
Possible Backend Frameworks for Virtual TA App
1. Django (Python)

A full-stack web framework to build complex applications using Python.
Pros:

● Provides a comprehensive set of features and tools out of the box
● Built-in support for various databases including MySQL, PostgreSQL, and

SQLite
Cons:

● Steep learning curve
● Requires more resources
● For smaller projects, provides more features than what is needed

2. Flask (Python)
A minimalistic Python web framework suitable to build smaller applications.

Pros:
● Requires less resources
● Allows for quick prototyping
● More approachable to beginners

Cons:
● Lacks some built-in features found in larger frameworks
● Relies on additional libraries for certain functionality
● Not suitable for large projects

3. Laravel (PHP)
A PHP web framework used to build robust web applications.

Pros:
● Has an easy to read and expressive syntax
● Provides a wide range of built-in features
● Can maintain/connect to databases using its ORM

Cons:
● Not as resource efficient as other frameworks
● Requires extensive background knowledge to use properly

4. Spring Boot (Java)
An open-source Java-based framework used to create microservices and stand-alone
Spring applications.

Pros:
● Simplifies Java app development
● Comes with a comprehensive set of tools and features
● Seamless integration with other Spring projects

Cons:
● High resource utilization
● Requires understanding of both Java and Spring concepts
● May be too advanced for smaller projects



5. Express.js (JavaScript)
A small framework built on the Node.js web server to create web applications.and
RESTful APIs.

Pros:
● Lightweight and flexible
● Simple to use and suitable for smaller projects
● Support for real-time communication through libraries like Socket.IO

Cons:
● Not suitable for more complex applications
● Lacks some built-in features and often needs additional libraries
● Requires understanding of both JavaScript and Node.js concepts

6. ASP.NET Core (C#)
A cross-platform and open-source C# framework that can be used to build web apps and
services. Runs on .NET Core.

Pros:
● Can use .NET Core’s wide range of tools and libraries
● Provides high performance and scalability (low resource usage)
● Activity community with extensive documentation

Cons:
● High learning curve and requires knowledge of the .NET framework
● Requires significant work to migrate old code into the current version of

ASP.NET core
● Development ecosystem is smaller than that of ASP.NET


