Skip to content

AlexCharlton/hypermath

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

44 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Hypermath

A small math library aimed at gamedev that provides 4x4 float matrix, vector, and quaternion operations. Designed to be easy to interface with other languages.

Installation

make install will install libhypermath in the PREFIX defaulting to /usr/local.

Requirements

None

Documentation

All matrices must be arrays of 16 floats (with sequential numbers representing a column), all vectors are arrays of 3 floats ((x, y, z)), and quaternions are arrays of 4 floats ((x, y, z, q)). While this setup does not provide the benefits of type checking and makes it awkward to access data if you wish to go through the structs, it was chosen for ease of foreign interfacing.

Structs

typedef struct {
    float _11, _21, _31, _41,
          _12, _22, _32, _42,
          _13, _23, _33, _43,
          _14, _24, _34, _44;
} HPMmat4;
typedef struct {
    float x, y, z, w;
} HPMquat;
typedef struct {
    float x, y, z;
} HPMpoint;

Matrix operations

void hpmCopyMat4(const float *source, float *dest);

Copy the data from matrix source into dest.

void hpmPrintMat4(const float *m);

Print the given 4x4 matrix.

void hpmMultMat4(const float *A, const float *B, float *result);

Multiply matrix A and B into results.

void hpmMultMat4S(const float *A, const float S, float *result);

Multiply matrix A with scalar S into results.

void hpmAddMat4(const float *matA, const float *matB, float *result);

Add matrix A and B into results.

void hpmSubMat4(const float *matA, const float *matB, float *result);

Subtract matrix B from A into results.

void hpmIdentityMat4(float *m);

Turn the given matrix into an identity matrix.

void hpmTranslation(float *vector, float *mat);

Create the translation matrix given by vector (x, y, z) in the given matrix.

void hpmTranslate(float *vector, float *mat);

Multiply the given matrix by the translation matrix created with (x, y, z).

void hpmXRotation(float rotation, float *mat);

Create the rotation matrix of rotation radians around the X-axis in the given matrix.

void hpmRotateX(float rotation, float *mat);

Rotate the given matrix around the X-axis by rotation radians.

void hpmYRotation(float rotation, float *mat);

Create the rotation matrix of rotation radians around the Y-axis in the given matrix.

void hpmRotateY(float rotation, float *mat);

Rotate the given matrix around the Y-axis by rotation radians.

void hpmZRotation(float rotation, float *mat);

Create the rotation matrix of rotation radians around the Z-axis in the given matrix.

void hpmRotateZ(float rotation, float *mat);

Rotate the given matrix around the Z-axis by rotation radians.

void hpmAxisAngleRotation(float *axis, float angle, float *mat);

Create the rotation matrix of angle radians around the vector given by axis in the given matrix.

void hpmRotateAxisAngle(float *axis, float angle, float *mat);

Rotate the given matrix around the vector given by axis by angle radians.

void hpmQuaternionRotation(float *quat, float *mat);

Create the rotation matrix given by the quaternion quat in the given matrix.

void hpmRotateQuaternion(float *quat, float *mat);

Rotate the given matrix around the quaternion quat.

void hpmYPRRotation(float yaw, float pitch, float roll, float *mat);

Create the rotation matrix given by rotating by roll radians around the z-axis followed by pitch radians around the x-axis followed by yaw radians around the y-axis.

void hpmRotateYPR(float yaw, float pitch, float roll, float *mat);

Rotate the given matrix by roll radians around the z-axis followed by pitch radians around the x-axis followed by yaw radians around the y-axis.

void hpm2DScaling(float scaleX, float scaleY, float *mat);

Create the scaling matrix created by multiplying the x and y axis by scaleX and scaleY in the given matrix.

void hpmScale2D(float scaleX, float scaleY, float *mat);

Scale the x and y axis of the given matrix by scaleX and scaleY.

void hpm3DScaling(float scaleX, float scaleY, float scaleZ, float *mat);

Create the scaling matrix created by multiplying the x, y and z axis by scaleX, scaleY, and scaleZ in the given matrix.

void hpmScale3D(float scaleX, float scaleY, float scaleZ, float *mat);

Scale the x, y, and z axis of the given matrix by scaleX, scaleY, and scaleZ.

void hpmScaling(float factor, float *mat);

Create the scaling matrix created by multiplying the x, y and z axis by factor in the given matrix.

void hpmScale(float scale, float *mat);

Scale the x, y, and z axis of the given matrix by scale.

void hpmFlipX(float *mat);

Flip (mirror) the given matrix along the x-axis.

void hpmFlipY(float *mat);

Flip (mirror) the given matrix along the y-axis.

void hpmFlipZ(float *mat);

Flip (mirror) the given matrix along the z-axis.

void hpmTranslateRotateScale2D(float *vec, float angle, float scale, float *mat);

Efficiently create a matrix translated by vec, rotated around the z-axis by angle then scaled by scale.

void hpmTranspose(const float *mat, float *result);

Transpose the given matrix into result

void hpmInverse(const float *mat, float *result);

Invert the given matrix into result

void hpmFastInverseTranspose(const float *mat, float *result);

Inverse then transpose the given matrix into result much faster than if hpmInverse and hpmTranspose were used. This will not produce correct results on matrices that have been scaled. Instead hpmInverse and hpmTranspose should be used.

Projection

void hpmOrtho(int width, int height, float near, float far, float *mat);

Create an orthographic projection matrix.

void hpmOrthoViewport(float left, float right, float bottom, float top, float near, float far, float vLeft, float vRight, float vBottom, float vTop, float *mat);

Create an orthographic projection matrix mapping the left, right, top, bottom, near, far cube to a viewport of vLeft, vRight, vTop, vBottom.

void hpmPerspective(int width, int height, float near, float far, float angle, float *mat);

Create an perspective projection matrix with a field of view of angle degrees

void hpmFrustum(float left, float right, float bottom, float top, float near, float far, float *mat);

Create a perspective projection matrix defined by a frustum with a near side of left, right, top, bottom, near, and the far side at far.

void hpmFrustumViewport(float left, float right, float bottom, float top, float near, float far, float vLeft, float vRight, float vBottom, float vTop, float *mat);

Create a perspective projection matrix mapping the left, right, top, bottom, near, far frustum to a viewport of vLeft, vRight, vTop, vBottom.

Camera

void hpmLookAt(float *eye, float *cam, float *up, float *mat);

Create a “look-at” style camera matrix. The camera is positioned at eye, pointing towards obj. up defines the camera’s up vector.

void hpmCameraInverse(const float *camera, float *inverse);

Invert camera in an efficient fashion. This allows the camera to be constructed in an intuitive fashion by translating and rotating before inverting in order to position the scene properly. This function is far faster than the general hpmInverse function, but the matrix camera must only be a matrix representing a translation and a rotation (no scaling).

Vector operations

void hpmCopyVec(const float *source, float *dest);

Copy the vector source into dest.

void hpmMultVec(const float *A, float m, float *result);

Multiply the vector A by the scalar m to produce result.

void hpmAddVec(const float *A, const float *B, float *result);

Add vector A and B to produce result.

void hpmSubVec(const float *A, const float *B, float *result);

Add vector B from A to produce result.

void hpmCross(const float *A, const float *B, float *result);

Return the cross product of vector A and B in result.

float hpmDot(const float *pointA, const float *pointB);

Return the dot product of vector A and B.

float hpmMagnitude(const float *vec);

Return the magnitude of the given vector.

void hpmNormalize(float *vec);

Normalize the given vector.

void hpmLerp(const float *A, const float *B, float t, float *result);

Linear interpolation between the points A and B with the interpolation parameter t which must be between 0 and 1. Returns result.

void hpmMat4VecMult(const float *matrix, float *vec);

Multiply the given vector by matrix, modifying it.

void hpmMat4VecArrayMult(const float *matrix, float *vectorArray, size_t length, size_t stride);

Multiply each 3 element vector in vectorArray by matrix. length specifies the number of vectors in vectorArray. stride specifies the number of bytes between the start of two vectors. If stride is 0, the vectors are assumed to be tightly packed.

Quaternion operations

Quaternions are expected to be normalized before they are used in certain functions (hpmQuatNormalize may be used to do so). All the provided functions that create quaternions, create unit quaternions.

The order of quaternion cross-multiplication is the inverse of the “standard” order, so a quaternion that has undergone a series or rotations will represent the same rotation as a marix that has gone through the same series, in the same order.

void hpmCopyQuat(const float *source, float *dest);

Copy the quaternion source into dest.

void hpmQuatNormalize(float *quat);

Normalize the given quaternion.

void hpmQuatInverse(const float *quat, float *inv);

Return the inverse of the unit quaternion quat in inv.

void hpmQuatCross(const float *A, const float *B, float *result);

Return the cross product of quaternions A and B in result.

void hpmQuatVecRotate(const float *quat, float *point);

Rotate point around the unit quaternion quat.

void hpmAxisAngleQuatRotation(float *axis, float angle, float *quat);

Create the unit quaternion quat given by a rotation of angle radians around the vector axis.

void hpmRotateQuatAxisAngle(float *axis, float angle, float *quat);

Rotate the quaternion quat by angle radians around the vector axis.

void hpmXQuatRotation(float angle, float *quat);

Create the unit quaternion quat given by a rotation of angle radians around the x-axis.

void hpmRotateQuatX(float angle, float *quat);

Rotate the quaternion quat by angle radians around the x-axis.

void hpmYQuatRotation(float angle, float *quat);

Create the unit quaternion quat given by a rotation of angle radians around the y-axis.

void hpmRotateQuatY(float angle, float *quat);

Rotate the quaternion quat by angle radians around the y-axis.

void hpmZQuatRotation(float angle, float *quat);

Create the unit quaternion quat given by a rotation of angle radians around the z-axis.

void hpmRotateQuatZ(float angle, float *quat);

Rotate the quaternion quat by angle radians around the z-axis.

void hpmYPRQuatRotation(float yaw, float pitch, float roll, float *quat);

Create the unit quaterion quat given by a rotation of roll radians around the z-axis followed by pitch radians around the x-axis followed by yaw radians around the y-axis.

void hpmRotateQuatYPR(float yaw, float pitch, float roll, float *quat);

Rotate the quaterion quat by roll radians around the z-axis followed by pitch radians around the x-axis followed by yaw radians around the y-axis.

void hpmSlerp(const float *A, const float *B, float t, float *result);

Spherical linear interpolation between the quaternions A and B with the interpolation parameter t which must be between 0 and 1. Returns the result in the quaternion result.

Angle operations

float hpmDegreesToRadians(float deg);

Convert degrees into radians.

float hpmRadiansToDegrees(float rad);

Convert radians into degrees.

Version history

Version 0.8.0

  • Add hpmAddMat4, hpmSubMat4, hpmMultMat4S

Version 0.7.0

  • Add hpmOrthoViewport, hpmFrustumViewport

Version 0.6.0

  • Add hpmFastInverseTranspose

Version 0.5.0

  • Add quaternion operations
  • Expand vector operations, and accept vectors as arrays

Version 0.4.0

  • Export hpmCopyMat4

Version 0.3.0

  • Matrix vector multiplication

Version 0.2.0

  • Each transformation function now has two variants: one that initializes a matrix, and one that operates on a matrix
  • Provide quaternion and YPR rotation
  • Remove unhelpful composite operations
  • Fix a bug in hpmLookAt

Version 0.1.0

  • Initial release

Source repository

Source available on GitHub.

Bug reports and patches welcome! Bugs can be reported via GitHub or to alex.n.charlton at gmail.

Author

Alex Charlton

Licence

BSD

About

A small math library for gamedev

Resources

License

Stars

Watchers

Forks

Packages

No packages published