
!!

 前⾔言

!!

 前⾔言
⼤大家好，我是楼仔！

为了了⽅方便便⼤大家学习，我会把所有的系列列⽂文章整理理成⼿手册，今天给⼤大家整理理的是「架构选型⼿手册」。

这个系列列有多肝？

注册中⼼心，转载了了 15 次，转载阅读量量 3W +，消息队列列转载 13 次，转载阅读量量 2.5W +，微服务⽹网关转载 8 次，
转载阅读量量 2W +。

所以这个系列列，是我转载最多的系列列，通过这个系列列的学习，让你对常⽤用的开源软件有个基础、全局的认识，⽆无论
是⾯面试，还是技术选型，都⾮非常有帮助。

这个系列列有 5 篇是原创，1 篇转载，《监控系统》是引⽤用⼤大佬骆俊武的⽂文章，特此说明！

""

 第 1 章：消息队列列
消息队列列中间件重要吗？⾯面试必问问题之⼀一，你说重不不重要。我有时会问同事，为啥你⽤用 RabbitMQ，不不⽤用
Kafka，或者 RocketMQ 呢，他给我的回答 “因为公司⽤用的就是这个，⼤大家都这么⽤用”，如果你去⾯面试，直接就被
Pass，今天这篇⽂文章，告诉你如何回答。

这篇⽂文章，我重点突出消息队列列选型，弱化每种队列列内部的实现细节，精华提炼，可读性更更强！

常⽤用的消息队列列主要这 4 种，分别为 Kafka、RabbitMQ、RocketMQ 和 ActiveMQ，主要介绍前三，不不BB，上思
维导图！

消息队列列基础

消息队列列基础
什什么是消息队列列？
消息队列列是在消息的传输过程中保存消息的容器器，⽤用于接收消息并以⽂文件的⽅方式存储，⼀一个消息队列列可以被⼀一个也
可以被多个消费者消费，包含以下 3 元素：

Producer：消息⽣生产者，负责产⽣生和发送消息到 Broker；
Broker：消息处理理中⼼心，负责消息存储、确认、重试等，⼀一般其中会包含多个 Queue；
Consumer：消息消费者，负责从 Broker 中获取消息，并进⾏行行相应处理理。

消息队列列模式
点对点模式：多个⽣生产者可以向同⼀一个消息队列列发送消息，⼀一个具体的消息只能由⼀一个消费者消费。

发布/订阅模式：单个消息可以被多个订阅者并发的获取和处理理。

消息队列列应⽤用场景
应⽤用解耦：消息队列列减少了了服务之间的耦合性，不不同的服务可以通过消息队列列进⾏行行通信，⽽而不不⽤用关⼼心彼此的实
现细节。
异步处理理：消息队列列本身是异步的，它允许接收者在消息发送很⻓长时间后再取回消息。
流量量削锋：当上下游系统处理理能⼒力力存在差距的时候，利利⽤用消息队列列做⼀一个通⽤用的”载体”，在下游有能⼒力力处理理的
时候，再进⾏行行分发与处理理。
⽇日志处理理：⽇日志处理理是指将消息队列列⽤用在⽇日志处理理中，⽐比如 Kafka 的应⽤用，解决⼤大量量⽇日志传输的问题。
消息通讯：消息队列列⼀一般都内置了了⾼高效的通信机制，因此也可以⽤用在纯的消息通讯，⽐比如实现点对点消息队
列列，或者聊天室等。
消息⼴广播：如果没有消息队列列，每当⼀一个新的业务⽅方接⼊入，我们都要接⼊入⼀一次新接⼝口。有了了消息队列列，我们只
需要关⼼心消息是否送达了了队列列，⾄至于谁希望订阅，是下游的事情，⽆无疑极⼤大地减少了了开发和联调的⼯工作量量。

常⽤用消息队列列
由于官⽅方社区现在对 ActiveMQ 5.x 维护越来越少，较少在⼤大规模吞吐的场景中使⽤用，所以我们主要讲解 Kafka、
RabbitMQ 和 RocketMQ。

Kafka
Apache Kafka 最初由 LinkedIn 公司基于独特的设计实现为⼀一个分布式的提交⽇日志系统，之后成为 Apache 项⽬目的
⼀一部分，号称⼤大数据的杀⼿手锏，在数据采集、传输、存储的过程中发挥着举⾜足轻重的作⽤用。

它是⼀一个分布式的，⽀支持多分区、多副本，基于 Zookeeper 的分布式消息流平台，它同时也是⼀一款开源的基于发
布订阅模式的消息引擎系统。

重要概念

主题（Topic）：消息的种类称为主题，可以说⼀一个主题代表了了⼀一类消息，相当于是对消息进⾏行行分类，主题就
像是数据库中的表。
分区（partition）：主题可以被分为若⼲干个分区，同⼀一个主题中的分区可以不不在⼀一个机器器上，有可能会部署
在多个机器器上，由此来实现 kafka 的伸缩性。
批次：为了了提⾼高效率， 消息会分批次写⼊入 Kafka，批次就代指的是⼀一组消息。
消费者群组（Consumer Group）：消费者群组指的就是由⼀一个或多个消费者组成的群体。
Broker: ⼀一个独⽴立的 Kafka 服务器器就被称为 broker，broker 接收来⾃自⽣生产者的消息，为消息设置偏移量量，并
提交消息到磁盘保存。
Broker 集群：broker 集群由⼀一个或多个 broker 组成。

重平衡（Rebalance）：消费者组内某个消费者实例例挂掉后，其他消费者实例例⾃自动重新分配订阅主题分区的
过程。

Kafka 架构

⼀一个典型的 Kafka 集群中包含 Producer、broker、Consumer Group、Zookeeper 集群。

Kafka 通过 Zookeeper 管理理集群配置，选举 leader，以及在 Consumer Group 发⽣生变化时进⾏行行 rebalance。
Producer 使⽤用 push 模式将消息发布到 broker，Consumer 使⽤用 pull 模式从 broker 订阅并消费消息。

Kafka ⼯工作原理理

消息经过序列列化后，通过不不同的分区策略略，找到对应的分区。

相同主题和分区的消息，会被存放在同⼀一个批次⾥里里，然后由⼀一个独⽴立的线程负责把它们发到 Kafka Broker 上。

分区的策略略包括顺序轮询、随机轮询和 key hash 这 3 种⽅方式，那什什么是分区呢？

分区是 Kafka 读写数据的最⼩小粒度，⽐比如主题 A 有 15 条消息，有 5 个分区，如果采⽤用顺序轮询的⽅方式，15 条消
息会顺序分配给这 5 个分区，后续消费的时候，也是按照分区粒度消费。

由于分区可以部署在多个不不同的机器器上，所以可以通过分区实现 Kafka 的伸缩性，⽐比如主题 A 的 5 个分区，分别
部署在 5 台机器器上，如果下线⼀一台，分区就变为 4。

Kafka 消费是通过消费群组完成，同⼀一个消费者群组，⼀一个消费者可以消费多个分区，但是⼀一个分区，只能被⼀一个
消费者消费。

如果消费者增加，会触发 Rebalance，也就是分区和消费者需要重新配对。

不不同的消费群组互不不⼲干涉，⽐比如下图的 2 个消费群组，可以分别消费这 4 个分区的消息，互不不影响。

更更多知识，详⻅见 《原理理初探之 Kafka》

RocketMQ
RocketMQ 是阿⾥里里开源的消息中间件，它是纯 Java 开发，具有⾼高性能、⾼高可靠、⾼高实时、适合⼤大规模分布式系统
应⽤用的特点。

RocketMQ 思路路起源于 Kafka，但并不不是 Kafka 的⼀一个 Copy，它对消息的可靠传输及事务性做了了优化，⽬目前在阿
⾥里里集团被⼴广泛应⽤用于交易易、充值、流计算、消息推送、⽇日志流式处理理、binglog 分发等场景。

重要概念

Name 服务器器（NameServer）：充当注册中⼼心，类似 Kafka 中的 Zookeeper。
Broker: ⼀一个独⽴立的 RocketMQ 服务器器就被称为 broker，broker 接收来⾃自⽣生产者的消息，为消息设置偏移
量量。
主题（Topic）：消息的第⼀一级类型，⼀一条消息必须有⼀一个 Topic。
⼦子主题（Tag）：消息的第⼆二级类型，同⼀一业务模块不不同⽬目的的消息就可以⽤用相同 Topic 和不不同的 Tag 来标
识。
分组（Group）：⼀一个组可以订阅多个 Topic，包括⽣生产者组（Producer Group）和消费者组（Consumer
Group）。
队列列（Queue）：可以类⽐比 Kafka 的分区 Partition。

https://mp.weixin.qq.com/s?__biz=Mzg3OTU5NzQ1Mw==&mid=2247484210&idx=1&sn=37029e17a8505df40153dea14b18cb45&chksm=cf0341d0f874c8c63496b59984cfeb4bc338f51c58f39cddb3135a6b6dfa1db512d0824be2a9&token=1692695155&lang=zh_CN#rd

RocketMQ ⼯工作原理理

RockerMQ 中的消息模型就是按照主题模型所实现的，包括 Producer Group、Topic、Consumer Group 三个⻆角
⾊色。

为了了提⾼高并发能⼒力力，⼀一个 Topic 包含多个 Queue，⽣生产者组根据主题将消息放⼊入对应的 Topic，下图是采⽤用轮询
的⽅方式找到⾥里里⾯面的 Queue。

RockerMQ 中的消费群组和 Queue，可以类⽐比 Kafka 中的消费群组和 Partition：不不同的消费者组互不不⼲干扰，⼀一个
Queue 只能被⼀一个消费者消费，⼀一个消费者可以消费多个 Queue。

消费 Queue 的过程中，通过偏移量量记录消费的位置。

RocketMQ 架构

RocketMQ 技术架构中有四⼤大⻆角⾊色 NameServer、Broker、Producer 和 Consumer，下⾯面主要介绍 Broker。

Broker ⽤用于存放 Queue，⼀一个 Broker 可以配置多个 Topic，⼀一个 Topic 中存在多个 Queue。

如果某个 Topic 消息量量很⼤大，应该给它多配置⼏几个 Queue，并且尽量量多分布在不不同 broker 上，以减轻某个
broker 的压⼒力力。Topic 消息量量都⽐比较均匀的情况下，如果某个 broker 上的队列列越多，则该 broker 压⼒力力越⼤大。

简单提⼀一下，Broker 通过集群部署，并且提供了了 master/slave 的结构，salve 定时从 master 同步数据（同步刷
盘或者异步刷盘），如果 master 宕机，则 slave 提供消费服务，但是不不能写⼊入消息。

看到这⾥里里，⼤大家应该可以发现，RocketMQ 的设计和 Kafka 真的很像！

更更多知识，详⻅见 《原理理初探之 RocketMQ》

RabbitMQ
RabbitMQ 2007 年年发布，是使⽤用 Erlang 语⾔言开发的开源消息队列列系统，基于 AMQP 协议来实现。

AMQP 的主要特征是⾯面向消息、队列列、路路由、可靠性、安全。AMQP 协议更更多⽤用在企业系统内，对数据⼀一致性、
稳定性和可靠性要求很⾼高的场景，对性能和吞吐量量的要求还在其次。

重要概念

信道（Channel）：消息读写等操作在信道中进⾏行行，客户端可以建⽴立多个信道，每个信道代表⼀一个会话任
务。
交换器器（Exchange）：接收消息，按照路路由规则将消息路路由到⼀一个或者多个队列列；如果路路由不不到，或者返回
给⽣生产者，或者直接丢弃。
路路由键（RoutingKey）：⽣生产者将消息发送给交换器器的时候，会发送⼀一个 RoutingKey，⽤用来指定路路由规
则，这样交换器器就知道把消息发送到哪个队列列。
绑定（Binding）：交换器器和消息队列列之间的虚拟连接，绑定中可以包含⼀一个或者多个 RoutingKey。

https://mp.weixin.qq.com/s?__biz=Mzg3OTU5NzQ1Mw==&mid=2247484233&idx=1&sn=8f565a54d62c9817fd99bc972e0e75b9&chksm=cf0341abf874c8bd45d2587a0f26cb9a1852a27509478e1e101785ad2dd4222d9c8252340b45&token=1692695155&lang=zh_CN#rd

RabbitMQ ⼯工作原理理

AMQP 协议模型由三部分组成：⽣生产者、消费者和服务端，执⾏行行流程如下：

1. ⽣生产者是连接到 Server，建⽴立⼀一个连接，开启⼀一个信道。
2. ⽣生产者声明交换器器和队列列，设置相关属性，并通过路路由键将交换器器和队列列进⾏行行绑定。
3. 消费者也需要进⾏行行建⽴立连接，开启信道等操作，便便于接收消息。
4. ⽣生产者发送消息，发送到服务端中的虚拟主机。
5. 虚拟主机中的交换器器根据路路由键选择路路由规则，发送到不不同的消息队列列中。
6. 订阅了了消息队列列的消费者就可以获取到消息，进⾏行行消费。

常⽤用交换器器

RabbitMQ 常⽤用的交换器器类型有 direct、topic、fanout、headers 四种，每种⽅方法的详细介绍看这篇《⼊入⻔门
RabbitMQ，这⼀一篇绝对够！》。

具体的使⽤用⽅方法，可以参考官⽹网：

官⽹网⼊入⼝口：https://www.rabbitmq.com/getstarted.html

https://mp.weixin.qq.com/s?__biz=Mzg3OTU5NzQ1Mw==&mid=2247485842&idx=1&sn=554dc28cfce0042572b8d8ae3ee94277&chksm=cf034b70f874c2669f78a5f73996e487af8fac317f83b7a7f83cc7e436965c7064a7eaabc375#rd
https://www.rabbitmq.com/getstarted.html

更更多知识，详⻅见 《⼊入⻔门RabbitMQ，这⼀一篇绝对够！》

消息队列列对⽐比&选型

https://mp.weixin.qq.com/s?__biz=Mzg3OTU5NzQ1Mw==&mid=2247485842&idx=1&sn=554dc28cfce0042572b8d8ae3ee94277&scene=21#wechat_redirect

消息队列列对⽐比

Kafka

优点：

⾼高吞吐、低延迟：Kafka 最⼤大的特点就是收发消息⾮非常快，Kafka 每秒可以处理理⼏几⼗十万条消息，它的最低延迟
只有⼏几毫秒；
⾼高伸缩性：每个主题（topic）包含多个分区（partition），主题中的分区可以分布在不不同的主机（broker）
中；
⾼高稳定性：Kafka 是分布式的，⼀一个数据多个副本，某个节点宕机，Kafka 集群能够正常⼯工作；
持久性、可靠性、可回溯： Kafka 能够允许数据的持久化存储，消息被持久化到磁盘，并⽀支持数据备份防⽌止
数据丢失，⽀支持消息回溯；
消息有序：通过控制能够保证所有消息被消费且仅被消费⼀一次；
有优秀的第三⽅方 Kafka Web 管理理界⾯面 Kafka-Manager，在⽇日志领域⽐比较成熟，被多家公司和多个开源项⽬目使
⽤用。

缺点：

Kafka 单机超过 64 个队列列/分区，Load 会发⽣生明显的飙⾼高现象，队列列越多，load 越⾼高，发送消息响应时间变
⻓长；
不不⽀支持消息路路由，不不⽀支持延迟发送，不不⽀支持消息重试；
社区更更新较慢。

RocketMQ

优点：

⾼高吞吐：借鉴 Kafka 的设计，单⼀一队列列百万消息的堆积能⼒力力；
⾼高伸缩性：灵活的分布式横向扩展部署架构，整体架构其实和 kafka 很像；
⾼高容错性：通过ACK机制，保证消息⼀一定能正常消费；
持久化、可回溯：消息可以持久化到磁盘中，⽀支持消息回溯；
消息有序：在⼀一个队列列中可靠的先进先出（FIFO）和严格的顺序传递；
⽀支持发布/订阅和点对点消息模型，⽀支持拉、推两种消息模式；
提供 docker 镜像⽤用于隔离测试和云集群部署，提供配置、指标和监控等功能丰富的 Dashboard。

缺点：

不不⽀支持消息路路由，⽀支持的客户端语⾔言不不多，⽬目前是 java 及 c++，其中 c++ 不不成熟；
部分⽀支持消息有序：需要将同⼀一类的消息 hash 到同⼀一个队列列 Queue 中，才能⽀支持消息的顺序，如果同⼀一类
消息散落到不不同的 Queue中，就不不能⽀支持消息的顺序。
社区活跃度⼀一般。

RabbitMQ

优点：

⽀支持⼏几乎所有最受欢迎的编程语⾔言：Java，C，C ++，C＃，Ruby，Perl，Python，PHP等等；
⽀支持消息路路由：RabbitMQ 可以通过不不同的交换器器⽀支持不不同种类的消息路路由；
消息时序：通过延时队列列，可以指定消息的延时时间，过期时间TTL等；
⽀支持容错处理理：通过交付重试和死信交换器器（DLX）来处理理消息处理理故障；
提供了了⼀一个易易⽤用的⽤用户界⾯面，使得⽤用户可以监控和管理理消息 Broker；
社区活跃度⾼高。

缺点：

Erlang 开发，很难去看懂源码，不不利利于做⼆二次开发和维护，基本职能依赖于开源社区的快速维护和修复
bug；
RabbitMQ 吞吐量量会低⼀一些，这是因为他做的实现机制⽐比较重；
不不⽀支持消息有序、持久化不不好、不不⽀支持消息回溯、伸缩性⼀一般。

消息队列列选型
Kafka：追求⾼高吞吐量量，⼀一开始的⽬目的就是⽤用于⽇日志收集和传输，适合产⽣生⼤大量量数据的互联⽹网服务的数据收集
业务，⼤大型公司建议可以选⽤用，如果有⽇日志采集功能，肯定是⾸首选 kafka。
RocketMQ：天⽣生为⾦金金融互联⽹网领域⽽而⽣生，对于可靠性要求很⾼高的场景，尤其是电商⾥里里⾯面的订单扣款，以及业
务削峰，在⼤大量量交易易涌⼊入时，后端可能⽆无法及时处理理的情况。RoketMQ 在稳定性上可能更更值得信赖，这些业
务场景在阿⾥里里双 11 已经经历了了多次考验，如果你的业务有上述并发场景，建议可以选择 RocketMQ。

RabbitMQ：结合 erlang 语⾔言本身的并发优势，性能较好，社区活跃度也⽐比较⾼高，但是不不利利于做⼆二次开发和
维护，不不过 RabbitMQ 的社区⼗十分活跃，可以解决开发过程中遇到的 bug。如果你的数据量量没有那么⼤大，⼩小
公司优先选择功能⽐比较完备的 RabbitMQ。
ActiveMQ：官⽅方社区现在对 ActiveMQ 5.x 维护越来越少，较少在⼤大规模吞吐的场景中使⽤用。

微信搜 楼仔 或扫描下⽅方⼆二维码关注楼仔的原创公众号，回复 110 即可免费领取。

""

 第 2 章：微服务⽹网关
常⽤用API⽹网关的对⽐比和选型，并讲解我司⾃自研的微服务⽹网关，⼲干货满满！

⼤大家好，我是楼仔！微服务近⼏几年年⾮非常⽕火，围绕微服务的技术⽣生态也⽐比较多，⽐比如微服务⽹网关、Docker、
Kubernetes等。

我是于2019年年开始接触微服务⽹网关，当时和公司的⼀一位同事⼀一起开发，由于技术能⼒力力有限，我只负责⽹网关后台，后
续微服务⽹网关的迭代，我其实没有参与，不不过后来抽空看了了微服务⽹网关前台的代码，所以对这套微服务⽹网关的实现
原理理算是基本掌握。

最近在写技术栈相关的⽂文章，刚好写到微服务⽹网关，就把之前学习的知识进⾏行行简单总结，同时也把市⾯面上常⽤用的微
服务⽹网关进⾏行行梳理理，⼀一⽅方⾯面便便于后续技术选型，另⼀一⽅方⾯面也算是给⾃自⼰己⼀一个交代。下⾯面是⽂文章⽬目录：

API⽹网关基础
什什么是API⽹网关
API⽹网关是⼀一个服务器器，是系统的唯⼀一⼊入⼝口。 从⾯面向对象设计的⻆角度看，它与外观模式类似。

API⽹网关封装了了系统内部架构，为每个客户端提供⼀一个定制的API。它可能还具有其它职责，如身份验证、监控、负
载均衡、缓存、协议转换、限流熔断、静态响应处理理。

API⽹网关⽅方式的核⼼心要点是，所有的客户端和消费端都通过统⼀一的⽹网关接⼊入微服务，在⽹网关层处理理所有的⾮非业务功
能。通常，⽹网关也是提供REST/HTTP的访问API。

⽹网关的主要功能
微服务⽹网关作为微服务后端服务的统⼀一⼊入⼝口，它可以统筹管理理后端服务，主要分为数据平⾯面和控制平⾯面：

数据平⾯面主要功能是接⼊入⽤用户的HTTP请求和微服务被拆分后的聚合。使⽤用微服务⽹网关统⼀一对外暴暴露露后端服务
的API和契约，路路由和过滤功能正是⽹网关的核⼼心能⼒力力模块。另外，微服务⽹网关可以实现拦截机制和专注跨横切
⾯面的功能，包括协议转换、安全认证、熔断限流、灰度发布、⽇日志管理理、流量量监控等。
控制平⾯面主要功能是对后端服务做统⼀一的管控和配置管理理。例例如，可以控制⽹网关的弹性伸缩；可以统⼀一下发配
置；可以对⽹网关服务添加标签；可以在微服务⽹网关上通过配置Swagger功能统⼀一将后端服务的API契约暴暴露露给
使⽤用⽅方，完成⽂文档服务，提⾼高⼯工作效率和降低沟通成本。

路路由功能：路路由是微服务⽹网关的核⼼心能⼒力力。通过路路由功能微服务⽹网关可以将请求转发到⽬目标微服务。在微服务
架构中，⽹网关可以结合注册中⼼心的动态服务发现，实现对后端服务的发现，调⽤用⽅方只需要知道⽹网关对外暴暴露露的
服务API就可以透明地访问后端微服务。
负载均衡：API⽹网关结合负载均衡技术，利利⽤用Eureka或者Consul等服务发现⼯工具，通过轮询、指定权重、IP地
址哈希等机制实现下游服务的负载均衡。
统⼀一鉴权：⼀一般⽽而⾔言，⽆无论对内⽹网还是外⽹网的接⼝口都需要做⽤用户身份认证，⽽而⽤用户认证在⼀一些规模较⼤大的系统
中都会采⽤用统⼀一的单点登录（Single Sign On）系统，如果每个微服务都要对接单点登录系统，那么显然⽐比较
浪费资源且开发效率低。API⽹网关是统⼀一管理理安全性的绝佳场所，可以将认证的部分抽取到⽹网关层，微服务系
统⽆无须关注认证的逻辑，只关注⾃自身业务即可。
协议转换：API⽹网关的⼀一⼤大作⽤用在于构建异构系统，API⽹网关作为单⼀一⼊入⼝口，通过协议转换整合后台基于
REST、AMQP、Dubbo等不不同⻛风格和实现技术的微服务，⾯面向Web Mobile、开放平台等特定客户端提供统⼀一
服务。
指标监控：⽹网关可以统计后端服务的请求次数，并且可以实时地更更新当前的流量量健康状态，可以对URL粒度的
服务进⾏行行延迟统计，也可以使⽤用Hystrix Dashboard查看后端服务的流量量状态及是否有熔断发⽣生。
限流熔断：在某些场景下需要控制客户端的访问次数和访问频率，⼀一些⾼高并发系统有时还会有限流的需求。在

⽹网关上可以配置⼀一个阈值，当请求数超过阈值时就直接返回错误⽽而不不继续访问后台服务。当出现流量量洪峰或者
后端服务出现延迟或故障时，⽹网关能够主动进⾏行行熔断，保护后端服务，并保持前端⽤用户体验良好。
⿊黑⽩白名单：微服务⽹网关可以使⽤用系统⿊黑名单，过滤HTTP请求特征，拦截异常客户端的请求，例例如DDoS攻击
等侵蚀带宽或资源迫使服务中断等⾏行行为，可以在⽹网关层⾯面进⾏行行拦截过滤。⽐比较常⻅见的拦截策略略是根据IP地址增
加⿊黑名单。在存在鉴权管理理的路路由服务中可以通过设置⽩白名单跳过鉴权管理理⽽而直接访问后端服务资源。
灰度发布：微服务⽹网关可以根据HTTP请求中的特殊标记和后端服务列列表元数据标识进⾏行行流量量控制，实现在⽤用
户⽆无感知的情况下完成灰度发布。
流量量染⾊色：和灰度发布的原理理相似，⽹网关可以根据HTTP请求的Host、Head、Agent等标识对请求进⾏行行染⾊色，
有了了⽹网关的流量量染⾊色功能，我们可以对服务后续的调⽤用链路路进⾏行行跟踪，对服务延迟及服务运⾏行行状况进⾏行行进⼀一步
的链路路分析。
⽂文档中⼼心：⽹网关结合Swagger，可以将后端的微服务暴暴露露给⽹网关，⽹网关作为统⼀一的⼊入⼝口给接⼝口的使⽤用⽅方提供查
看后端服务的API规范，不不需要知道每⼀一个后端微服务的Swagger地址，这样⽹网关起到了了对后端API聚合的效
果。
⽇日志审计：微服务⽹网关可以作为统⼀一的⽇日志记录和收集器器，对服务URL粒度的⽇日志请求信息和响应信息进⾏行行拦
截。

API⽹网关选型
常⽤用API⽹网关
先简单看⼀一下市⾯面上常⽤用的API⽹网关：

Nginx

Nginx是⼀一个⾼高性能的HTTP和反向代理理服务器器。Nginx⼀一⽅方⾯面可以做反向代理理，另外⼀一⽅方⾯面可以做静态资源服务
器器，接⼝口使⽤用Lua动态语⾔言可以完成灵活的定制功能。

Nginx 在启动后，会有⼀一个 Master 进程和多个 Worker 进程，Master 进程和 Worker 进程之间是通过进程间通信
进⾏行行交互的，如图所示。Worker ⼯工作进程的阻塞点是在像 select()、epoll_wait() 等这样的 I/O 多路路复⽤用函数调⽤用
处，以等待发⽣生数据可读 / 写事件。Nginx 采⽤用了了异步⾮非阻塞的⽅方式来处理理请求，也就是说，Nginx 是可以同时处
理理成千上万个请求的。

Zuul

Zuul 是 Netflix 开源的⼀一个API⽹网关组件，它可以和 Eureka、Ribbon、Hystrix 等组件配合使⽤用。社区活跃，融合
于 SpringCloud 完整⽣生态，是构建微服务体系前置⽹网关服务的最佳选型之⼀一。

Zuul 的核⼼心是⼀一系列列的过滤器器，这些过滤器器可以完成以下功能：

统⼀一鉴权 + 动态路路由 + 负载均衡 + 压⼒力力测试
审查与监控：与边缘位置追踪有意义的数据和统计结果，从⽽而带来精确的⽣生产视图。
多区域弹性：跨越 AWS Region 进⾏行行请求路路由，旨在实现 ELB（Elastic Load Balancing，弹性负载均衡）使
⽤用的多样化，以及让系统的边缘更更贴近系统的使⽤用者。

Zuul ⽬目前有两个⼤大的版本：Zuul1 和 Zuul2

Zuul1 是基于 Servlet 框架构建，如图所示，采⽤用的是阻塞和多线程⽅方式，即⼀一个线程处理理⼀一次连接请求，这种⽅方
式在内部延迟严重、设备故障较多情况下会引起存活的连接增多和线程增加的情况发⽣生。

Netflix 发布的 Zuul2 有重⼤大的更更新，它运⾏行行在异步和⽆无阻塞框架上，每个 CPU 核⼀一个线程，处理理所有的请求和响
应，请求和响应的⽣生命周期是通过事件和回调来处理理的，这种⽅方式减少了了线程数量量，因此开销较⼩小。

Spring Cloud GetWay

Spring Cloud Gateway 是Spring Cloud的⼀一个全新的API⽹网关项⽬目，⽬目的是为了了替换掉Zuul1，它基于Spring5.0 +
SpringBoot2.0 + WebFlux（基于⾼高性能的Reactor模式响应式通信框架Netty，异步⾮非阻塞模型）等技术开发，性
能⾼高于Zuul，官⽅方测试，Spring Cloud GateWay是Zuul的1.6倍，旨在为微服务架构提供⼀一种简单有效的统⼀一的
API路路由管理理⽅方式。

Spring Cloud Gateway可以与Spring Cloud Discovery Client（如Eureka）、Ribbon、Hystrix等组件配合使⽤用，
实现路路由转发、负载均衡、熔断、鉴权、路路径重写、⽇日志监控等，并且Gateway还内置了了限流过滤器器，实现了了限
流的功能。

Kong

Kong是⼀一款基于OpenResty（Nginx + Lua模块）编写的⾼高可⽤用、易易扩展的，由Mashape公司开源的API Gateway
项⽬目。Kong是基于NGINX和Apache Cassandra或PostgreSQL构建的，能提供易易于使⽤用的RESTful API来操作和
配置API管理理系统，所以它可以⽔水平扩展多个Kong服务器器，通过前置的负载均衡配置把请求均匀地分发到各个
Server，来应对⼤大批量量的⽹网络请求。

Kong主要有三个组件：

Kong Server ：基于Nginx的服务器器，⽤用来接收API请求。
Apache Cassandra/PostgreSQL ：⽤用来存储操作数据。
Kong dashboard：官⽅方推荐UI管理理⼯工具，也可以使⽤用 restfull ⽅方式管理理admin api。

Kong采⽤用插件机制进⾏行行功能定制，插件集（可以是0或N个）在API请求响应循环的⽣生命周期中被执⾏行行。插件使⽤用
Lua编写，⽬目前已有⼏几个基础功能：HTTP基本认证、密钥认证、CORS（Cross-Origin Resource Sharing，跨域
资源共享）、TCP、UDP、⽂文件⽇日志、API请求限流、请求转发以及Nginx监控。

Kong⽹网关具有以下的特性：

可扩展性: 通过简单地添加更更多的服务器器，可以轻松地进⾏行行横向扩展，这意味着您的平台可以在⼀一个较低负载

的情况下处理理任何请求；
模块化: 可以通过添加新的插件进⾏行行扩展，这些插件可以通过RESTful Admin API轻松配置；
在任何基础架构上运⾏行行: Kong⽹网关可以在任何地⽅方都能运⾏行行。您可以在云或内部⽹网络环境中部署Kong，包括
单个或多个数据中⼼心设置，以及public，private 或invite-only APIs。

Traefik

Træfɪk 是⼀一个为了了让部署微服务更更加便便捷⽽而诞⽣生的现代HTTP反向代理理、负载均衡⼯工具。 它⽀支持多种后台 (Docker,
Swarm, Kubernetes, Marathon, Mesos, Consul, Etcd, Zookeeper, BoltDB, Rest API, file…) 来⾃自动化、动态的应
⽤用它的配置⽂文件设置。

重要特性：

它⾮非常快，⽆无需安装其他依赖，通过Go语⾔言编写的单⼀一可执⾏行行⽂文件；
多种后台⽀支持：Docker, Swarm, Kubernetes, Marathon, Mesos, Consul, Etcd；
⽀支持⽀支持Rest API、Websocket、HTTP/2、Docker镜像；
监听后台变化进⽽而⾃自动化应⽤用新的配置⽂文件设置；
配置⽂文件热更更新，⽆无需重启进程；
后端断路路器器、负载均衡、容错机制；
清爽的前端⻚页⾯面，可监控服务指标。

关于Traefik的更更多内容，可以查看官⽹网：https://traefik.cn/

API⽹网关对⽐比

https://traefik.cn/

上⾯面是⽹网关对⽐比截图，偷个懒，⼤大家主要关注Kong、Traefik和Zuul即可：

从开源社区活跃度来看，⽆无疑是Kong和Traefik较好；
从成熟度来看，较好的是Kong、Tyk、Traefik；
从性能来看，Kong要⽐比其他⼏几个领先⼀一些；
从架构优势的扩展性来看，Kong、Tyk有丰富的插件，Ambassador也有插件但不不多，⽽而Zuul是完全需要⾃自
研，但Zuul由于与Spring Cloud深度集成，使⽤用度也很⾼高，近年年来Istio服务⽹网格的流⾏行行，Ambassador因为能
够和Istio⽆无缝集成也是相当⼤大的优势。

下⾯面是其它⽹网友的思考结论，可供参考：

性能：Nginx+Lua形式必然是⾼高于Java语⾔言实现的⽹网关的，Java技术栈⾥里里⾯面Zuul1.0是基于Servlet实现的，剩
下都是基于webflux实现，性能是⾼高于基于Servlet实现的。在性能⽅方⾯面我觉得选择⽹网关可能不不算那么重要，多
加⼏几台机器器就可以搞定。
可维护性和扩展性：Nginx+Lua这个组合掌握的⼈人不不算多，如果团队有⼤大神，⼤大佬们就随意了了，当没看到这段
话，对于⼀一般团队来说的话，选择⾃自⼰己团队擅⻓长的语⾔言更更重要。Java技术栈下的3种⽹网关，对于Zuul和Spring
Cloud Getway需要或多或少要搞⼀一些集成和配置⻚页⾯面来维护，但是对于Soul我就⽆无脑看看⽂文章，需要哪个搬
哪个好了了，尤其是可以⽆无脑对接Dubbo美滋滋，此外Soul2.0以后版本可以摆脱ZK，在我⼼心⾥里里再⽆无诟病，我就
喜欢⽆无脑操作。
⾼高可⽤用：对于⽹网关⾼高可⽤用基本都是统⼀一的策略略都是采⽤用多机器器部署的⽅方式，前⾯面挂⼀一个负载，对于⽽而外需要⽤用
的⼀一些组件⼤大家注意⼀一下。

基于Traefik⾃自研的微服务⽹网关
这个是我司⾃自研的微服务⽹网关，基于Traefik进⾏行行开发，下⾯面从技术选型、⽹网关框架、⽹网关后台、协议转换进⾏行行讲
解，绝对⼲干货！

技术栈选型
Traefik：⼀一款开源的反向代理理与负载均衡⼯工具，它最⼤大的优点是能够与常⻅见的微服务系统直接整合，可以实
现⾃自动化动态配置。traefik较为轻量量，⾮非常易易于使⽤用和设置，性能⽐比较好，已在全球范围内⽤用于⽣生产环境。
Etcd：⼀一个Go⾔言编写的分布式、⾼高可⽤用的⼀一致性键值存储系统，⽤用于提供可靠的分布式键值存储、配置共享
和服务发现等功能。（更更多内容可以查看⽂文章 肝了了⼀一个⽉月的ETCD，从Raft原理理到实践 ）
Go：并发能⼒力力强，性能媲美C，处理理能⼒力力是PHP的4倍，效率⾼高，语法简单，易易上⼿手，开发效率接近PHP。

https://mp.weixin.qq.com/s?__biz=Mzg3OTU5NzQ1Mw==&mid=2247485759&idx=1&sn=41957e94a2c69426befafd373fbddcc5&chksm=cf034bddf874c2cb52a7aafea5cd194e70308c7d4ad74183db8a36d3747122be1c7a31b84ee3&token=179167416&lang=zh_CN#rd

⽹网关框架
整个⽹网关框架分为3块：

⽹网关后台（hal-fe和hal-admin）：⽤用于应⽤用、服务和插件的配置，然后将配置信息发布到ETCD；
Traefik：读取ETCD配置，根据配置信息对请求进⾏行行路路由分发，如果需要鉴权，会直接通过hal-agent模块进
⾏行行统⼀一鉴权。鉴权完毕后，如果是Http请求，直接打到下游服务，如果是Grpc和Thrift协议，会通过hal-
proxy模块进⾏行行协议转换。
协议转换模块：读取ETCD配置，对Traefik分发过来的请求，进⾏行行Grpc和Thrift协议转换（更更多内容可以查看
⽂文章 RPC框架：从原理理到选型，⼀一⽂文带你搞懂RPC），并通过服务发现机制，获取服务下游机器器，并通过负载
均衡，将转换后的数据打到下游服务机器器。

⽹网关后台

https://mp.weixin.qq.com/s/ll4nUVB28KpyTMS93xAckQ

主要由3⼤大模块组成：

应⽤用：主要包括应⽤用名、域名、路路径前缀、所属组、状态等，⽐比如印度海海外商城、印度社区；
服务：主要包括服务名、注册⽅方式、协议类型、所属组、状态等，⽐比如评论服务、地址服务、搜索服务。
插件：主要包括插件名称、插件类型、插件属性配置等，⽐比如路路径前缀替换插件、鉴权插件。

⼀一个应⽤用只能绑定⼀一个服务，但是可以绑定多个插件。 通过后台完成⽹网关配置后，将这些配置信息⽣生成Config⽂文
件，发布到ETCD中，Config⽂文件需要遵循严格的数据格式，⽐比如Traefix配置需要遵循官⽅方的⽂文件配置格式，才能
被Traefik识别。

协议转换模块
hal-proxy模块是整个微服务⽹网关最复杂，也是技术含量量最⾼高的模块，所以给⼤大家详细讲解⼀一下。

问题引⼊入

在讲这个模块前，我们先看下⾯面⼏几个问题：

当请求从上游的trafik过来时，需要知道访问下游的机器器IP和端⼝口，才能将请求发送给下游，这些机器器如何获
取呢？
有了了机器器后，我们需要和下游机器器建⽴立连接，如果连接⽤用⼀一次就直接释放，肯定对服务会造成很⼤大的压⼒力力，这
就需要引⼊入Client缓存池，那这个Client缓存池我们⼜又该如何实现呢？
最后就是需要对协议进⾏行行转换，因为不不同的下游服务，⽀支持的协议类型是不不⼀一样的，这个⽹网关⼜又是如何动态⽀支
持的呢？

实现原理理

我们还是先看⼀一下hal-proxy内部有哪些模块，⾸首先是Resolver模块，这个模块的是什什么作⽤用呢？这⾥里里我简单介绍
⼀一下，⽬目前公司内部通过服务获取到机器器列列表的⽅方式有多种，⽐比如MIS平台、服务树等，也就是有的是通过平台配
置的，有的是直接挂在服务树下，⽆无论哪种⽅方式，我们都通过服务名，通过⼀一定的⽅方式，找到该服务下⾯面所有的主
机。

所以Resolver模块的作⽤用，其实就是通过服务名，找到该服务下的所有机器器的IP和服务端⼝口，然后持久化到内存
中，并定时更更新。

协议模块就是⽀支持不不同的协议转换，每个协议类型的转换，都需要单独实现，这些协议转换，⽆无⾮非就是先通过机器器
IP和端⼝口初始化Client，然后再将数据进⾏行行转换后，直接发送到下游的机器器。

最后就是连接池，之前我们其实也⽤用到go⾃自带的pool来做，但是当对pool数据进⾏行行更更新时，需要加锁，所以性能⼀一
直起不不来，后来改成了了环形队列列，然后对数据的操作全部通过原⼦子操作⽅方式，就实现了了⽆无锁操作，⼤大⼤大提⾼高的并发
性能。 环形队列列的代码，也给你安排上，可以直接看这篇⽂文章 Go语⾔言核⼼心⼿手册-10.原⼦子操作。

实现逻辑

这个是hal-proxy的逻辑实现图，画了了2天，包含所有核⼼心对象的交互⽅方式，这⾥里里就不不去细讲，能掌握多少，靠⼤大家
⾃自⼰己领悟，如果有任何疑问(或者看不不清图⽚片)，可以关注我公众号，加我微信沟通。

https://mp.weixin.qq.com/s/xezQ8GRNIgaygSwsHP3DJQ

微信搜 楼仔 或扫描下⽅方⼆二维码关注楼仔的原创公众号，回复 110 即可免费领取。

""

 第 3 章：注册中⼼心
讲解5种常⽤用的注册中⼼心，对⽐比其流程和原理理，⽆无论是⾯面试还是技术选型，都⾮非常有帮助。

⼤大家好，我是楼仔！对于注册中⼼心，在写这篇⽂文章前，我其实只对ETCD有⽐比较深⼊入的了了解，但是对于Zookeeper
和其它的注册中⼼心了了解甚少，甚⾄至都没有考虑过ETCD和Zookeeper是否适合作为注册中⼼心。

经过近2周的学习，原来注册中⼼心除了了ETCD和Zookeeper，常⽤用的还有Eureka、Nacos、Consul，下⾯面我们就对
这些常⽤用的注册中⼼心，初探它们的异同，便便于后续技术选型。

全⽂文接近 8千字，有点⻓长，建议先收藏，再慢慢看，下⾯面是⽂文章⽬目录：

注册中⼼心基本概念
什什么是注册中⼼心？
注册中⼼心主要有三种⻆角⾊色：

服务提供者（RPC Server）：在启动时，向 Registry 注册⾃自身服务，并向 Registry 定期发送⼼心跳汇报存活状
态。
服务消费者（RPC Client）：在启动时，向 Registry 订阅服务，把 Registry 返回的服务节点列列表缓存在本地
内存中，并与 RPC Sever 建⽴立连接。
服务注册中⼼心（Registry）：⽤用于保存 RPC Server 的注册信息，当 RPC Server 节点发⽣生变更更时，Registry
会同步变更更，RPC Client 感知后会刷新本地 内存中缓存的服务节点列列表。

最后，RPC Client 从本地缓存的服务节点列列表中，基于负载均衡算法选择⼀一台 RPC Sever 发起调⽤用。

注册中⼼心需要实现功能
根据注册中⼼心原理理的描述，注册中⼼心必须实现以下功能，偷个懒，直接贴幅图：

注册中⼼心基础扫盲
这块知识如果⼤大家已经知道，可以直接跳过，主要是为了了扫盲。

CAP理理论
CAP理理论是分布式架构中重要理理论：

⼀一致性(Consistency)：所有节点在同⼀一时间具有相同的数据；
可⽤用性(Availability) ：保证每个请求不不管成功或者失败都有响应；
分隔容忍(Partition tolerance) ：系统中任意信息的丢失或失败不不会影响系统的继续运作。

关于 P 的理理解，我觉得是在整个系统中某个部分，挂掉了了，或者宕机了了，并不不影响整个系统的运作或者说使⽤用，⽽而
可⽤用性是，某个系统的某个节点挂了了，但是并不不影响系统的接受或者发出请求。

CAP 不不可能都取，只能取其中2个的原因如下：

如果C是第⼀一需求的话，那么会影响A的性能，因为要数据同步，不不然请求结果会有差异，但是数据同步会消
耗时间，期间可⽤用性就会降低。
如果A是第⼀一需求，那么只要有⼀一个服务在，就能正常接受请求，但是对于返回结果变不不能保证，原因是，在
分布式部署的时候，数据⼀一致的过程不不可能想切线路路那么快。
再如果，同时满⾜足⼀一致性和可⽤用性，那么分区容错就很难保证了了，也就是单点，也是分布式的基本核⼼心。

分布式系统协议
⼀一致性协议算法主要有Paxos、Raft、ZAB。

Paxos算法是Leslie Lamport在1990年年提出的⼀一种基于消息传递的⼀一致性算法，⾮非常难以理理解，基于Paxos协议的
数据同步与传统主备⽅方式最⼤大的区别在于：Paxos只需超过半数的副本在线且相互通信正常，就可以保证服务的持
续可⽤用，且数据不不丢失。

Raft是斯坦福⼤大学的Diego Ongaro、John Ousterhout两个⼈人以易易理理解为⽬目标设计的⼀一致性算法，已经有了了⼗十⼏几种
语⾔言的Raft算法实现框架，较为出名的有etcd，Google的Kubernetes也是⽤用了了etcd作为他的服务发现框架。

Raft是Paxos的简化版，与Paxos相⽐比，Raft强调的是易易理理解、易易实现，Raft和Paxos⼀一样只要保证超过半数的节点
正常就能够提供服务。这篇⽂文章 《ETCD教程-2.Raft协议》 详细讲解了了Raft原理理，⾮非常有意思，感兴趣的同学可以
看看。

ZooKeeper Atomic Broadcast (ZAB, ZooKeeper原⼦子消息⼴广播协议)是ZooKeeper实现分布式数据⼀一致性的核⼼心算
法，ZAB借鉴Paxos算法，但⼜又不不像Paxos算法那样，是⼀一种通⽤用的分布式⼀一致性算法，它是⼀一种特别为
ZooKeeper专⻔门设计的⽀支持崩溃恢复的原⼦子⼴广播协议。

常⽤用注册中⼼心
这⾥里里主要介绍5种常⽤用的注册中⼼心，分别为Zookeeper、Eureka、Nacos、Consul和ETCD。

Zookeeper
这个说起来有点意思的是官⽅方并没有说他是⼀一个注册中⼼心，但是国内Dubbo场景下很多都是使⽤用Zookeeper来完成
了了注册中⼼心的功能。

当然这有很多历史原因，这⾥里里我们就不不追溯了了。ZooKeeper是⾮非常经典的服务注册中⼼心中间件，在国内环境下，由
于受到Dubbo框架的影响，⼤大部分情况下认为Zookeeper是RPC服务框架下注册中⼼心最好选择，随着Dubbo框架的
不不断开发优化，和各种注册中⼼心组件的诞⽣生，即使是RPC框架，现在的注册中⼼心也逐步放弃了了ZooKeeper。在常⽤用
的开发集群环境中，ZooKeeper依然起到⼗十分重要的作⽤用，Java体系中，⼤大部分的集群环境都是依赖ZooKeeper管
理理服务的各个节点。

https://mp.weixin.qq.com/s?__biz=Mzg3OTU5NzQ1Mw==&mid=2247484080&idx=1&sn=24ccb6e7de6d7a274c75296799b57c32&chksm=cf034052f874c944a601a6eb50d524753d7adaf59c0f2326a47a3104302c2544a6901104668f&token=333114218&lang=zh_CN#rd

Zookeeper如何实现注册中⼼心

具体可参考这篇⽂文章 《Zookeeper⽤用作注册中⼼心的原理理》，下⾯面的内容都出⾃自该⽂文章。

Zookeeper可以充当⼀一个服务注册表（Service Registry），让多个服务提供者形成⼀一个集群，让服务消费者通过服
务注册表获取具体的服务访问地址（Ip+端⼝口）去访问具体的服务提供者。如下图所示：

每当⼀一个服务提供者部署后都要将⾃自⼰己的服务注册到zookeeper的某⼀一路路径上: /{service}/{version}/{ip:port} 。

⽐比如我们的HelloWorldService部署到两台机器器，那么Zookeeper上就会创建两条⽬目录：

/HelloWorldService/1.0.0/100.19.20.01:16888
/HelloWorldService/1.0.0/100.19.20.02:16888

这么描述有点不不好理理解，下图更更直观：

https://mp.weixin.qq.com/s?__biz=Mzg3OTU5NzQ1Mw==&mid=2247486840&idx=1&sn=254bb499f1d79a6cc42023f8d143822f&chksm=cf034f9af874c68cc40e4a7da28ad5302173d876fa0b52808644b9d7f4eec10a13712364ef54#rd

在zookeeper中，进⾏行行服务注册，实际上就是在zookeeper中创建了了⼀一个znode节点，该节点存储了了该服务的IP、
端⼝口、调⽤用⽅方式(协议、序列列化⽅方式)等。该节点承担着最重要的职责，它由服务提供者(发布服务时)创建，以供服务
消费者获取节点中的信息，从⽽而定位到服务提供者真正⽹网络拓拓扑位置以及得知如何调⽤用。

RPC服务注册/发现过程简述如下：

1. 服务提供者启动时，会将其服务名称，ip地址注册到配置中⼼心。
2. 服务消费者在第⼀一次调⽤用服务时，会通过注册中⼼心找到相应的服务的IP地址列列表，并缓存到本地，以供后续使
⽤用。当消费者调⽤用服务时，不不会再去请求注册中⼼心，⽽而是直接通过负载均衡算法从IP列列表中取⼀一个服务提供者
的服务器器调⽤用服务。

3. 当服务提供者的某台服务器器宕机或下线时，相应的ip会从服务提供者IP列列表中移除。同时，注册中⼼心会将新的
服务IP地址列列表发送给服务消费者机器器，缓存在消费者本机。

4. 当某个服务的所有服务器器都下线了了，那么这个服务也就下线了了。
5. 同样，当服务提供者的某台服务器器上线时，注册中⼼心会将新的服务IP地址列列表发送给服务消费者机器器，缓存在
消费者本机。

6. 服务提供⽅方可以根据服务消费者的数量量来作为服务下线的依据。

zookeeper提供了了“⼼心跳检测”功能：它会定时向各个服务提供者发送⼀一个请求（实际上建⽴立的是⼀一个 socket ⻓长连
接），如果⻓长期没有响应，服务中⼼心就认为该服务提供者已经“挂了了”，并将其剔除。

⽐比如100.100.0.237这台机器器如果宕机了了，那么zookeeper上的路路径就会只
剩/HelloWorldService/1.0.0/100.100.0.238:16888。

Zookeeper的Watch机制其实就是⼀一种推拉结合的模式：

服务消费者会去监听相应路路径（/HelloWorldService/1.0.0），⼀一旦路路径上的数据有任务变化（增加或减
少），Zookeeper只会发送⼀一个事件类型和节点信息给关注的客户端，⽽而不不会包括具体的变更更内容，所以事
件本身是轻量量级的，这就是推的部分。
收到变更更通知的客户端需要⾃自⼰己去拉变更更的数据，这就是拉的部分。

Zookeeper不不适合作为注册中⼼心

作为⼀一个分布式协同服务，ZooKeeper⾮非常好，但是对于Service发现服务来说就不不合适了了，因为对于Service发现
服务来说就算是返回了了包含不不实的信息的结果也⽐比什什么都不不返回要好。所以当向注册中⼼心查询服务列列表时，我们可
以容忍注册中⼼心返回的是⼏几分钟以前的注册信息，但不不能接受服务直接down掉不不可⽤用。

但是zk会出现这样⼀一种情况，当master节点因为⽹网络故障与其他节点失去联系时，剩余节点会重新进⾏行行leader选
举。问题在于，选举leader的时间太⻓长，30 ~ 120s, 且选举期间整个zk集群都是不不可⽤用的，这就导致在选举期间注
册服务瘫痪。在云部署的环境下，因⽹网络问题使得zk集群失去master节点是较⼤大概率会发⽣生的事，虽然服务能够最
终恢复，但是漫⻓长的选举时间导致的注册⻓长期不不可⽤用是不不能容忍的。

所以说，作为注册中⼼心，可⽤用性的要求要⾼高于⼀一致性！

在 CAP 模型中，Zookeeper整体遵循⼀一致性（CP）原则，即在任何时候对 Zookeeper 的访问请求能得到⼀一致的
数据结果，但是当机器器下线或者宕机时，不不能保证服务可⽤用性。

那为什什么Zookeeper不不使⽤用最终⼀一致性（AP）模型呢？因为这个依赖Zookeeper的核⼼心算法是ZAB，所有设计都
是为了了强⼀一致性。这个对于分布式协调系统，完全没没有⽑毛病，但是你如果将Zookeeper为分布式协调服务所做的
⼀一致性保障，⽤用在注册中⼼心，或者说服务发现场景，这个其实就不不合适。

Eureka

Eureka 架构图

什什么，上⾯面这幅图看起来很复杂？那我给你贴个简化版：

Eureka 特点

可⽤用性（AP原则）：Eureka 在设计时就紧遵AP原则，Eureka的集群中，只要有⼀一台Eureka还在，就能保证
注册服务可⽤用，只不不过查到的信息可能不不是最新的（不不保证强⼀一致性）。
去中⼼心化架构：Eureka Server 可以运⾏行行多个实例例来构建集群，不不同于 ZooKeeper 的选举 leader 的过程，
Eureka Server 采⽤用的是Peer to Peer 对等通信。这是⼀一种去中⼼心化的架构，⽆无 master/slave 之分，每⼀一个
Peer 都是对等的。节点通过彼此互相注册来提⾼高可⽤用性，每个节点需要添加⼀一个或多个有效的 serviceUrl 指
向其他节点。每个节点都可被视为其他节点的副本。
请求⾃自动切换：在集群环境中如果某台 Eureka Server 宕机，Eureka Client 的请求会⾃自动切换到新的 Eureka
Server 节点上，当宕机的服务器器重新恢复后，Eureka 会再次将其纳⼊入到服务器器集群管理理之中。
节点间操作复制：当节点开始接受客户端请求时，所有的操作都会在节点间进⾏行行复制操作，将请求复制到该
Eureka Server 当前所知的其它所有节点中。
⾃自动注册&⼼心跳：当⼀一个新的 Eureka Server 节点启动后，会⾸首先尝试从邻近节点获取所有注册列列表信息，并
完成初始化。Eureka Server 通过 getEurekaServiceUrls() ⽅方法获取所有的节点，并且会通过⼼心跳契约的⽅方式
定期更更新。
⾃自动下线：默认情况下，如果 Eureka Server 在⼀一定时间内没有接收到某个服务实例例的⼼心跳（默认周期为30
秒），Eureka Server 将会注销该实例例（默认为90秒， eureka.instance.lease-expiration-duration-in-
seconds 进⾏行行⾃自定义配置）。
保护模式：当 Eureka Server 节点在短时间内丢失过多的⼼心跳时，那么这个节点就会进⼊入⾃自我保护模式。

除了了上述特点，Eureka还有⼀一种⾃自我保护机制，如果在15分钟内超过 85% 的节点都没有正常的⼼心跳，那么Eureka
就认为客户端与注册中⼼心出现了了⽹网络故障，此时会出现以下⼏几种情况：

Eureka不不再从注册表中移除因为⻓长时间没有收到⼼心跳⽽而过期的服务；
Eureka仍然能够接受新服务注册和查询请求，但是不不会被同步到其它节点上（即保证当前节点依然可⽤用）
当⽹网络稳定时，当前实例例新注册的信息会被同步到其它节点中。

Eureka⼯工作流程

了了解完 Eureka 核⼼心概念，⾃自我保护机制，以及集群内的⼯工作原理理后，我们来整体梳理理⼀一下 Eureka 的⼯工作流程：

1. Eureka Server 启动成功，等待服务端注册。在启动过程中如果配置了了集群，集群之间定时通过 Replicate 同
步注册表，每个 Eureka Server 都存在独⽴立完整的服务注册表信息。

2. Eureka Client 启动时根据配置的 Eureka Server 地址去注册中⼼心注册服务。
3. Eureka Client 会每 30s 向 Eureka Server 发送⼀一次⼼心跳请求，证明客户端服务正常。
4. 当 Eureka Server 90s 内没有收到 Eureka Client 的⼼心跳，注册中⼼心则认为该节点失效，会注销该实例例。
5. 单位时间内 Eureka Server 统计到有⼤大量量的 Eureka Client 没有上送⼼心跳，则认为可能为⽹网络异常，进⼊入⾃自我
保护机制，不不再剔除没有上送⼼心跳的客户端。

6. 当 Eureka Client ⼼心跳请求恢复正常之后，Eureka Server ⾃自动退出⾃自我保护模式。
7. Eureka Client 定时全量量或者增量量从注册中⼼心获取服务注册表，并且将获取到的信息缓存到本地。
8. 服务调⽤用时，Eureka Client 会先从本地缓存找寻调取的服务。如果获取不不到，先从注册中⼼心刷新注册表，再
同步到本地缓存。

9. Eureka Client 获取到⽬目标服务器器信息，发起服务调⽤用。
10. Eureka Client 程序关闭时向 Eureka Server 发送取消请求，Eureka Server 将实例例从注册表中删除。

通过分析 Eureka ⼯工作原理理，我可以明显地感觉到 Eureka 的设计之巧妙，完美地解决了了注册中⼼心的稳定性和
⾼高可⽤用性。

Eureka 为了了保障注册中⼼心的⾼高可⽤用性，容忍了了数据的⾮非强⼀一致性，服务节点间的数据可能不不⼀一致， Client-
Server 间的数据可能不不⼀一致。⽐比较适合跨越多机房、对注册中⼼心服务可⽤用性要求较⾼高的使⽤用场景。

Nacos
以下内容摘抄⾃自Nacos官⽹网：https://nacos.io/zh-cn/docs/what-is-nacos.html

Nacos 致⼒力力于帮助您发现、配置和管理理微服务。Nacos 提供了了⼀一组简单易易⽤用的特性集，帮助您快速实现动态服务发
现、服务配置、服务元数据及流量量管理理。

Nacos 帮助您更更敏敏捷和容易易地构建、交付和管理理微服务平台。 Nacos 是构建以“服务”为中⼼心的现代应⽤用架构 (例例如
微服务范式、云原⽣生范式) 的服务基础设施。

https://nacos.io/zh-cn/docs/what-is-nacos.html

Nacos 主要特点

服务发现和服务健康监测：

Nacos ⽀支持基于 DNS 和基于 RPC 的服务发现。服务提供者使⽤用原⽣生SDK、OpenAPI、或⼀一个独⽴立的Agent
TODO注册 Service 后，服务消费者可以使⽤用DNS TODO 或HTTP&API查找和发现服务。
Nacos 提供对服务的实时的健康检查，阻⽌止向不不健康的主机或服务实例例发送请求。Nacos ⽀支持传输层 (PING
或 TCP)和应⽤用层 (如 HTTP、MySQL、⽤用户⾃自定义）的健康检查。 对于复杂的云环境和⽹网络拓拓扑环境中（如
VPC、边缘⽹网络等）服务的健康检查，Nacos 提供了了 agent 上报模式和服务端主动检测2种健康检查模式。
Nacos 还提供了了统⼀一的健康检查仪表盘，帮助您根据健康状态管理理服务的可⽤用性及流量量。

动态配置服务：

动态配置服务可以让您以中⼼心化、外部化和动态化的⽅方式管理理所有环境的应⽤用配置和服务配置。
动态配置消除了了配置变更更时重新部署应⽤用和服务的需要，让配置管理理变得更更加⾼高效和敏敏捷。
配置中⼼心化管理理让实现⽆无状态服务变得更更简单，让服务按需弹性扩展变得更更容易易。
Nacos 提供了了⼀一个简洁易易⽤用的UI (控制台样例例 Demo) 帮助您管理理所有的服务和应⽤用的配置。Nacos 还提供包
括配置版本跟踪、⾦金金丝雀发布、⼀一键回滚配置以及客户端配置更更新状态跟踪在内的⼀一系列列开箱即⽤用的配置管理理
特性，帮助您更更安全地在⽣生产环境中管理理配置变更更和降低配置变更更带来的⻛风险。

动态 DNS 服务：

动态 DNS 服务⽀支持权重路路由，让您更更容易易地实现中间层负载均衡、更更灵活的路路由策略略、流量量控制以及数据中
⼼心内⽹网的简单DNS解析服务。动态DNS服务还能让您更更容易易地实现以 DNS 协议为基础的服务发现，以帮助您
消除耦合到⼚厂商私有服务发现 API 上的⻛风险。
Nacos 提供了了⼀一些简单的 DNS APIs TODO 帮助您管理理服务的关联域名和可⽤用的 IP:PORT 列列表。

⼩小节⼀一下：

Nacos是阿⾥里里开源的，⽀支持基于 DNS 和基于 RPC 的服务发现。
Nacos的注册中⼼心⽀支持CP也⽀支持AP，对他来说只是⼀一个命令的切换，随你玩，还⽀支持各种注册中⼼心迁
移到Nacos，反正⼀一句句话，只要你想要的他就有。
Nacos除了了服务的注册发现之外，还⽀支持动态配置服务，⼀一句句话概括就是Nacos = Spring Cloud注册
中⼼心 + Spring Cloud配置中⼼心。

Consul
Consul 是 HashiCorp 公司推出的开源⼯工具，⽤用于实现分布式系统的服务发现与配置。与其它分布式服务注册与发
现的⽅方案，Consul 的⽅方案更更“⼀一站式”，内置了了服务注册与发现框 架、分布⼀一致性协议实现、健康检查、Key/Value
存储、多数据中⼼心⽅方案，不不再需要依赖其它⼯工具（⽐比如 ZooKeeper 等）。

Consul 使⽤用起来也较为简单，使⽤用 Go 语⾔言编写，因此具有天然可移植性(⽀支持Linux、windows和Mac OS X)；安
装包仅包含⼀一个可执⾏行行⽂文件，⽅方便便部署，与 Docker 等轻量量级容器器可⽆无缝配合。

Consul 的调⽤用过程

1. 当 Producer 启动的时候，会向 Consul 发送⼀一个 post 请求，告诉 Consul ⾃自⼰己的 IP 和 Port；
2. Consul 接收到 Producer 的注册后，每隔 10s（默认）会向 Producer 发送⼀一个健康检查的请求，检验

Producer 是否健康；
3. 当 Consumer 发送 GET ⽅方式请求 /api/address 到 Producer 时，会先从 Consul 中拿到⼀一个存储服务 IP 和

Port 的临时表，从表中拿到 Producer 的 IP 和 Port 后再发送 GET ⽅方式请求 /api/address；
4. 该临时表每隔 10s 会更更新，只包含有通过了了健康检查的 Producer。

Consul 主要特征

CP模型，使⽤用 Raft 算法来保证强⼀一致性，不不保证可⽤用性；
⽀支持服务注册与发现、健康检查、KV Store功能。
⽀支持多数据中⼼心，可以避免单数据中⼼心的单点故障，⽽而其部署则需要考虑⽹网络延迟, 分⽚片等情况等。
⽀支持安全服务通信，Consul可以为服务⽣生成和分发TLS证书，以建⽴立相互的TLS连接。
⽀支持 http 和 dns 协议接⼝口；

官⽅方提供 web 管理理界⾯面。

多数据中⼼心

这⾥里里纯属了了解，学习⼀一下 Consul 的多数据中⼼心是如何实现的。

Consul⽀支持开箱即⽤用的多数据中⼼心，这意味着⽤用户不不需要担⼼心需要建⽴立额外的抽象层让业务扩展到多个区域。

在上图中有两个DataCenter，他们通过Internet互联，同时请注意为了了提⾼高通信效率，只有Server节点才加⼊入跨数
据中⼼心的通信。

在单个数据中⼼心中，Consul分为Client和Server两种节点（所有的节点也被称为Agent），Server节点保存数据，
Client负责健康检查及转发数据请求到Server；Server节点有⼀一个Leader和多个Follower，Leader节点会将数据同
步到Follower，Server的数量量推荐是3个或者5个，在Leader挂掉的时候会启动选举机制产⽣生⼀一个新的Leader。

集群内的Consul节点通过gossip协议（流⾔言协议）维护成员关系，也就是说某个节点了了解集群内现在还有哪些节
点，这些节点是Client还是Server。单个数据中⼼心的流⾔言协议同时使⽤用TCP和UDP通信，并且都使⽤用8301端⼝口。跨
数据中⼼心的流⾔言协议也同时使⽤用TCP和UDP通信，端⼝口使⽤用8302。

集群内数据的读写请求既可以直接发到Server，也可以通过Client使⽤用RPC转发到Server，请求最终会到达Leader
节点，在允许数据延时的情况下，读请求也可以在普通的Server节点完成，集群内数据的读写和复制都是通过TCP
的8300端⼝口完成。

ETCD
etcd是⼀一个Go⾔言编写的分布式、⾼高可⽤用的⼀一致性键值存储系统，⽤用于提供可靠的分布式键值存储、配置共享和服
务发现等功能。

ETCD 特点

易易使⽤用：基于HTTP+JSON的API让你⽤用curl就可以轻松使⽤用；
易易部署：使⽤用Go语⾔言编写，跨平台，部署和维护简单；
强⼀一致：使⽤用Raft算法充分保证了了分布式系统数据的强⼀一致性；
⾼高可⽤用：具有容错能⼒力力，假设集群有n个节点，当有(n-1)/2节点发送故障，依然能提供服务；
持久化：数据更更新后，会通过WAL格式数据持久化到磁盘，⽀支持Snapshot快照；
快速：每个实例例每秒⽀支持⼀一千次写操作，极限写性能可达10K QPS；
安全：可选SSL客户认证机制；
ETCD 3.0：除了了上述功能，还⽀支持gRPC通信、watch机制。

ETCD 框架

etcd主要分为四个部分：

HTTP Server：⽤用于处理理⽤用户发送的API请求以及其它etcd节点的同步与⼼心跳信息请求。
Store：⽤用于处理理etcd⽀支持的各类功能的事务，包括数据索引、节点状态变更更、监控与反馈、事件处理理与执⾏行行
等等，是etcd对⽤用户提供的⼤大多数API功能的具体实现。
Raft：Raft强⼀一致性算法的具体实现，是etcd的核⼼心。
WAL：Write Ahead Log（预写式⽇日志），是etcd的数据存储⽅方式。除了了在内存中存有所有数据的状态以及节
点的索引以外，etcd就通过WAL进⾏行行持久化存储。WAL中，所有的数据提交前都会事先记录⽇日志。Snapshot
是为了了防⽌止数据过多⽽而进⾏行行的状态快照；Entry表示存储的具体⽇日志内容。

通常，⼀一个⽤用户的请求发送过来，会经由HTTP Server转发给Store进⾏行行具体的事务处理理，如果涉及到节点的修改，
则交给Raft模块进⾏行行状态的变更更、⽇日志的记录，然后再同步给别的etcd节点以确认数据提交，最后进⾏行行数据的提
交，再次同步。

更更多关于ETCD相关知识，可以查看该⽂文章 《肝了了⼀一个⽉月的ETCD，从Raft原理理到实践》

注册中⼼心对⽐比&选型
注册中⼼心对⽐比

服务健康检查：Euraka 使⽤用时需要显式配置健康检查⽀支持；Zookeeper、Etcd 则在失去了了和服务进程的连接
情况下任务不不健康，⽽而 Consul 相对更更为详细点，⽐比如内存是否已使⽤用了了90%，⽂文件系统的空间是不不是快不不⾜足
了了。

多数据中⼼心：Consul 和 Nacos 都⽀支持，其他的产品则需要额外的开发⼯工作来实现。

KV 存储服务：除了了 Eureka，其他⼏几款都能够对外⽀支持 k-v 的存储服务，所以后⾯面会讲到这⼏几款产品追求⾼高⼀一
致性的重要原因。⽽而提供存储服务，也能够较好的转化为动态配置服务哦。

CAP 理理论的取舍：

Eureka 是典型的 AP，Nacos可以配置为 AP，作为分布式场景下的服务发现的产品较为合适，服务发现
场景的可⽤用性优先级较⾼高，⼀一致性并不不是特别致命。

https://mp.weixin.qq.com/s?__biz=Mzg3OTU5NzQ1Mw==&mid=2247485759&idx=1&sn=41957e94a2c69426befafd373fbddcc5&chksm=cf034bddf874c2cb52a7aafea5cd194e70308c7d4ad74183db8a36d3747122be1c7a31b84ee3&token=179167416&lang=zh_CN#rd

⽽而Zookeeper、Etcd、Consul则是 CP 类型牺牲可⽤用性，在服务发现场景并没太⼤大优势；
Watch的⽀支持：Zookeeper ⽀支持服务器器端推送变化，其它都通过⻓长轮询的⽅方式来实现变化的感知。

⾃自身集群的监控：除了了Zookeeper和Nacos，其它⼏几款都默认⽀支持 metrics，运维者可以搜集并报警这些度量量
信息达到监控⽬目的。

Spring Cloud的集成：⽬目前都有相对应的 boot starter，提供了了集成能⼒力力。

注册中⼼心选型
关于注册中⼼心的对⽐比和选型，其实上⾯面已经讲的⾮非常清楚了了，我给出⼀一些个⼈人理理解：

关于CP还是AP的选择：选择 AP，因为可⽤用性⾼高于⼀一致性，所以更更倾向 Eureka 和 Nacos；关于Eureka、
Nacos如何选择，哪个让我做的事少，我就选择哪个，显然 Nacos 帮我们做了了更更多的事。
技术体系：Etcd 和 Consul 都是Go开发的，Eureka、Nacos、Zookeeper 和 Zookeeper 都是Java开发的，
可能项⽬目属于不不同的技术栈，会偏向选择对应的技术体系。
⾼高可⽤用：这⼏几款开源产品都已经考虑如何搭建⾼高可⽤用集群，有些差别⽽而已；
产品的活跃度：这⼏几款开源产品整体上都⽐比较活跃。

微信搜 楼仔 或扫描下⽅方⼆二维码关注楼仔的原创公众号，回复 110 即可免费领取。

""

 第 4 章：配置中⼼心
讲解4种常⽤用的配置中⼼心，对⽐比其流程和原理理，⽆无论是⾯面试还是技术选型，都⾮非常有帮助。

⼤大家好，我是楼仔！这是我写的第5篇关于“技术选型”相关的⽂文章，前4篇分别为消息队列列、注册中⼼心、微服务⽹网
关、RPC框架，这篇配置中⼼心应该是该系列列的最后⼀一篇，前后跨度近⼀一年年，应该是我跨度时间最⻓长的⼀一个系列列了了。

学完注册中⼼心，再看配置中⼼心这块，感觉简单很多，因为很多知识原理理是相辅相成的，下⾯面是⽂文章⽬目录：

配置中⼼心基础
为什什么要⽤用配置中⼼心？

配置实时⽣生效：传统的静态配置⽅方式要想修改某个配置只能修改之后重新发布应⽤用，要实现动态性，可以选择
使⽤用数据库，通过定时轮询访问数据库来感知配置的变化。轮询频率低感知配置变化的延时就⻓长，轮询频率
⾼高，感知配置变化的延时就短，但⽐比较损耗性能，需要在实时性和性能之间做折中。配置中⼼心专⻔门针对这个业
务场景，兼顾实时性和⼀一致性来管理理动态配置；
配置管理理流程：配置的权限管控、灰度发布、版本管理理、格式检验和安全配置等⼀一系列列的配置管理理相关的特
性，也是配置中⼼心不不可获取的⼀一部分；
分布式场景：随着采⽤用分布式的开发模式，项⽬目之间的相互引⽤用随着服务的不不断增多，相互之间的调⽤用复杂度
成指数升⾼高，每次投产或者上线新的项⽬目时苦不不堪⾔言，需要引⽤用配置中⼼心治理理。

配置中⼼心⽀支持功能
灰度发布：配置的灰度发布是配置中⼼心⽐比较重要的功能，当配置的变更更影响⽐比较⼤大的时候，需要先在部分应⽤用
实例例中验证配置的变更更是否符合预期，然后再推送到所有应⽤用实例例。
权限管理理：配置的变更更和代码变更更都是对应⽤用运⾏行行逻辑的改变，重要的配置变更更常常会带来核弹的效果，对于
配置变更更的权限管控和审计能⼒力力同样是配置中⼼心重要的功能。
版本管理理&回滚：当配置变更更不不符合预期的时候，需要根据配置的发布版本进⾏行行回滚。
配置格式校验：应⽤用的配置数据存储在配置中⼼心⼀一般都会以⼀一种配置格式存储，⽐比如Properties、Json、
Yaml等，如果配置格式错误，会导致客户端解析配置失败引起⽣生产故障，配置中⼼心对配置的格式校验能够有
效防⽌止⼈人为错误操作的发⽣生，是配置中⼼心核⼼心功能中的刚需。
监听查询：当排查问题或者进⾏行行统计的时候，需要知道⼀一个配置被哪些应⽤用实例例使⽤用到，以及⼀一个实例例使⽤用到
了了哪些配置。

多环境：在实际⽣生产中，配置中⼼心常常需要涉及多环境或者多集群，业务在开发的时候可以将开发环境和⽣生产
环境分开，或者根据不不同的业务线存在多个⽣生产环境。如果各个环境之间的相互影响⽐比较⼩小（开发环境影响到
⽣生产环境稳定性），配置中⼼心可以通过逻辑隔离的⽅方式⽀支持多环境。
多集群：当对稳定性要求⽐比较⾼高，不不允许各个环境相互影响的时候，需要将多个环境通过多集群的⽅方式进⾏行行物
理理隔离。

常⽤用配置中⼼心
写在前⾯面
如果只要能作为分布式存储的服务都作为配置中⼼心，那选择途径就太多了了， ⽐比如Zookeeper和ETCD，所以需要提
前说明⼀一下。

在⽂文章 《注册中⼼心原理理和选型：Zookeeper、Eureka、Nacos、Consul和ETCD》 已经提到过，Zookeeper和
ETCD可以存储数据，作为配置中⼼心使⽤用，⽐比如我司的微服务⽹网关，将配置发布到ETCD，供⽹网关各模块调⽤用，具体
可以参考⽂文章 《微服务⽹网关：从对⽐比到选型，由理理论到实践》。

但是我们选择配置中⼼心时，为什什么不不优先考虑Zookeeper和ETCD，因为以下两点原因：

没有⽅方便便的UI管理理⼯工具，且缺乏权限、审核、灰度发布、审核机制等；
最重要的是，Zookeeper和ETCD通常定义为服务注册中⼼心，统⼀一配置中⼼心的事情交给专业的⼯工具去解决。

⼤大⽩白话总结⼀一下，就是专业的⼈人⼲干专业的事，他两很多功能没法⽀支持。可能你会问，那你们公司为啥⽤用ETCD作为
配置中⼼心呢？因为我们⾃自⼰己写了了个后台，⽀支持权限、灰度发布、版本控制等功能。

所以给⼤大家介绍的配置中⼼心，主要是以下4种，分别为 Disconf、Spring Cloud Config、Apollo 和 Nacos。

Apollo
GitHub：https://github.com/apolloconfig/apollo

Apollo（阿波罗）是携程框架部⻔门研发的开源配置管理理中⼼心，具备规范的权限、流程治理理等特性。

Apollo框架

Apollo的框架有点复杂，如果不不考虑分布式微服务架构中的服务发现问题，Apollo的最简架构如下图所示：

这⾥里里⾯面包含Apollo框架的4个核⼼心模块：

https://mp.weixin.qq.com/s?__biz=Mzg3OTU5NzQ1Mw==&mid=2247486746&idx=1&sn=90bc94797d539b5724b55c9dda075de3&chksm=cf034ff8f874c6ee8d03b915a164e1755103f13270d95e8c32b3e325b990bccdd397929a9faf#rd
https://github.com/apolloconfig/apollo

ConfigService：提供配置获取接⼝口，提供配置推送接⼝口，服务于Apollo客户端。
AdminService：提供配置管理理接⼝口，提供配置修改发布接⼝口，服务于管理理界⾯面Portal。
Client：为应⽤用获取配置，⽀支持实时更更新，通过MetaServer获取ConfigService的服务列列表，使⽤用客户端软负
载SLB⽅方式调⽤用ConfigService。
Portal：配置管理理界⾯面，通过MetaServer获取AdminService的服务列列表，使⽤用客户端软负载SLB⽅方式调⽤用
AdminService。

调⽤用流程：

1. ConfigService是⼀一个独⽴立的微服务，服务于Client进⾏行行配置获取。
2. Client和ConfigService保持⻓长连接，通过⼀一种拖拉结合(push & pull)的模式，实现配置实时更更新的同时，保证
配置更更新不不丢失。

3. AdminService是⼀一个独⽴立的微服务，服务于Portal进⾏行行配置管理理。Portal通过调⽤用AdminService进⾏行行配置管
理理和发布。

4. ConfigService和AdminService共享ConfigDB，ConfigDB中存放项⽬目在某个环境的配置信息。
ConfigService/AdminService/ConfigDB三者在每个环境(DEV/FAT/UAT/PRO)中都要部署⼀一份。

5. Protal有⼀一个独⽴立的PortalDB，存放⽤用户权限、项⽬目和配置的元数据信息。Protal只需部署⼀一份，它可以管理理
多套环境。

加上分布式微服务架构中的服务发现，真正的Apollo框架如下：

如果你了了解RPC和注册中⼼心，这幅图其实不不难理理解：

Eureka⽤用于注册中⼼心，AP原则，所以Config Service和Admin Service的机器器列列表注册到Eureka中；
Client和Portal需要获取注册中⼼心的机器器列列表，但是由于Eureka仅⽀支持Java客户端，所以搞个Meta Server，
将Eureka的服务发现接⼝口以HTTP接⼝口的形式暴暴露露出来；
由于Meta Server是集群部署，需要搞个NginxLB去找Meta Server机器器。

所以搞NginxLB + Meta Server，其实就是为了了找Eureka中的机器器列列表配置，Client和Portal拿到这些机器器配
置，就可以发起调⽤用了了，最后就回到我们前⾯面的简图，是不不是So Easy!

我讲的已经够清楚了了，如果还是不不懂，就看这篇⽂文章 《微服务架构~携程Apollo配置中⼼心架构剖析》

Apollo特性

统⼀一管理理不不同环境、不不同集群的配置：

Apollo提供了了⼀一个统⼀一界⾯面集中式管理理不不同环境（environment）、不不同集群（cluster）、不不同命名空
间（namespace）的配置。
同⼀一份代码部署在不不同的集群，可以有不不同的配置，⽐比如zk的地址等。
通过命名空间（namespace）可以很⽅方便便的⽀支持多个不不同应⽤用共享同⼀一份配置，同时还允许应⽤用对共享
的配置进⾏行行覆盖。

配置修改实时⽣生效（热发布）：⽤用户在Apollo修改完配置并发布后，客户端能实时（1秒）接收到最新的配
置，并通知到应⽤用程序。

版本发布管理理 + 灰度发布

权限管理理、发布审核、操作审计：应⽤用和配置的管理理都有完善的权限管理理机制，对配置的管理理还分为了了编辑和
发布两个环节，从⽽而减少⼈人为的错误。所有的操作都有审计⽇日志，可以⽅方便便的追踪问题。

客户端配置信息监控： 可以在界⾯面上⽅方便便地看到配置在被哪些实例例使⽤用。

提供Java和.Net原⽣生客户端：

提供了了Java和.Net的原⽣生客户端，⽅方便便应⽤用集成。
⽀支持Spring Placeholder、Annotation和Spring Boot的ConfigurationProperties，⽅方便便应⽤用使⽤用。
提供了了Http接⼝口，⾮非Java和.Net应⽤用也可以⽅方便便的使⽤用。

提供开放平台API：

Apollo⾃自身提供了了⽐比较完善的统⼀一配置管理理界⾯面，⽀支持多环境、多数据中⼼心配置管理理、权限、流程治理理
等特性。
Apollo出于通⽤用性考虑，对配置的修改不不会做过多限制，只要符合基本的格式就能够保存。
对于有些使⽤用⽅方，它们的配置可能会有⽐比较复杂的格式，⽽而且对输⼊入的值也需要进⾏行行校验后⽅方可保存，
如检查数据库、⽤用户名和密码是否匹配。对于这类应⽤用，Apollo⽀支持应⽤用⽅方通过开放接⼝口在Apollo进⾏行行
配置的修改和发布，并且具备完善的授权和权限控制。

最后通过后台界⾯面，直观感受⼀一下：

https://mp.weixin.qq.com/s/-hUaQPzfsl9Lm3IqQW3VDQ

Disconf
GitHub：https://github.com/knightliao/disconf

2014年年7⽉月百度开源的配置管理理中⼼心，同样具备配置的管理理能⼒力力，不不过⽬目前已经不不维护，最近的⼀一次提交是两年年前
了了。

Disconf框架

Disconf是⼀一套完整的基于zookeeper的分布式配置统⼀一解决⽅方案，它通过disconf-web管理理配置信息，然后将配置
的key在Zookeeper上建⽴立节点，disconf-client启动后拉取⾃自身需要的配置信息并监听Zookeeper的节点。在web
上更更新配置信息会触发zk节点状态的变动，client可以实时感知到变化，然后从web上拉取最新配置信息。

https://github.com/knightliao/disconf

这⾥里里想吐槽⼀一下，Disconf官⽅方⽂文档的图画真的丑啊，关键是很不不清晰，就不不能好好维护⼀一下么？

Disconf特点

⽀支持配置（配置项+配置⽂文件）的分布式化管理理：

配置发布统⼀一化
配置发布、更更新统⼀一化（云端存储、发布）：配置存储在云端系统，⽤用户统⼀一在平台上进⾏行行发布、更更新
配置。
配置更更新⾃自动化：⽤用户在平台更更新配置，使⽤用该配置的系统会⾃自动发现该情况，并应⽤用新配置。特殊
地，如果⽤用户为此配置定义了了回调函数类，则此函数类会被⾃自动调⽤用。

配置异构系统管理理：

异构包部署统⼀一化：这⾥里里的异构系统是指⼀一个系统部署多个实例例时，由于配置不不同，从⽽而需要多个部署
包（jar或war）的情况（下同）。使⽤用Disconf后，异构系统的部署只需要⼀一个部署包，不不同实例例的配置
会⾃自动分配。特别地，在业界⼤大量量使⽤用部署虚拟化（如JPAAS系统，SAE，BAE）的情况下，同⼀一个系统
使⽤用同⼀一个部署包的情景会越来越多，Disconf可以很⾃自然地与他天然契合。 异构主备⾃自动切换：如果
⼀一个异构系统存在主备机，主机发⽣生挂机时，备机可以⾃自动获取主机配置从⽽而变成主机。
异构主备机Context共享⼯工具：异构系统下，主备机切换时可能需要共享Context。可以使⽤用Context共
享⼯工具来共享主备的Context。

注解式编程，极简的使⽤用⽅方式：我们追求的是极简的、⽤用户编程体验良好的编程⽅方式。通过简单的标注+极简
单的代码撰写，即可完成复杂的配置分布式化。

需要Spring编程环境。

可以托管任何类型的配置⽂文件。

提供界⾯面良好Web管理理功能，可以⾮非常⽅方便便的查看配置被哪些实例例使⽤用了了。

Spring Cloud Config
GitHub：https://github.com/spring-cloud/spring-cloud-config

https://github.com/spring-cloud/spring-cloud-config

2014年年9⽉月开源，Spring Cloud ⽣生态组件，可以和Spring Cloud体系⽆无缝整合。

Spring Cloud Config ⼯工作原理理

应⽤用架构图：

⼯工作流程：

在部署环境之前，需要将相应的配置信息推送到配置仓库；
配置服务器器启动之后，将配置信息拉取并同步⾄至本地仓库；
配置服务器器对外提供REST接⼝口，其他所有的配置客户端启动时根据spring.cloud.config配置的
{application}/{profile}/{label}信息去配置服务器器拉取相应的配置。配置仓库⽀支持多样的源，如Git、SVN、
jdbc数据库和本地⽂文件系统等。
其他应⽤用启动，从配置服务器器拉取配置。（配置中⼼心还⽀支持动态刷新配置信息，不不需要重启应⽤用，通过
spring-cloud-config-monitor监控模块，其中包含了了/monitor刷新API，webhook调⽤用该端点API，达到动态
刷新的效果。）

Spring Cloud Config 特点

提供配置的服务端和客户端⽀支持；
集中式管理理分布式环境下的应⽤用配置；
基于 Spring 环境，可以⽆无缝与Spring应⽤用集成；
可⽤用于任何语⾔言开发的程序，为其管理理与提供配置信息；
默认实现基于git仓库，可以进⾏行行版本管理理。

Nacos
Nacos官⽹网：https://nacos.io/zh-cn/docs/what-is-nacos.html

https://nacos.io/zh-cn/docs/what-is-nacos.html

Nacos 致⼒力力于帮助您发现、配置和管理理微服务。Nacos 提供了了⼀一组简单易易⽤用的特性集，帮助您快速实现动态服务发
现、服务配置、服务元数据及流量量管理理。

Nacos 帮助您更更敏敏捷和容易易地构建、交付和管理理微服务平台。 Nacos 是构建以“服务”为中⼼心的现代应⽤用架构 (例例如
微服务范式、云原⽣生范式) 的服务基础设施。

Nacos 主要特点

服务发现和服务健康监测：

Nacos ⽀支持基于 DNS 和基于 RPC 的服务发现。服务提供者使⽤用原⽣生SDK、OpenAPI、或⼀一个独⽴立的Agent
TODO注册 Service 后，服务消费者可以使⽤用DNS TODO 或HTTP&API查找和发现服务。
Nacos 提供对服务的实时的健康检查，阻⽌止向不不健康的主机或服务实例例发送请求。Nacos ⽀支持传输层 (PING
或 TCP)和应⽤用层 (如 HTTP、MySQL、⽤用户⾃自定义）的健康检查。 对于复杂的云环境和⽹网络拓拓扑环境中（如
VPC、边缘⽹网络等）服务的健康检查，Nacos 提供了了 agent 上报模式和服务端主动检测2种健康检查模式。
Nacos 还提供了了统⼀一的健康检查仪表盘，帮助您根据健康状态管理理服务的可⽤用性及流量量。

动态配置服务：

动态配置服务可以让您以中⼼心化、外部化和动态化的⽅方式管理理所有环境的应⽤用配置和服务配置。
动态配置消除了了配置变更更时重新部署应⽤用和服务的需要，让配置管理理变得更更加⾼高效和敏敏捷。
配置中⼼心化管理理让实现⽆无状态服务变得更更简单，让服务按需弹性扩展变得更更容易易。
Nacos 提供了了⼀一个简洁易易⽤用的UI (控制台样例例 Demo) 帮助您管理理所有的服务和应⽤用的配置。Nacos 还提供包
括配置版本跟踪、⾦金金丝雀发布、⼀一键回滚配置以及客户端配置更更新状态跟踪在内的⼀一系列列开箱即⽤用的配置管理理
特性，帮助您更更安全地在⽣生产环境中管理理配置变更更和降低配置变更更带来的⻛风险。

动态 DNS 服务：

动态 DNS 服务⽀支持权重路路由，让您更更容易易地实现中间层负载均衡、更更灵活的路路由策略略、流量量控制以及数据中
⼼心内⽹网的简单DNS解析服务。动态DNS服务还能让您更更容易易地实现以 DNS 协议为基础的服务发现，以帮助您
消除耦合到⼚厂商私有服务发现 API 上的⻛风险。
Nacos 提供了了⼀一些简单的 DNS APIs TODO 帮助您管理理服务的关联域名和可⽤用的 IP:PORT 列列表。

⼩小节⼀一下：

Nacos是阿⾥里里开源的，⽀支持基于 DNS 和基于 RPC 的服务发现。
Nacos的注册中⼼心⽀支持CP也⽀支持AP，对他来说只是⼀一个命令的切换，随你玩，还⽀支持各种注册中⼼心迁
移到Nacos，反正⼀一句句话，只要你想要的他就有。
Nacos除了了服务的注册发现之外，还⽀支持动态配置服务，⼀一句句话概括就是Nacos = Spring Cloud注册
中⼼心 + Spring Cloud配置中⼼心。

配置中⼼心对⽐比和选型
由于 Disconf 不不再维护，下⾯面对⽐比⼀一下 Spring Cloud Config、Apollo 和 Nacos。

配置中⼼心对⽐比

灰度发布：

Spring Cloud Config⽀支持通过/bus/refresh端点的destination参数来指定要更更新配置的机器器，不不过整个
流程不不够⾃自动化和体系化。
Apollo可以直接在控制台上点灰度发布指定发布机器器的IP，接着再全量量发布，做得⽐比较体系化。Nacos
⽬目前发布到0.9版本，还不不⽀支持灰度发布。

权限管理理：

Spring Cloud Config依赖Git的权限管理理能⼒力力，开源的GitHub权限控制可以分为Admin、Write和Read
权限，权限管理理⽐比较完善。
Apollo通过项⽬目的维度来对配置进⾏行行权限管理理，⼀一个项⽬目的owner可以授权给其他⽤用户配置的修改发布
权限。
Nacos⽬目前看还不不具备权限管理理能⼒力力。

版本管理理&回滚：

Spring Cloud Config、Apollo和Nacos都具备配置的版本管理理和回滚能⼒力力，可以在控制台上查看配置的
变更更情况或进⾏行行回滚操作。
Spring Cloud Config通过Git来做版本管理理，更更⽅方便便些。

配置格式校验：

Spring Cloud Config使⽤用Git，⽬目前还不不⽀支持格式检验，格式的正确性依赖研发⼈人员⾃自⼰己。
Apollo和Nacos都会对配置格式的正确性进⾏行行检验，可以有效防⽌止⼈人为错误。

监听查询：

Spring Cloud Config使⽤用Spring Cloud Bus推送配置变更更，Spring Cloud Bus兼容 RabbitMQ、Kafka
等，⽀支持查询订阅Topic和Consumer的订阅关系。
Apollo可以通过灰度实例例列列表查看监听配置的实例例列列表，但实例例监听的配置(Apollo称为命名空间)⽬目前还
没有展示出来。
Nacos可以查看监听配置的实例例，也可以查看实例例监听的配置情况。
基本上，这三个产品都具备监听查询能⼒力力，在我们⾃自⼰己的使⽤用过程中，Nacos使⽤用起来相对简单，易易⽤用
性相对更更好些。

多环境：

Spring Cloud Config⽀支持Profile的⽅方式隔离多个环境，通过在Git上配置多个Profile的配置⽂文件，客户端
启动时指定Profile就可以访问对应的配置⽂文件。
Apollo也⽀支持多环境，在控制台创建配置的时候就要指定配置所在的环境，客户端在启动的时候指定
JVM参数ENV来访问对应环境的配置⽂文件。
Nacos通过命名空间来⽀支持多环境，每个命名空间的配置相互隔离，客户端指定想要访问的命名空间就
可以达到逻辑隔离的作⽤用。

多集群：

Spring Cloud Config可以通过搭建多套Config Server，Git使⽤用同⼀一个Git的多个仓库，来实现物理理隔
离。
Apollo可以搭建多套集群，Apollo的控制台和数据更更新推送服务分开部署，控制台部署⼀一套就可以管控
多个集群。
Nacos控制台和后端配置服务是部署在⼀一起的，可以通过不不同的域名切换来⽀支持多集群。

配置实时推送：

Nacos和Apollo配置推送都是基于HTTP⻓长轮询，客户端和配置中⼼心建⽴立HTTP⻓长联接，当配置变更更的的
时候，配置中⼼心把配置推送到客户端。
Spring Cloud Config原⽣生不不⽀支持配置的实时推送，需要依赖Git的WebHook、Spring Cloud Bus和客户
端/bus/refresh端点。
Nacos和Apollo在配置实时推送链路路上是⽐比较简单⾼高效的，Spring Cloud Config的配置推送引⼊入Spring
Cloud Bus，链路路较⻓长，⽐比较复杂。

多语⾔言⽀支持：

Spring Cloud服务于Java⽣生态，⼀一开始只是针对Java微服务应⽤用，对于⾮非Java应⽤用的微服务调⽤用，可以使
⽤用Sidecar提供了了HTTP API，但动态配置⽅方⾯面还不不能很好的⽀支持。
Apollo已经⽀支持了了多种语⾔言，并且提供了了open API。其他不不⽀支持的语⾔言，Apollo的接⼊入成本相对较低。
Nacos⽀支持主流的语⾔言，例例如Java、Go、Python、Nodejs、PHP等，也提供了了open API。

性能对⽐比：

Nacos的读写性能最⾼高，Apollo次之，Spring Cloud Config的依赖Git场景不不适合开放的⼤大规模⾃自动化运
维API。

配置中⼼心选型

配置中⼼心选型
总的来说：

Apollo和Nacos相对于Spring Cloud Config的⽣生态⽀支持更更⼴广，在配置管理理流程上做的更更好。
Apollo相对于Nacos在配置管理理做的更更加全⾯面，不不过使⽤用起来也要麻烦⼀一些。
Apollo容器器化较困难，Nacos有官⽹网的镜像可以直接部署，总体来说，Nacos⽐比Apollo更更符合KISS原则。
Nacos使⽤用起来相对⽐比较简洁，在对性能要求⽐比较⾼高的⼤大规模场景更更适合。

此外，Nacos除了了提供配置中⼼心的功能，还提供了了动态服务发现、服务共享与管理理的功能，降低了了服务化改造过程
中的难度。

但对于⼀一个开源项⽬目的选型，除了了以上这⼏几个⽅方⾯面，项⽬目上的⼈人⼒力力投⼊入（迭代进度、⽂文档的完整性）、社区的活跃
度（issue的数量量和解决速度、Contributor数量量、社群的交流频次等）、社区的规范程度（免责说明、安全性说明
等），这些可能才是⽤用户更更关注的内容。

更更多对⽐比选型内容，请参考⽂文章 《阿⾥里里⾯面试这样问：Nacos、Apollo、Config配置中⼼心如何选型？这10个维度告诉
你！》，⽂文中很多知识点也是来⾃自该⽂文章。

微信搜 楼仔 或扫描下⽅方⼆二维码关注楼仔的原创公众号，回复 110 即可免费领取。

""

 第 5 章：监控系统
本篇⽂文章为转载⽂文章，⽀支持原创！

原作者：骆俊武

原⽂文链接：监控系统选型，这篇不不可不不读！

之前，我写过⼏几篇有关「线上问题排查」的⽂文章，⽂文中附带了了⼀一些监控图，有些读者对此很感兴趣，问我监控系统
选型上有没有好的建议？

⽬目前我所经历的⼏几家公司，监控系统都是⾃自研的。其实业界有很多优秀的开源产品可供选择，能满⾜足绝⼤大部分的监
控需求，如果能从中选择⼀一款满⾜足企业当下的诉求，显然最省时省⼒力力。

这篇⽂文章，我将对监控体系的基础知识、原理理和架构做⼀一次系统性整理理，同时还会对⼏几款最常⽤用的开源监控产品做
下介绍，以便便⼤大家选型时参考。内容包括3部分：

https://mp.weixin.qq.com/s/S_8HQYHOG624Vzeu94CFSA
https://mp.weixin.qq.com/s?__biz=MzU2MTM4NDAwMw==&mid=2247484772&idx=1&sn=660f4c4508940960035dac347c5718e5&chksm=fc78da48cb0f535eb047dd7706a4d6e3cbc1d967e8e2140addc12335e7a3a5dbc7d8813218dc&token=319143044&lang=zh_CN#rd

必知必会的监控基础知识

主流监控系统介绍

监控系统的选型建议

01 必知必会的监控基础知识
监控系统俗称「第三只眼」，⼏几乎是我们每天都会打交道的系统，下⾯面 4 项基础知识我认为是必须要了了解的。

1. 监控系统的7⼤大作⽤用

正所谓「⽆无监控，不不运维」，监控系统的地位不不⾔言⽽而喻。不不管你是监控系统的开发者还是使⽤用者，⾸首先肯定要清
楚：监控系统的⽬目标是什什么？它能发挥什什么作⽤用？

实时采集监控数据：包括硬件、操作系统、中间件、应⽤用程序等各个维度的数据。
实时反馈监控状态：通过对采集的数据进⾏行行多维度统计和可视化展示，能实时体现监控对象的状态是正常还是
异常。
预知故障和告警：能够提前预知故障⻛风险，并及时发出告警信息。
辅助定位故障：提供故障发⽣生时的各项指标数据，辅助故障分析和定位。
辅助性能调优：为性能调优提供数据⽀支持，⽐比如慢SQL，接⼝口响应时间等。
辅助容量量规划：为服务器器、中间件以及应⽤用集群的容量量规划提供数据⽀支撑。
辅助⾃自动化运维：为⾃自动扩容或者根据配置的SLA进⾏行行服务降级等智能运维提供数据⽀支撑。

2. 使⽤用监控系统的正确姿势

“

出任何线上事故，先不不说其他地⽅方有问题，监控部分⼀一定是有问题的。

听着很甩锅的⼀一句句话，仔细思考好像有⼀一定道理理。我们在事故复盘时，通常会思考这3个和监控有关的问题：有没
有做监控？监控是否及时？监控信息是否有助于快速定位问题？

可⻅见光有⼀一套好的监控系统还不不够，还必须知道「 如何 ⽤用好它」。⼀一个成熟的研发团队通常会定⼀一个监控规范，
⽤用来统⼀一监控系统的使⽤用⽅方法。

了了解监控对象的⼯工作原理理：要做到对监控对象有基本的了了解，清楚它的⼯工作原理理。⽐比如想对JVM进⾏行行监控，你
必须清楚JVM的堆内存结构和垃圾回收机制。
确定监控对象的指标：清楚使⽤用哪些指标来刻画监控对象的状态？⽐比如想对某个接⼝口进⾏行行监控，可以采⽤用请求
量量、耗时、超时量量、异常量量等指标来衡量量。
定义合理理的报警阈值和等级：达到什什么阈值需要告警？对应的故障等级是多少？不不需要处理理的告警不不是好告
警，可⻅见定义合理理的阈值有多重要，否则只会降低运维效率或者让监控系统失去它的作⽤用。
建⽴立完善的故障处理理流程：收到故障告警后，⼀一定要有相应的处理理流程和oncall机制，让故障及时被跟进处
理理。

3. 监控的对象和指标都有哪些？

监控已然成为了了整个产品⽣生命周期⾮非常重要的⼀一环，运维关注硬件和基础监控，研发关注各类中间件和应⽤用层的监
控，产品关注核⼼心业务指标的监控。可⻅见，监控的对象已经越来越⽴立体化。

这⾥里里，我对常⽤用的监控对象以及监控指标做了了分类整理理，供⼤大家参考。

3.1 硬件监控

包括：电源状态、CPU状态、机器器温度、⻛风扇状态、物理理磁盘、raid状态、内存状态、⽹网卡状态

3.2 服务器器基础监控

CPU：单个CPU以及整体的使⽤用情况
内存：已⽤用内存、可⽤用内存
磁盘：磁盘使⽤用率、磁盘读写的吞吐量量
⽹网络：出⼝口流量量、⼊入⼝口流量量、TCP连接状态

3.3 数据库监控

包括：数据库连接数、QPS、TPS、并⾏行行处理理的会话数、缓存命中率、主从延时、锁状态、慢查询

3.4 中间件监控

Nginx：活跃连接数、等待连接数、丢弃连接数、请求量量、耗时、5XX错误率
Tomcat：最⼤大线程数、当前线程数、请求量量、耗时、错误量量、堆内存使⽤用情况、GC次数和耗时
缓存 ：成功连接数、阻塞连接数、已使⽤用内存、内存碎⽚片率、请求量量、耗时、缓存命中率
消息队列列：连接数、队列列数、⽣生产速率、消费速率、消息堆积量量

3.5 应⽤用监控

HTTP接⼝口：URL存活、请求量量、耗时、异常量量
RPC接⼝口：请求量量、耗时、超时量量、拒绝量量
JVM ：GC次数、GC耗时、各个内存区域的⼤大⼩小、当前线程数、死锁线程数
线程池：活跃线程数、任务队列列⼤大⼩小、任务执⾏行行耗时、拒绝任务数
连接池：总连接数、活跃连接数
⽇日志监控：访问⽇日志、错误⽇日志
业务指标：视业务来定，⽐比如PV、订单量量等

4. 监控系统的基本流程

⽆无论是开源的监控系统还是⾃自研的监控系统，监控的整个流程⼤大同⼩小异，⼀一般都包括以下模块：

数据采集：采集的⽅方式有很多种，包括⽇日志埋点进⾏行行采集（通过Logstash、Filebeat等进⾏行行上报和解析），
JMX标准接⼝口输出监控指标，被监控对象提供REST API进⾏行行数据采集（如Hadoop、ES），系统命令⾏行行，统⼀一
的SDK进⾏行行侵⼊入式的埋点和上报等。

数据传输：将采集的数据以TCP、UDP或者HTTP协议的形式上报给监控系统，有主动Push模式，也有被动
Pull模式。

数据存储：有使⽤用MySQL、Oracle等RDBMS存储的，也有使⽤用时序数据库RRDTool、OpentTSDB、
InfluxDB存储的，还有使⽤用HBase存储的。

数据展示：数据指标的图形化展示。

监控告警：灵活的告警设置，以及⽀支持邮件、短信、IM等多种通知通道。

02 主流监控系统介绍
下⾯面再来认识下主流的开源监控系统，由于篇幅有限，我挑选了了3款使⽤用最⼴广泛的监控系统：Zabbix、Open-
Falcon、Prometheus，会对它们的架构进⾏行行介绍，同时总结下各⾃自的优劣势。

1. Zabbix（⽼老老牌监控的优秀代表）

Zabbix 1998年年诞⽣生，核⼼心组件采⽤用C语⾔言开发，Web端采⽤用PHP开发。它属于⽼老老牌监控系统中的优秀代表，监控
功能很全⾯面，使⽤用也很⼴广泛，差不不多有70%左右的互联⽹网公司都曾使⽤用过 Zabbix 作为监控解决⽅方案。

先来了了解下Zabbix的架构设计：

Zabbix架构图

Zabbix Server：核⼼心组件，C语⾔言编写，负责接收Agent、Proxy发送的监控数据，也⽀支持JMX、SNMP等多
种协议直接采集数据。同时，它还负责数据的汇总存储以及告警触发等。
Zabbix Proxy：可选组件，对于被监控机器器较多的情况下，可使⽤用Proxy进⾏行行分布式监控，它能代理理Server
收集部分监控数据，以减轻Server的压⼒力力。
Zabbix Agentd：部署在被监控主机上，⽤用于采集本机的数据并发送给Proxy或者Server，它的插件机制⽀支持
⽤用户⾃自定义数据采集脚本。Agent可在Server端⼿手动配置，也可以通过⾃自动发现机制被识别。数据收集⽅方式同
时⽀支持主动Push和被动Pull 两种模式。
Database：⽤用于存储配置信息以及采集到的数据，⽀支持MySQL、Oracle等关系型数据库。同时，最新版本的
Zabbix已经开始⽀支持时序数据库，不不过成熟度还不不⾼高。
Web Server：Zabbix的GUI组件，PHP编写，提供监控数据的展现和告警配置。

下⾯面是 Zabbix 的优势：

产品成熟 ：由于诞⽣生时间⻓长且使⽤用⼴广泛，拥有丰富的⽂文档资料料以及各种开源的数据采集插件，能覆盖绝⼤大部
分监控场景。
采集⽅方式丰富：⽀支持Agent、SNMP、JMX、SSH等多种采集⽅方式，以及主动和被动的数据传输⽅方式。
较强的扩展性：⽀支持Proxy分布式监控，有agent⾃自动发现功能，插件式架构⽀支持⽤用户⾃自定义数据采集脚本。
配置管理理⽅方便便：能通过Web界⾯面进⾏行行监控和告警配置，操作⽅方便便，上⼿手简单。

下⾯面是 Zabbix 的劣势：

性能瓶颈 ：机器器量量或者业务量量⼤大了了后，关系型数据库的写⼊入⼀一定是瓶颈，官⽅方给出的单机上限是5000台，个
⼈人感觉达不不到，尤其现在应⽤用层的指标越来越多。虽然最新版已经开始⽀支持时序数据库，不不过成熟度还不不⾼高。

应⽤用层监控⽀支持有限：如果想对应⽤用程序做侵⼊入式的埋点和采集（⽐比如监控线程池或者接⼝口性能），zabbix
没有提供对应的sdk，通过插件式的脚本也能曲线实现此功能，个⼈人感觉zabbix就不不是做这个事的。

数据模型不不强⼤大：不不⽀支持tag，因此没法按多维度进⾏行行聚合统计和告警配置，使⽤用起来不不灵活。

⽅方便便⼆二次开发难度⼤大：Zabbix采⽤用的是C语⾔言，⼆二次开发往往需要熟悉它的数据表结构，基于它提供的API更更
多只能做展示层的定制。

2. Open-Falcon（⼩小⽶米出品，国内流⾏行行）

Open-falcon 是⼩小⽶米2015年年开源的企业级监控⼯工具，采⽤用Go和Python语⾔言开发，这是⼀一款灵活、⾼高性能且易易扩展
的新⼀一代监控⽅方案，⽬目前⼩小⽶米、美团、滴滴等超过200家公司在使⽤用它。

⼩小⽶米初期也使⽤用的Zabbix进⾏行行监控，但是机器器量量和业务量量上来后，Zabbix就有些⼒力力不不从⼼心了了。因此，后来⾃自主研发
了了Open-Falcon，在架构设计上吸取了了Zabbix的经验，同时很好地解决了了Zabbix的诸多痛点。

先来了了解下Open-Falcon的架构设计：

Open-Falcon架构图，来⾃自⽹网络

Falcon-agent：数据采集器器和收集器器，Go开发，部署在被监控的机器器上，⽀支持3种数据采集⽅方式。⾸首先它能
⾃自动采集单机200多个基础监控指标，⽆无需做任何配置；同时⽀支持⽤用户⾃自定义的plugin获取监控数据；此外，
⽤用户可通过http接⼝口，⾃自主push数据到本机的proxy-gateway，由gateway转发到server.
Transfer：数据分发组件，接收客户端发送的数据，分别发送给数据存储组件Graph和告警判定组件Judge，
Graph和Judge均采⽤用⼀一致性hash做数据分⽚片，以提⾼高横向扩展能⼒力力。同时Transfer还⽀支持将数据分发到
OpenTSDB，⽤用于历史归档。
Graph：数据存储组件，底层使⽤用RRDTool（时序数据库）做单个指标的存储，并通过缓存、分批写⼊入磁盘
等⽅方式进⾏行行了了优化。据说⼀一个graph实例例能够处理理8W+每秒的写⼊入速率。
Judge和Alarm：告警组件，Judge对Transfer组件上报的数据进⾏行行实时计算，判断是否要产⽣生告警事件，
Alarm组件对告警事件进⾏行行收敛处理理后，将告警消息推送给各个消息通道。
API：⾯面向终端⽤用户，收到查询请求后会去Graph中查询指标数据，汇总结果后统⼀一返回给⽤用户，屏蔽了了存储
集群的分⽚片细节。

下⾯面是Open-Falcon的优势：

⾃自动采集能⼒力力 ：Falcon-agent 能⾃自动采集服务器器的200多个基础指标（⽐比如CPU、内存等），⽆无需在server
上做任何配置，这⼀一点可以秒杀Zabbix.
强⼤大的存储能⼒力力：底层采⽤用RRDTool，并且通过⼀一致性hash进⾏行行数据分⽚片，构建了了⼀一个分布式的时序数据存
储系统，可扩展性强。
灵活的数据模型：借鉴OpenTSDB，数据模型中引⼊入了了tag，这样能⽀支持多维度的聚合统计以及告警规则设
置，⼤大⼤大提⾼高了了使⽤用效率。
插件统⼀一管理理：Open-Falcon的插件机制实现了了对⽤用户⾃自定义脚本的统⼀一化管理理，可通过HeartBeat Server分
发给agent，减轻了了使⽤用者⾃自主维护脚本的成本。
个性化监控⽀支持：基于Proxy-gateway，很容易易通过⾃自主埋点实现应⽤用层的监控（⽐比如监控接⼝口的访问量量和耗

时）和其他个性化监控需求，集成⽅方便便。

下⾯面是Open-Falcon的劣势：

整体发展⼀一般 ：社区活跃度不不算⾼高，同时版本更更新慢，有些⼤大⼚厂是基于它的稳定版本直接做⼆二次开发的，关
于以后的前景其实有点担忧。
UI不不够友好：对于业务线的研发来说，可能只想便便捷地完成告警配置和业务监控，但是它把机器器分组、策略略
模板、模板继承等概念全部暴暴露露在UI上，感觉在围绕这⼏几个概念设计UI，理理解有点费劲。
安装⽐比较复杂：个⼈人的亲身感受，由于它是从⼩小⽶米内部衍⽣生出来的，虽然去掉了了对⼩小⽶米内部系统的依赖，但是
组件还是⽐比较多，如果对整个架构不不熟悉，安装很难⼀一蹴⽽而就。

3. Prometheus（号称下⼀一代监控系统）

Prometheus（普罗⽶米修斯）是由前google员⼯工2015年年正式发布的开源监控系统，采⽤用Go语⾔言开发。它不不仅有⼀一
个很酷的名字，同时它有Google与k8s的强⼒力力⽀支持，开源社区异常⽕火爆。

Prometheus 2016年年加⼊入云原⽣生基⾦金金会，是继k8s后托管的第⼆二个项⽬目，未来前景被相当看好。它和Open-Falcon
最⼤大不不同在于：数据采集是基于Pull模式的，⽽而不不是Push模式，并且架构⾮非常简单。

先来了了解下Prometheus的架构设计：

Prometheus架构图，来⾃自⽹网络

Prometheus Server：核⼼心组件，⽤用于收集、存储监控数据。它同时⽀支持静态配置和通过Service Discovery
动态发现来管理理监控⽬目标，并从监控⽬目标中获取数据。此外，Prometheus Server 也是⼀一个时序数据库，它
将监控数据保存在本地磁盘中，并对外提供⾃自定义的 PromQL 语⾔言实现对数据的查询和分析。
Exporter：⽤用来采集数据，作⽤用类似于agent，区别在于Prometheus是基于Pull⽅方式拉取采集数据的，因
此，Exporter通过HTTP服务的形式将监控数据按照标准格式暴暴露露给Prometheus Server，社区中已经有⼤大量量
现成的Exporter可以直接使⽤用，⽤用户也可以使⽤用各种语⾔言的client library⾃自定义实现。
Push gateway：主要⽤用于瞬时任务的场景，防⽌止Prometheus Server来pull数据之前此类Short-lived jobs就
已经执⾏行行完毕了了，因此job可以采⽤用push的⽅方式将监控数据主动汇报给Push gateway缓存起来进⾏行行中转。
Alert Manager：当告警产⽣生时，Prometheus Server将告警信息推送给Alert Manager，由它发送告警信息
给接收⽅方。
Web UI：Prometheus内置了了⼀一个简单的web控制台，可以查询配置信息和指标等，⽽而实际应⽤用中我们通常
会将Prometheus作为Grafana的数据源，创建仪表盘以及查看指标。

下⾯面是Prometheus的优势：

轻量量管理理：架构简单，不不依赖外部存储，单个服务器器节点可直接⼯工作，⼆二进制⽂文件启动即可，属于轻量量级的
Server，便便于迁移和维护。
较强的处理理能⼒力力：监控数据直接存储在Prometheus Server本地的时序数据库中，单个实例例可以处理理数百万的
metrics。
灵活的数据模型：同Open-Falcon，引⼊入了了tag，属于多维数据模型，聚合统计更更⽅方便便。
强⼤大的查询语句句：PromQL允许在同⼀一个查询语句句中，对多个metrics进⾏行行加法、连接和取分位值等操作。
很好地⽀支持云环境：能⾃自动发现容器器，同时k8s和etcd等项⽬目都提供了了对Prometheus的原⽣生⽀支持，是⽬目前容
器器监控最流⾏行行的⽅方案。

下⾯面是Prometheus的劣势：

功能不不够完善：Prometheus从⼀一开始的架构设计就是要做到简单，不不提供集群化⽅方案，⻓长期的持久化存储和
⽤用户管理理，⽽而这些是企业变⼤大后所必须的特性，⽬目前要做到这些只能在Prometheus之上进⾏行行扩展。
⽹网络规划变复杂：由于Prometheus采⽤用的是Pull模型拉取数据，意味着所有被监控的endpoint必须是可达
的，需要合理理规划⽹网络的安全配置。

03 监控系统的选型建议
通过上⾯面的介绍，⼤大家对主流的监控系统应该有了了⼀一定的认识。⾯面对选型问题，我的建议是：

1、先明确清楚你的监控需求：要监控的对象有哪些？机器器数量量和监控指标有多少？需要具备什什么样的告警功能？

2、监控是⼀一项⻓长期建设的事情，⼀一开始就想做⼀一个 All In One 的监控解决⽅方案，我觉得没有必要。从成本⻆角度考
虑，在初期直接使⽤用开源的监控⽅方案即可，先解决有⽆无问题。

3、从系统成熟度上看，Zabbix属于⽼老老牌的监控系统，资料料多，功能全⾯面且稳定，如果机器器数量量在⼏几百台以内，不不
⽤用太担⼼心性能问题，另外，采⽤用数据库分区、SSD硬盘、Proxy架构、Push采集模式都可以提⾼高监控性能。

4、Zabbix在服务器器监控⽅方⾯面占绝对优势，可以满⾜足90%以上的监控场景，但是应⽤用层的监控似乎并不不擅⻓长，⽐比如
要监控线程池的状态、某个内部接⼝口的执⾏行行时间等，这种通常都要做侵⼊入式埋点。相反，新⼀一代的监控系统Open-
Falcon和Prometheus在这⼀一点做得很好。

5、从整体表现上来看，新⼀一代监控系统也有明显的优势，⽐比如：灵活的数据模型、更更成熟的时序数据库、强⼤大的
告警功能，如果之前对zabbix这种传统监控没有技术积累，建议使⽤用Open-Falcon或者Prometheus.

6、Open-Falcon的核⼼心优势在于数据分⽚片功能，能⽀支撑更更多的机器器和监控项；Prometheus则是容器器监控⽅方⾯面的标
配，有Google和k8s加持。

7、Zabbix、Open-Falcon和Prometheus都⽀支持和Grafana做快速集成，想要美观且强⼤大的可视化体验，可以和
Grafana进⾏行行组合。

8、⽤用合适的监控系统解决相应的问题即可，可以多套监控同时使⽤用，这种在企业初期很常⻅见。

9、到中后期，随着机器器数据增加和个性化需求增多（⽐比如希望统⼀一监控平台、打通公司的CMDB和组织架构关
系），往往需要⼆二次开发或者通过监控系统提供的API做集成，从这点来看，Open-Falcon或者Prometheus更更合
适。

10、如果⾮非要⾃自研，可以多研究下主流监控系统的架构⽅方案，借鉴它们的优势。

04 最后的话
本⽂文对监控体系的基础知识、原理理和主流架构做了了详细梳理理，希望有助于⼤大家对监控系统的认识，以及在技术选型
时做出更更合适的选择。

由于篇幅问题，本⽂文的内容并未涉及到全链路路监控、⽇日志监控、以及Web前端和客户端的监控，可⻅见监控真的是⼀一
个庞⼤大且复杂的体系，如果想理理解透彻，必须理理论结合实践再做深⼊入。

对于运维监控体系，如果你们也有⾃自⼰己的经验和体会，欢迎留留⾔言讨论。

微信搜 楼仔 或扫描下⽅方⼆二维码关注楼仔的原创公众号，回复 110 即可免费领取。

""

 第 6 章：RPC 框架
⽂文章阅读 25 分钟，建议收藏。

RPC、gRPC、Thrift、HTTP，⼤大家知道它们之前的联系和区别么？这些都是⾯面试常考的问题，今天我们带⼤大家先搞
懂 RPC 和 gRPC。

在讲述 gPRC 之前，我们需要先搞懂什什么是 RPC。

不不 BB，直接上⽂文章⽬目录：

1. RPC
1.1 什什么是 RPC ？
RPC（Remote Procedure Call Protocol）远程过程调⽤用协议，⽬目标就是让远程服务调⽤用更更加简单、透明。

RPC 框架负责屏蔽底层的传输⽅方式（TCP 或者 UDP）、序列列化⽅方式（XML/Json/ ⼆二进制）和通信细节，服务调⽤用
者可以像调⽤用本地接⼝口⼀一样调⽤用远程的服务提供者，⽽而不不需要关⼼心底层通信细节和调⽤用过程。

1.2 为什什么要⽤用 RPC ？
当我们的业务越来越多、应⽤用也越来越多时，⾃自然的，我们会发现有些功能已经不不能简单划分开来或者划分不不出
来。

此时可以将公共业务逻辑抽离出来，将之组成独⽴立的服务 Service 应⽤用，⽽而原有的、新增的应⽤用都可以与那些独⽴立
的 Service 应⽤用 交互，以此来完成完整的业务功能。

所以我们急需⼀一种⾼高效的应⽤用程序之间的通讯⼿手段来完成这种需求，RPC ⼤大显身⼿手的时候来了了！

1.3 常⽤用的 RPC 框架
gRPC：⼀一开始由 google 开发，是⼀一款语⾔言中⽴立、平台中⽴立、开源的远程过程调⽤用(RPC)系统。
Thrift：thrift 是⼀一个软件框架，⽤用来进⾏行行可扩展且跨语⾔言的服务的开发。它结合了了功能强⼤大的软件堆栈和代
码⽣生成引擎，以构建在 C++, Java, Python, PHP, Ruby, Erlang, Perl, Haskell, C#, Cocoa, JavaScript, Node.js,
Smalltalk, and OCaml 这些编程语⾔言间⽆无缝结合的、⾼高效的服务。
Dubbo：Dubbo 是⼀一个分布式服务框架，以及 SOA 治理理⽅方案，Dubbo⾃自2011年年开源后，已被许多⾮非阿⾥里里系

公司使⽤用。
Spring Cloud：Spring Cloud 由众多⼦子项⽬目组成，如 Spring Cloud Config、Spring Cloud Netflix、Spring
Cloud Consul 等，提供了了搭建分布式系统及微服务常⽤用的⼯工具。

1.4 RPC 的调⽤用流程
要让⽹网络通信细节对使⽤用者透明，我们需要对通信细节进⾏行行封装，我们先看下⼀一个 RPC 调⽤用的流程涉及到哪些通
信细节：

1. 服务消费⽅方（client）调⽤用以本地调⽤用⽅方式调⽤用服务；
2. client stub接收到调⽤用后负责将⽅方法、参数等组装成能够进⾏行行⽹网络传输的消息体；
3. client stub找到服务地址，并将消息发送到服务端；
4. server stub收到消息后进⾏行行解码；
5. server stub根据解码结果调⽤用本地的服务；
6. 本地服务执⾏行行并将结果返回给 server stub；
7. server stub将返回结果打包成消息并发送⾄至消费⽅方；
8. client stub接收到消息，并进⾏行行解码；
9. 服务消费⽅方得到最终结果。

RPC 的⽬目标就是要 2~8 这些步骤都封装起来，让⽤用户对这些细节透明，下⾯面是⽹网上的另外⼀一幅图，感觉⼀一⽬目了了
然：

2. gRPC
2.1 什什么是 gRPC ？
gRPC 是⼀一个⾼高性能、通⽤用的开源 RPC 框架，其由 Google
2015 年年主要⾯面向移动应⽤用开发并基于 HTTP/2 协议标准⽽而设计，基于 ProtoBuf 序列列化协议开发，且⽀支持众多开发
语⾔言。

由于是开源框架，通信的双⽅方可以进⾏行行⼆二次开发，所以客户端和服务器器端之间的通信会更更加专注于业务层⾯面的内
容，减少了了对由 gRPC 框架实现的底层通信的关注。

如下图，DATA 部分即业务层⾯面内容，下⾯面所有的信息都由 gRPC 进⾏行行封装。

2.2 gRPC 的特点

2.2 gRPC 的特点
跨语⾔言使⽤用，⽀支持 C++、Java、Go、Python、Ruby、C#、Node.js、Android Java、Objective-C、PHP 等
编程语⾔言；
基于 IDL ⽂文件定义服务，通过 proto3 ⼯工具⽣生成指定语⾔言的数据结构、服务端接⼝口以及客户端 Stub；
通信协议基于标准的 HTTP/2 设计，⽀支持双向流、消息头压缩、单 TCP 的多路路复⽤用、服务端推送等特性，这
些特性使得 gRPC 在移动端设备上更更加省电和节省⽹网络流量量；
序列列化⽀支持 PB（Protocol Buffer）和 JSON，PB 是⼀一种语⾔言⽆无关的⾼高性能序列列化框架，基于 HTTP/2 + PB,
保障了了 RPC 调⽤用的⾼高性能；
安装简单，扩展⽅方便便（⽤用该框架每秒可达到百万个RPC）。

2.3 gRPC 交互过程

交换机在开启 gRPC 功能后充当 gRPC 客户端的⻆角⾊色，采集服务器器充当 gRPC 服务器器⻆角⾊色；
交换机会根据订阅的事件构建对应数据的格式（GPB/JSON），通过 Protocol Buffers 进⾏行行编写 proto ⽂文件，
交换机与服务器器建⽴立 gRPC 通道，通过 gRPC 协议向服务器器发送请求消息；
服务器器收到请求消息后，服务器器会通过 Protocol Buffers 解译 proto ⽂文件，还原出最先定义好格式的数据结
构，进⾏行行业务处理理；
数据处理理完后，服务器器需要使⽤用 Protocol Buffers 重编译应答数据，通过 gRPC 协议向交换机发送应答消息；
交换机收到应答消息后，结束本次的 gRPC 交互。

简单地说，gRPC 就是在客户端和服务器器端开启 gRPC 功能后建⽴立连接，将设备上配置的订阅数据推送给服务
器器端。

我们可以看到整个过程是需要⽤用到 Protocol Buffers 将所需要处理理数据的结构化数据在 proto ⽂文件中进⾏行行定
义。

2.4 Protocol Buffers
你可以理理解 ProtoBuf 是⼀一种更更加灵活、⾼高效的数据格式，与 XML、JSON 类似，在⼀一些⾼高性能且对响应速度有要
求的数据传输场景⾮非常适⽤用。

ProtoBuf 在 gRPC 的框架中主要有三个作⽤用：定义数据结构、定义服务接⼝口，通过序列列化和反序列列化⽅方式提升传
输效率。

为什什么 ProtoBuf 会提⾼高传输效率呢？

我们知道使⽤用 XML、JSON 进⾏行行数据编译时，数据⽂文本格式更更容易易阅读，但进⾏行行数据交换时，设备就需要耗费⼤大量量
的 CPU 在 I/O 动作上，⾃自然会影响整个传输速率。

Protocol Buffers 不不像前者，它会将字符串串进⾏行行序列列化后再进⾏行行传输，即⼆二进制数据。

可以看到其实两者内容相差不不⼤大，并且内容⾮非常直观，但是 Protocol Buffers 编码的内容只是提供给操作者阅读
的，实际上传输的并不不会以这种⽂文本形式，⽽而是序列列化后的⼆二进制数据，字节数会⽐比 JSON、XML 的字节数少很
多，速率更更快。

gPRC 如何⽀支撑跨平台，多语⾔言呢 ？

Protocol Buffers ⾃自带⼀一个编译器器也是⼀一个优势点，前⾯面提到的 proto ⽂文件就是通过编译器器进⾏行行编译的，proto ⽂文
件需要编译⽣生成⼀一个类似库⽂文件，基于库⽂文件才能真正开发数据应⽤用。

具体⽤用什什么编程语⾔言编译⽣生成这个库⽂文件呢？由于现⽹网中负责⽹网络设备和服务器器设备的运维⼈人员往往不不是同⼀一组
⼈人，运维⼈人员可能会习惯使⽤用不不同的编程语⾔言进⾏行行运维开发，那么 Protocol Buffers 其中⼀一个优势就能发挥出来
——跨语⾔言。

从上⾯面的介绍，我们得出在编码⽅方⾯面 Protocol Buffers 对⽐比 JSON、XML 的优点：

标准的 IDL 和 IDL 编译器器，这使得其对⼯工程师⾮非常友好；
序列列化数据⾮非常简洁，紧凑，与 XML 相⽐比，其序列列化之后的数据量量约为 1/3 到 1/10；
解析速度⾮非常快，⽐比对应的 XML 快约 20-100 倍；
提供了了⾮非常友好的动态库，使⽤用⾮非常简单，反序列列化只需要⼀一⾏行行代码。

Protobuf 也有其局限性：

由于 Protobuf 产⽣生于 Google，所以⽬目前其仅⽀支持 Java、C++、Python 三种语⾔言；
Protobuf ⽀支持的数据类型相对较少，不不⽀支持常量量类型；
由于其设计的理理念是纯粹的展现层协议（Presentation Layer），⽬目前并没有⼀一个专⻔门⽀支持 Protobuf 的 RPC
框架。

Protobuf 适⽤用场景：

Protobuf 具有⼴广泛的⽤用户基础，空间开销⼩小以及⾼高解析性能是其亮点，⾮非常适合于公司内部的对性能要求⾼高
的 RPC 调⽤用；
由于 Protobuf 提供了了标准的 IDL 以及对应的编译器器，其 IDL ⽂文件是参与各⽅方的⾮非常强的业务约束；
Protobuf 与传输层⽆无关，采⽤用 HTTP 具有良好的跨防⽕火墙的访问属性，所以 Protobuf 也适⽤用于公司间对性
能要求⽐比较⾼高的场景；

由于其解析性能⾼高，序列列化后数据量量相对少，⾮非常适合应⽤用层对象的持久化场景；
主要问题在于其所⽀支持的语⾔言相对较少，另外由于没有绑定的标准底层传输层协议，在公司间进⾏行行传输层协议
的调试⼯工作相对麻烦。

2.5 基于 HTTP 2.0 标准设计
除了了 Protocol Buffers 之外，从交互图中和分层框架可以看到， gRPC 还有另外⼀一个优势——它是基于 HTTP 2.0
协议的。

由于 gRPC 基于 HTTP 2.0 标准设计，带来了了更更多强⼤大功能，如多路路复⽤用、⼆二进制帧、头部压缩、推送机制。

这些功能给设备带来重⼤大益处，如节省带宽、降低 TCP 连接次数、节省 CPU 使⽤用等，gRPC 既能够在客户端应
⽤用，也能够在服务器器端应⽤用，从⽽而以透明的⽅方式实现两端的通信和简化通信系统的构建。

HTTP 1.X 定义了了四种与服务器器交互的⽅方式，分别为 GET、POST、PUT、DELETE，这些在 HTTP 2.0 中均保留留，我
们看看 HTTP 2.0 的新特性：双向流、多路路复⽤用、⼆二进制帧、头部压缩。

2.6 性能对⽐比
与采⽤用⽂文本格式的 JSON 相⽐比，采⽤用⼆二进制格式的 protobuf 在速度上可以达到前者的 5 倍！

Auth0 ⽹网站所做的性能测试结果显示，protobuf 和 JSON 的优势差异在 Java、Python 等环境中尤为明显，下图是
Auth0 在两个 Spring Boot 应⽤用程序间所做的对⽐比测试结果。

结果显示，protobuf 所需的请求时间最多只有 JSON 的 20% 左右，即速度是其 5 倍!

下⾯面看⼀一下性能和空间开销对⽐比。

从上图可得出如下结论：

XML序列列化（Xstream）⽆无论在性能和简洁性上⽐比较差。
Thrift 与 Protobuf 相⽐比在时空开销⽅方⾯面都有⼀一定的劣势。
Protobuf 和 Avro 在两⽅方⾯面表现都⾮非常优越。

3. gRPC 实战

3.1 项⽬目结构
我们先看⼀一下项⽬目结构：

3.2 ⽣生成 protobuf ⽂文件
⽂文件 helloworld.proto：

syntax = "proto3";

option java_multiple_files = true;

option java_package = "io.grpc.examples.helloworld";

option java_outer_classname = "HelloWorldProto";

option objc_class_prefix = "HLW";

package helloworld;

这⾥里里提供了了⼀一个 SayHello() ⽅方法，然后⼊入参为 HelloRequest，返回值为 HelloReply，可以看到 proto ⽂文件只定义
了了⼊入参和返回值的格式，以及调⽤用的接⼝口，⾄至于接⼝口内部的实现，该⽂文件完全不不⽤用关⼼心。

⽂文件 pom.xml：

// The greeting service definition.

service Greeter {

 // Sends a greeting

 rpc SayHello (HelloRequest) returns (HelloReply) {}

}

// The request message containing the user's name.

message HelloRequest {

 string name = 1;

}

// The response message containing the greetings

message HelloReply {

 string message = 1;

}

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <parent>

 <artifactId>rpc-study</artifactId>

 <groupId>org.example</groupId>

 <version>1.0-SNAPSHOT</version>

 </parent>

 <modelVersion>4.0.0</modelVersion>

 <artifactId>grpc-demo</artifactId>

 <dependencies>

 <dependency>

 <groupId>io.grpc</groupId>

 <artifactId>grpc-netty-shaded</artifactId>

 <version>1.14.0</version>

 </dependency>

 <dependency>

 <groupId>io.grpc</groupId>

 <artifactId>grpc-protobuf</artifactId>

 <version>1.14.0</version>

 </dependency>

 <dependency>

 <groupId>io.grpc</groupId>

 <artifactId>grpc-stub</artifactId>

 <version>1.14.0</version>

 </dependency>

 </dependencies>

 <build>

 <extensions>

 <extension>

 <groupId>kr.motd.maven</groupId>

 <artifactId>os-maven-plugin</artifactId>

 <version>1.5.0.Final</version>

 </extension>

 </extensions>

 <plugins>

 <plugin>

 <groupId>org.xolstice.maven.plugins</groupId>

 <artifactId>protobuf-maven-plugin</artifactId>

 <version>0.5.1</version>

 <configuration>

 <protocArtifact>com.google.protobuf:protoc:3.5.1-

1:exe:${os.detected.classifier}</protocArtifact>

 <pluginId>grpc-java</pluginId>

 <pluginArtifact>io.grpc:protoc-gen-grpc-

java:1.14.0:exe:${os.detected.classifier}</pluginArtifact>

 </configuration>

 <executions>

 <execution>

 <goals>

 <goal>compile</goal>

 <goal>compile-custom</goal>

 </goals>

 </execution>

 </executions>

 </plugin>

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-compiler-plugin</artifactId>

 <configuration>

 <source>6</source>

 <target>6</target>

 </configuration>

 </plugin>

 </plugins>

 </build>

</project>

这⾥里里⾯面的 build 其实是为了了安装 protobuf 插件，⾥里里⾯面其实有 2 个插件我们需要⽤用到，分别为 protobuf:compile 和
protobuf:compile-javanano，当我们直接执⾏行行时，会⽣生成左侧⽂文件，其中 GreeterGrpc 提供调⽤用接⼝口，Hello 开
头的⽂文件功能主要是对数据进⾏行行序列列化，然后处理理⼊入参和返回值。

可能有同学会问，你把⽂文件⽣生成到 target 中，我想放到 main.src 中，你可以把这些⽂文件 copy 出来，或者也
可以通过⼯工具⽣生成：

下载 protoc.exe ⼯工具 ，下载地址：https://github.com/protocolbuffers/protobuf/releases
下载 protoc-gen-grpc 插件, 下载地址: http://jcenter.bintray.com/io/grpc/protoc-gen-grpc-java/

3.3 服务端和客户端
⽂文件 HelloWorldClient.java：

public class HelloWorldClient {

 private final ManagedChannel channel;

 private final GreeterGrpc.GreeterBlockingStub blockingStub;

 private static final Logger logger =

Logger.getLogger(HelloWorldClient.class.getName());

 public HelloWorldClient(String host,int port){

 channel = ManagedChannelBuilder.forAddress(host,port)

 .usePlaintext(true)

 .build();

https://github.com/protocolbuffers/protobuf/releases
http://jcenter.bintray.com/io/grpc/protoc-gen-grpc-java/

这个太简单了了，就是连接服务端⼝口，调⽤用 sayHello() ⽅方法。

⽂文件 HelloWorldServer.java：

 blockingStub = GreeterGrpc.newBlockingStub(channel);

 }

 public void shutdown() throws InterruptedException {

 channel.shutdown().awaitTermination(5, TimeUnit.SECONDS);

 }

 public void greet(String name){

 HelloRequest request = HelloRequest.newBuilder().setName(name).build();

 HelloReply response;

 try{

 response = blockingStub.sayHello(request);

 } catch (StatusRuntimeException e)

 {

 logger.log(Level.WARNING, "RPC failed: {0}", e.getStatus());

 return;

 }

 logger.info("Message from gRPC-Server: "+response.getMessage());

 }

 public static void main(String[] args) throws InterruptedException {

 HelloWorldClient client = new HelloWorldClient("127.0.0.1",50051);

 try{

 String user = "world";

 if (args.length > 0){

 user = args[0];

 }

 client.greet(user);

 }finally {

 client.shutdown();

 }

 }

}

public class HelloWorldServer {

 private static final Logger logger =

Logger.getLogger(HelloWorldServer.class.getName());

 private int port = 50051;

 private Server server;

 private void start() throws IOException {

 server = ServerBuilder.forPort(port)

 .addService(new GreeterImpl())

 .build()

 .start();

 logger.info("Server started, listening on " + port);

 Runtime.getRuntime().addShutdownHook(new Thread() {

 @Override

 public void run() {

 System.err.println("*** shutting down gRPC server since JVM is shutting

down");

 HelloWorldServer.this.stop();

 System.err.println("*** server shut down");

 }

 });

 }

 private void stop() {

 if (server != null) {

 server.shutdown();

 }

 }

 // block ⼀一直到退出程序

 private void blockUntilShutdown() throws InterruptedException {

 if (server != null) {

 server.awaitTermination();

 }

 }

 public static void main(String[] args) throws IOException, InterruptedException {

 final HelloWorldServer server = new HelloWorldServer();

 server.start();

 server.blockUntilShutdown();

 }

 // 实现 定义⼀一个实现服务接⼝口的类

 private class GreeterImpl extends GreeterGrpc.GreeterImplBase {

 @Override

 public void sayHello(HelloRequest req, StreamObserver<HelloReply>

responseObserver) {

 HelloReply reply = HelloReply.newBuilder().setMessage(("Hello " +

req.getName())).build();

 responseObserver.onNext(reply);

 responseObserver.onCompleted();

 System.out.println("Message from gRPC-Client:" + req.getName());

 System.out.println("Message Response:" + reply.getMessage());

 }

主要是实现 sayHello() ⽅方法，⾥里里⾯面对数据进⾏行行了了简单处理理，⼊入参为 “W orld”，返回的是 “Hello World”。

3.4 启动服务
先启动 Server，返回如下：

再启动 Client，返回如下：

同时 Server返回如下：

3.5 项⽬目代码
Git 地址：https://github.com/lml200701158/rpc-study

4. 写在最后
这篇⽂文章其实是我去年年写的，这次是重新整理理，⽂文章详细讲解了了 RPC 和 gRPC，以及 gRPC 的应⽤用示例例，⾮非常全
⾯面，后⾯面会再把 Thrift 整理理出来。

这个 Demo 看起来很简单，我 TM 居然搞了了⼤大半天，⼀一开始是因为不不知道需要执⾏行行 2 个不不同的插件来⽣生成
protobuf，以为只需要点击 protobuf:compile 就可以，结果发现 protobuf:compile-javanano 也需要点⼀一下。

 }

}

https://github.com/lml200701158/rpc-study

还有就是我⾃自⼰己喜欢作，感觉通过插件⽣生成 protobuf 不不完美，我想通过⾃自⼰己下载的插件，⼿手动⽣生成 protobuf ⽂文
件，结果⼿手动⽣生成的没有搞定，⾃自动⽣生成的⽅方式也不不可⽤用，搞了了半天才发现是缓存的问题，最后直接执⾏行行
“Invalidate Caches / Restart” 才搞定。

应征了了⼀一句句话“no zuo no die”，不不过这个过程还是需要经历的。

微信搜 楼仔 或扫描下⽅方⼆二维码关注楼仔的原创公众号，回复 110 即可免费领取。

⻓长按⼆二维码，回复 「加群」，欢迎⼀一起学习交流哈~~ # # #

	😊 前言
	📚 第 1 章：消息队列
	消息队列基础
	什么是消息队列？
	消息队列模式
	消息队列应用场景

	常用消息队列
	Kafka
	重要概念
	Kafka 架构
	Kafka 工作原理

	RocketMQ
	重要概念
	RocketMQ 工作原理
	RocketMQ 架构

	RabbitMQ
	重要概念
	RabbitMQ 工作原理
	常用交换器

	消息队列对比&选型
	消息队列对比
	Kafka
	RocketMQ
	RabbitMQ

	消息队列选型

	📚 第 2 章：微服务网关
	API网关基础
	什么是API网关
	网关的主要功能

	API网关选型
	常用API网关
	Nginx
	Zuul
	Spring Cloud GetWay
	Kong
	Traefik

	API网关对比

	基于Traefik自研的微服务网关
	技术栈选型
	网关框架
	网关后台
	协议转换模块
	问题引入
	实现原理
	实现逻辑

	📚 第 3 章：注册中心
	注册中心基本概念
	什么是注册中心？
	注册中心需要实现功能

	注册中心基础扫盲
	CAP理论
	分布式系统协议

	常用注册中心
	Zookeeper
	Zookeeper如何实现注册中心
	Zookeeper不适合作为注册中心

	Eureka
	Eureka 架构图
	Eureka 特点
	Eureka工作流程

	Nacos
	Nacos 主要特点

	Consul
	Consul 的调用过程
	Consul 主要特征
	多数据中心

	ETCD
	ETCD 特点
	ETCD 框架

	注册中心对比&选型
	注册中心对比
	注册中心选型

	📚 第 4 章：配置中心
	配置中心基础
	为什么要用配置中心？
	配置中心支持功能

	常用配置中心
	写在前面
	Apollo
	Apollo框架
	Apollo特性

	Disconf
	Disconf框架
	Disconf特点

	Spring Cloud Config
	Spring Cloud Config 工作原理
	Spring Cloud Config 特点

	Nacos
	Nacos 主要特点

	配置中心对比和选型
	配置中心对比
	配置中心选型

	📚 第 5 章：监控系统
	01 必知必会的监控基础知识
	1. 监控系统的7大作用
	2. 使用监控系统的正确姿势
	3. 监控的对象和指标都有哪些？
	4. 监控系统的基本流程

	02 主流监控系统介绍
	1. Zabbix（老牌监控的优秀代表）
	2. Open-Falcon（小米出品，国内流行）
	3. Prometheus（号称下一代监控系统）

	03 监控系统的选型建议
	04 最后的话

	📚 第 6 章：RPC 框架
	1. RPC
	1.1 什么是 RPC ？
	1.2 为什么要用 RPC ？
	1.3 常用的 RPC 框架
	1.4 RPC 的调用流程

	2. gRPC
	2.1 什么是 gRPC ？
	2.2 gRPC 的特点
	2.3 gRPC 交互过程
	2.4 Protocol Buffers
	2.5 基于 HTTP 2.0 标准设计
	2.6 性能对比

	3. gRPC 实战
	3.1 项目结构
	3.2 生成 protobuf 文件
	3.3 服务端和客户端
	3.4 启动服务
	3.5 项目代码

	4. 写在最后

