B, float *result);
Add vector A
and B
to produce result
.
void hpmSubVec(const float *A, const float *B, float *result);
Add vector B
from A
to produce result
.
void hpmCross(const float *A, const float *B, float *result);
Return the cross product of vector A
and B
in result
.
float hpmDot(const float *pointA, const float *pointB);
Return the dot product of vector A
and B
.
float hpmMagnitude(const float *vec);
Return the magnitude of the given vector.
void hpmNormalize(float *vec);
Normalize the given vector.
void hpmLerp(const float *A, const float *B, float t, float *result);
Linear interpolation between the points A
and B
with the interpolation parameter t
which must be between 0 and 1. Returns result
.
void hpmMat4VecMult(const float *matrix, float *vec);
Multiply the given vector by matrix
, modifying it.
void hpmMat4VecArrayMult(const float *matrix, float *vectorArray, size_t length, size_t stride);
Multiply each 3 element vector in vectorArray
by matrix
. length
specifies the number of vectors in vectorArray
. stride
specifies the number of bytes between the start of two vectors. If stride
is 0
, the vectors are assumed to be tightly packed.
Quaternions are expected to be normalized before they are used in certain functions (hpmQuatNormalize
may be used to do so). All the provided functions that create quaternions, create unit quaternions.
The order of quaternion cross-multiplication is the inverse of the “standard” order, so a quaternion that has undergone a series or rotations will represent the same rotation as a marix that has gone through the same series, in the same order.
void hpmCopyQuat(const float *source, float *dest);
Copy the quaternion source
into dest
.
void hpmQuatNormalize(float *quat);
Normalize the given quaternion.
void hpmQuatInverse(const float *quat, float *inv);
Return the inverse of the unit quaternion quat
in inv
.
void hpmQuatCross(const float *A, const float *B, float *result);
Return the cross product of quaternions A
and B
in result
.
void hpmQuatVecRotate(const float *quat, float *point);
Rotate point
around the unit quaternion quat
.
void hpmAxisAngleQuatRotation(float *axis, float angle, float *quat);
Create the unit quaternion quat
given by a rotation of angle
radians around the vector axis
.
void hpmRotateQuatAxisAngle(float *axis, float angle, float *quat);
Rotate the quaternion quat
by angle
radians around the vector axis
.
void hpmXQuatRotation(float angle, float *quat);
Create the unit quaternion quat
given by a rotation of angle
radians around the x-axis.
void hpmRotateQuatX(float angle, float *quat);
Rotate the quaternion quat
by angle
radians around the x-axis.
void hpmYQuatRotation(float angle, float *quat);
Create the unit quaternion quat
given by a rotation of angle
radians around the y-axis.
void hpmRotateQuatY(float angle, float *quat);
Rotate the quaternion quat
by angle
radians around the y-axis.
void hpmZQuatRotation(float angle, float *quat);
Create the unit quaternion quat
given by a rotation of angle
radians around the z-axis.
void hpmRotateQuatZ(float angle, float *quat);
Rotate the quaternion quat
by angle
radians around the z-axis.
void hpmYPRQuatRotation(float yaw, float pitch, float roll, float *quat);
Create the unit quaterion quat
given by a rotation of roll
radians around the z-axis followed by pitch
radians around the x-axis followed by yaw
radians around the y-axis.
void hpmRotateQuatYPR(float yaw, float pitch, float roll, float *quat);
Rotate the quaterion quat
by roll
radians around the z-axis followed by pitch
radians around the x-axis followed by yaw
radians around the y-axis.
void hpmSlerp(const float *A, const float *B, float t, float *result);
Spherical linear interpolation between the quaternions A
and B
with the interpolation parameter t
which must be between 0 and 1. Returns the result in the quaternion result
.
float hpmDegreesToRadians(float deg);
Convert degrees into radians.
float hpmRadiansToDegrees(float rad);
Convert radians into degrees.
- Add
hpmAddMat4
,hpmSubMat4
,hpmMultMat4S
- Add
hpmOrthoViewport
,hpmFrustumViewport
- Add
hpmFastInverseTranspose
- Add quaternion operations
- Expand vector operations, and accept vectors as arrays
- Export
hpmCopyMat4
- Matrix vector multiplication
- Each transformation function now has two variants: one that initializes a matrix, and one that operates on a matrix
- Provide quaternion and YPR rotation
- Remove unhelpful composite operations
- Fix a bug in
hpmLookAt
- Initial release
Source available on GitHub.
Bug reports and patches welcome! Bugs can be reported via GitHub or to alex.n.charlton at gmail.
Alex Charlton
BSD