
Gatekeeper: the design and deployment of a DDoS
protection system

Michel Machado*, Cody Doucette†, Qiaobin Fu‡, John W. Byers§
*Digirati, †Raytheon BBN, ‡Google, §Boston University

ABSTRACT
It is prohibitively expensive to mitigate large DDoS attacks
in the Internet today. Stakeholders lack affordable and de-
ployable mechanisms to combat attacks, often leading them
to contract defensive services from third parties. Meanwhile,
waging a DDoS attack remains relatively cheap and simple,
creating a cost asymmetry and power imbalance in favor of
malicious actors.
To empower victims to close this cost gap, we have de-

signed and deployed Gatekeeper, which harmonizes years
of DDoS mitigation approaches from the academic com-
munity and applies them to the existing infrastructure of
geographically-distributed vantage points (e.g. IXPs, clouds).
Governed by software-defined policies, vantage points miti-
gate attacks close to the source without the coordination of
other networks, enabling full deployability by a single AS.

We demonstrate that the richness enabled by eBPF policy
programs is effective to mitigate DDoS attacks, and that the
overhead of this flexibility is small (<1% of CPU time). We
also show that Gatekeeper is production-ready, can process
>11 Mpps in the worst case, and even operate at line rate
with two billion flows. Moreover, an AS can greatly reduce
the cost of defending against DDoS attacks over existing
approaches.

1 INTRODUCTION
Despite researchers and practitioners having had decades
of experience with the threat, distributed denial of service
(DDoS) attacks remain one of the most vexing operational
challenges facing Internet providers. According to theWorld-
wide Infrastructure Security Report (WISR) survey conducted
by Arbor Networks [39], DDoS attacks are the top opera-
tional concern for service providers. Moreover, we have en-
tered the terabit attack era [2], but DDoS attacks have not yet
peaked, especially with the rise of amplification-based [22],
IoT botnet-based [44], and cloud-based [55] DDoS attacks,
each of which contribute to ever-higher attack rates. Addi-
tionally, the financial and social impacts of DDoS attacks are
now widely cited in the general media, including the DDoS
attack used to disrupt communications between protestors
in Hong Kong [51], as well as a 500% spike in DDoS attacks
during the COVID-19 pandemic, as millions are forced to
work remotely via the Internet [56].

The economics of trying to defend against DDoS attacks
is similarly grim. A report by Arbor Networks indicated that
the average cost incurred by a victim from a major DDoS
attack was over $220K [2]. In contrast, attackers can easily

launch a 125 Gbps DDoS attack for only several dollars [50].
Additionally, the average cost of launching a DDoS attack
is forecast to fall through at least 2023, since the attack sur-
faces and resources leveraged by attackers are growing fast
from 2018 to 2023: the average broadband speed will more
than double, and the number of IoT machine-to-machine
connections will grow 2.4-fold [18].
The networking community has been aware of DDoS at-

tacks for decades, but none of the architectural solutions pro-
posed in academic work (§2) have been deployed. With such
a compelling need, why is there such a prominent discon-
nect between research and realization in defending against
infrastructure-layer attacks1

The fundamental issue is that of incentives: the proposed
solutions do not provide sufficient motivation for pioneer
autonomous systems (ASes) to deploy them. In particular,
consider SIBRA [13]. Although SIBRA offers a deployment
plan and is incrementally deployable, its effectiveness de-
pends on the number of ASes that deploy it. Since the so-
lution derives its effectiveness from network effects (in the
economic sense), there is minimal incentive for pioneer ASes
to deploy the solution initially, and SIBRA, therefore, risks
never overcoming the initial activation energy needed to
deploy the system widely. To our knowledge, a similar fate
has befallen every proposed architectural solution to DDoS
over the past 20 years.
We propose to break this deadlock by turning the ques-

tion of which incentives to provide to a set of pioneer ASes
into the question how to craft a system for a single AS. For
our purpose, we have adopted the network capability and
filtering designs from the literature, and adapted them to
be fully deployable, such that the deploying entity can reap
the full benefits of the system alone and on day one. We
describe the design, implementation, and evaluation of such
a mitigation system – Gatekeeper – and also demonstrate
how to deploy it in production by crafting management poli-
cies to mitigate DDoS attacks. Moreover, we show that the
overall cost of the system is moderate and within the reach
of many Internet stakeholders. In fact, two providers with
vastly different defensive and cost requirements – 10 Gbps
and 1 Tbps protection for Digirati and Mail.ru, respectively
– are already deploying Gatekeeper in their networks.

Two design decisions enable Gatekeeper to be deployable
by a single AS. First, instead of trickling down a full-blown
capability/filtering system into something that a single AS
1Infrastructure-layer DDoS attacks target all layers of a protocol stack except
the application layer. According to Akamai, these attacks encompassed∼99%
of the DDoS attacks in 2017 (See e.g. [1, Figure 2-1]).

1

can deploy, we design a system that exploits the fact that
it will be deployed by a single AS. This led us to a simpler
design, including the ability to centralize policy decisions,
assume trust between system components, and provide for
backwards compatibility of network management. Second,
we employ vantage points (VPs) (e.g., Internet exchange
points [IXPs] and clouds) to replace the need for joint de-
ployments and/or collaboration with other ASes. The use of
VPs reduces the capital and operating expenses of deploying
an infrastructure for DDoS mitigation. It also ensures one
of the most important features of a scalable DDoS defense
system: dropping unauthorized packets close to the source.

An effective Gatekeeper deployment can only be achieved
by writing and enforcing fine-grained and accurate network
policies. While the basic function of such policies is to simply
govern the sending ability of clients, Gatekeeper policies are
capable of multiple bandwidth limits, punishing flows for
misbehavior, intrusion detection, and much more. Policies
are implemented as programs, providing richness and flexi-
bility without sacrificing packet processing performance.

We propose three main contributions:
(1) The design and implementation of Gatekeeper, a fully

deployable, production-qualitymitigation system,which
puts into practice 20 years worth of DDoS defense re-
search in capability and filtering systems.

(2) A guide for managing a Gatekeeper deployment, re-
alized through flexible policy programs that run on
every packet and at line-rate.

(3) An evaluation of Gatekeeper that demonstrates (1)
the richness that policies provide for mitigating DDoS
attacks; (2) the system’s state-of-the-art performance
capacity, e.g., processing over 11Mppswhile managing
2 billion flows with a single server and (3) the expected
operational cost of Gatekeeper is within reach of a
range of potential deployers, small and large.

The remainder of this paper reviews related work (§2),
presents the design of Gatekeeper and shows Gatekeeper
in action (§3), describes the implementation details of Gate-
keeper (§4), discusses policies in Gatekeeper (§5), evaluates
Gatekeeper’s performance and estimates its operational cost
(§6), explores discussion topics (§7), and then concludes (§8).

2 RELATEDWORK
Network capabilities and filters. Researchers have pro-
posedmany clever architecturalmechanisms to defend against
DDoS attacks. Thematically, ourwork is closest to two classes
of solutions that have attracted much research attention: net-
work capabilities [5, 58, 72, 73] and filter-based approaches
[8, 29, 45, 47, 64], though many other designs exist [4, 13,
24, 25, 28]. Capabilities require that destinations deny access
to their services by default, and then explicitly grant access
to senders by exception. In contrast, filtering approaches
require that destinations grant access by default, and halt ac-
cess to senders identified as malicious. These two approaches
competed [7] against each other for the better part of a

decade, and led to several novel designs and research imple-
mentations. Although a few recent projects have given more
attention to deployability [28, 46], architectural mechanisms
have not seen broad commercial deployment. Why not?

Summarizing a long arc of work briefly, both approaches
have weaknesses: filtering-based systems cannot filter attack
traffic that does not reach the destination (e.g. short TTL
packets), and capability systems cannot filter out attacking
flows, but can only retract their capabilities. In a comparative
evaluation of filtering systems with capability systems, the
StopIt team concluded that both can fail in certain situations
and fail-safe mechanisms are needed [45]. Additionally, both
approaches lack deployment plans that enable pioneer ASes
to draw value from the systems on day one.

Architecting for deployability. Without deployable
mechanisms to mitigate DDoS attacks on their own, stake-
holders are forced to contract commercial services. These
services are often provided by content distribution networks
(CDNs), which are geographically-distributed and highly-
available networks that perform traffic scrubbing [24, 70].
However, such solutions can be costly, limit the ability of
customers to customize their protection [46], and provide
the most value for application layer attacks, which represent
only a small percentage of attacks in the Internet.

To realize architectural solutions to DDoS in actual deploy-
ments, we make use of the existing ecosystem of IXPs and
clouds. Placing services near the edge for reverse proxying
has a lengthy history, including being the main architectural
model for CDNs for content caching, but has also been used
for other use cases in recent years [48, 67, 71, 75]. Using IXPs
as an insertion point for DDoS mitigation has been proposed
[35] and even put into production [24], but such approaches
require cooperation with, and deployment by, IXPs, and are
therefore not independently deployable by an AS.

Centralized management. Gatekeeper centralizes con-
trol over the operation of the data plane using programs, mak-
ing it architecturally similar in spirit to Software-Defined
Networking (SDN) [17, 74, 75], virtualized network functions
[37], and programmable data planes [15].

3 SYSTEM COMPONENTS
This section presents Gatekeeper, a DDoS protection system
designed for independent deployment by a single AS. To do
so, Gatekeeper takes the lessons learned from over twenty
years of DDoS research and adds three design contributions:

(1) Architecture. Gatekeeper combines capabilities and
filters. Previous work treated the two as “duals” of each
other [7], but in Gatekeeper, they are treated as com-
plementary and neutralize each other’s weaknesses.

(2) Deployability. Prior approaches were not deployed
because in order to be successful, the deploying AS
needed to control both ends of the path to do capa-
bility/filter management, or have trust arrangements
with source networks. Gatekeeper circumvents these

2

Figure 1: Overview of the components of Gatekeeper.
issues by leveraging geographically-distributed van-
tage points (VPs).

(3) Management. Gatekeeper uses similar centralized
management principles as those popularized by SDN
[17] to orchestrate DDoS mitigation using policies in
software.

Figure 1 depicts the general topology and highlights the
two main components of Gatekeeper: one or more Gate-
keeper servers located in each contracted VP, and one or
more Grantor servers located in the protected destination
network. Each time a client tries to send traffic to a server
in the destination network, the traffic is forwarded to the
closest VP, which performs network capability admission
control. If a capability decision for the flow has not already
been made, the first packet of a flow is marked as a request
and is forwarded to the Grantor server, which will decide to
either grant or decline the flow based on a defined policy. If
the flow has already been granted, then rate-limiting state is
updated, and if the flow has enough credits then the packet
is sent along the path to the destination network, where it is
decapsulated by Grantor and sent to the ultimate destination.
The ability to decline flows gives Gatekeeper the benefits of
filter-based systems, reducing the expected connection time
for legitimate clients [58, §4.2].

At a high level, Grantor provides the ability to make cen-
tralized policy decisions and Gatekeeper provides the up-
stream policy enforcement. Both ends of this process – deci-
sion and enforcement – can be performed using programs
instead of static, declarative rules. Next, we provide more
details about each of these components.

3.1 Vantage points
VPs are upstream insertion points for DDoS mitigation ser-
vices. They are thematically in the domain of edge comput-
ing, an architectural paradigm in which the compute and
storage power of the network edge is leveraged to perform
reverse proxying for content caching, authentication, TCP
termination, load balancing, DDoS mitigation, and other ser-
vices [48, 67, 71, 75].

A prospective VP is any network location that meets four
requirements: (1) compute capacity, (2) cheap ingress band-
width, (3) BGP peering, and (4) private links to the protected
AS. (1) and (2) are basic requirements to ensure that the VP
is an insertion point for DDoS mitigation software, and that
it can be run affordably. Some candidate VPs, such as cloud
providers like Amazon AWS, Microsoft Azure, and Google
Cloud, even provide customers with free inbound data trans-
fers. Requirements (3) and (4) are motivated by the design
of Gatekeeper. VPs must support the ability to redirect traf-
fic ultimately destined for the protected network through
the VP using BGP prefix announcements. This creates an
anycast network where client traffic is always forwarded to
the nearest VP instead of directly to the protected network.
Finally, (4) is essential because the path between a VP and the
deploying AS must not expose directly routable addresses
to the open Internet. Otherwise, these links are vulnerable
to DDoS attacks themselves. By this definition, examples of
VPs include IXPs, points of presence, some cloud providers2,
and peering links/carrier hotels.
There are four main advantages to using VPs. First, they

are well-provisioned, composed of multiple aggregation lev-
els for high levels of resiliency and bisection bandwidth,
which is ideal for handling DDoS-sized traffic volumes. Sec-
ond, they are often topologically close to source networks,
in part due to the flattening of the routing structure of the
Internet [23, 34]. This proximity is key to minimize the im-
pact on the latency of incoming flows and, in the case of an
attack, to minimize the amount of downstream resources
that are wasted. Third, VPs are geographically distributed.
There are thousands of candidate VPs spread throughout
the globe [11, 57, 59], which enables Gatekeeper to handle
Internet-scale attacks. Finally, leveraging the existing infras-
tructure of VPs reduces the capital expenses for network
operators, lowering the deployment barrier.

3.2 Gatekeeper servers
Gatekeeper servers are the main components deployed in
VPs. They announce the prefixes of the protected AS via BGP,
causing all flows destined for the defended services to be
forwarded to the nearest VP. Ingress traffic is load balanced
between the available Gatekeeper servers, which then per-
form the following tasks: (1) bookkeeping policy decisions
and flow state, (2) enforcing policy decisions over flows, and
(3) encapsulating traffic to be sent to the destination network.

When a packet arrives, the Gatekeeper server first extracts
its flow information, defined as the pair (source IP, destina-
tion IP), and looks up the corresponding entry in the flow
table, which can be one of four types:
(1) Request. Either no policy decision for the flow has yet

been made by Grantor, or a previous policy decision
for the flow has expired.

2Some clouds do not support BGP sessions, but the community maintains
public lists of cloud and virtual server providers that do [61].

3

(2) Granted. The flow is permitted to send traffic, and
Gatekeeper will forward its traffic at a prescribed rate.
Packets from this flow beyond that rate will be dropped.

(3) Declined. The flow is not permitted to send traffic.
All packets from this flow will be dropped.

(4) eBPF. The flow is to be processed by a policy enforce-
ment program installed at Gatekeeper. The program
itself is extended Berkeley packet filter (eBPF) bytecode,
which will forward or drop packets according to the
specifics of the program.

If the flow does not have an entry in the table, a new entry
of type Request is added, and the packet is forwarded as a
request to Grantor. An entry only moves from the Request
state to another state after the Gatekeeper server receives a
reply from a Grantor server, and the entry remains in that
state until it expires or is revoked. Gatekeeper piggybacks
capability renewal requests for granted flows that are about
to expire to avoid the overhead of setting up a new capability.
Packets which are not dropped are encapsulated so that

they can be transmitted to a Grantor server in the destination
network. There are two reasons for the encapsulation. For
request packets, a policy decision first needs to be made
by Grantor before the original data packet is forwarded to
the destination server. Second, the encapsulation forces non-
request packets to also be processed byGrantor, which allows
a central point for measurement and enables the network
operator to build policies around a global view of traffic.

3.3 Grantor servers
To complement Gatekeeper servers, Grantor servers are de-
ployed in the protected AS to make the policy decisions
that are enforced in VPs. Their responsibilities include (1)
decapsulating packets and sending them to their ultimate
destination, and (2) running a policy decision program on
request packets and informing Gatekeeper of such policy
decisions. Details of the policy decision process are in §5.

Grantor has centralized authority over the operation of the
data plane, making it functionally similar in design to an SDN
controller [17]. Using an SDN-like architecture simplifies
network management for Gatekeeper since operators only
need to configure one (or a small set of) Grantor server(s)
with the desired policy that is then enforced at the VPs. This
naturally centralized control of flows by Grantor servers
contrasts with packet sampling implemented in commercial
DDoS protection systems to centralize control [48].
Finally, the presence of Grantor servers in the design

makes Gatekeeper backwards compatible with the existing
infrastructure of a deploying AS, since there is no need to
change the deployed destinations, as was necessary in previ-
ous capability and filtering systems [8, 73].

3.4 Queue management
Our queue management scheme along the path between the
VP and the protected AS is mostly a refinement of previous
work [58, 73]. The path is composed of three logical channels,

Figure 2: Queue management at Gatekeeper servers
and at any capable router on the VP-AS path.

for request packets, granted packets, and operational/legacy
packets. Gatekeeper servers and routers on the VP-AS path
queue packets according to their type, priority, and destina-
tion address (Figure 2). For deployability, we designed the
Gatekeeper packet type and priority markings to be encoded
within the 6-bit Differentiated Services Code Point (DSCP)
field of IP headers: 0 for operational packets; 1 for granted
packets; 2 for granted packets renewing a capability; and
3 − 63 for capability requests.

Request channel. Each capability request is placed into
a priority queue according to the value of its DSCP field; the
higher the priority (i.e., a higher value of the DSCP field), the
closer to the exit of the queue the request is placed. When the
queue is full, the request with the lowest priority is dropped.
The request channel receives only 5% of the bandwidth ca-
pacity of the outgoing link. Together, the priority assignment
scheme and 5% channel bandwidth limit help prevent denial
of capability (DoC) attacks [7] on the request channel that
interfere with capability setup.
Since our system is designed to support a single AS, we

can assume that the Gatekeeper servers are trusted, which
allows us to employ a simpler solution to DoC than the
one in Portcullis [58]. Our priority assignment algorithm
simply returns the log of the packet’s waiting time, i.e.,
log2 (𝑑𝑒𝑙𝑡𝑎_𝑡𝑖𝑚𝑒). Therefore, senders who wait longer to
send a packet are assigned a higher priority, which is similar
to the exponential back-off method used in Portcullis.

Granted channel. Granted packets are placed in RED
queues [30]. The number of queues depends on hardware
capacity of the router, and a queue is chosen by hashing the
destination address. The seed of this hash should change
periodically to minimize the effects of hash collisions. The
queues used for granted packets command up to 95% of the
bandwidth capacity of the outgoing link.

Operational channel. To avoid communication disrup-
tion between routers when the system is under attack, an
operational queue reserves 5% of bandwidth for essential
protocols such as ARP, ND, ICMP, and BGP.

3.5 End-to-end example
To demonstrate how the components of Gatekeeper work
together, we now describe an end-to-end example of a client

4

initiating a TCP connection (Figure 3). Since Gatekeeper sup-
ports TCP/IP clients without modification, the client first
sends a TCP SYN as normal (1). In (2), the SYN packet is
forwarded to the closest VP since all contracted VPs an-
nounce routes to the destination AS. Once received by the
VP, the packet is transferred to the router of the destination
AS, which in turn load balances the packet to one of the
Gatekeeper servers.
The Gatekeeper server checks whether there is state as-

sociated with the flow of the packet, and if there is, decides
what to do based on that state. In this example, we assume
there is no state associated with the flow. The Gatekeeper
server allocates state that contains the arrival time of the
SYN packet, encapsulates the packet using the IP-in-IP pro-
tocol, and fills the new IP header as follows: (a) the source
IP address is the IP address of the server, (b) the destination
IP address is the address of a Grantor server, and (c) the
DSCP field is a value in the range 3 − 63 as determined by
the priority assignment algorithm.

Figure 3: Connection establishment overview.
The encapsulated SYN packet of the client is then for-

warded to the destination AS using a previously established
tunnel. At the destination, the packet is delivered to the
Grantor server (4), which then decides whether to accept the
packet based on a policy defined by the deploying AS.
If the decision is to reject the connection, the Grantor

server sends its Declined decision back to the Gatekeeper
server, which includes an expiration time. If the decision is
to accept, Grantor includes the rate limit for the flow (e.g., 1
Mbps) and an expiration time in its Granted decision that is
sent back to Gatekeeper. Grantor then decapsulates the SYN
packet and transmits it to the target server.
After processing the SYN packet, the destination server

replies with a SYN+ACK that is sent directly to the source.
The decision of the Grantor server arrives at the Gatekeeper
server (5) and the SYN+ACK packet arrives at the source
(6). The source continues to send packets through the Gate-
keeper server to the destination as it enforces the assigned
rate. Since capabilities expire, Gatekeeper servers may renew
capabilities for soon-to-expire flows.

Supporting other protocols. The previous example describes
the case of TCP, but what about UDP and ICMP traffic?

Gatekeeper servers consider the first packet in UDP and
ICMP (and any other protocol above IP) flows like a TCP
SYN packet; the Gatekeeper server simply encapsulates the
packet and forwards it as a request packet. The destination
application does not have to bemodified, because Gatekeeper
will keep the capability valid as in the TCP case.

4 IMPLEMENTATION
A guiding theme throughout the design and construction
of Gatekeeper was always deployability: to see the light of
day, the system must be ready for production environments.
More than just a research prototype, the Gatekeeper software
product combines advances in packet processing technology
together with hardware offloading and a suite of desirable
features for network operators. The Gatekeeper codebase has
around 33k lines of code, and supports both IPv4 and IPv6
deployments. To support Gatekeeper deployments along the
VP-AS path, we have also merged the Gatekeeper priority
queuing discipline into the Linux kernel3.

This section describes how prioritizing deployability influ-
enced the development of Gatekeeper, including our choice
of DPDK [42] as a packet processing framework, the de-
composition of Gatekeeper into functional blocks, and the
hardware and software techniques leveraged to optimize per-
formance. For space considerations, we omit the technical
details of the numerous optimization techniques in group
prefetching, coroutines, hash tables, etc. that greatly improve
Gatekeeper’s performance. All are available in [31, §4.5].

4.1 Intel DPDK
Typical OS network stacks accommodate a wide range of ap-
plications, but are not ideal for the packet processing needs of
a DDoS mitigation system. Several packet processing frame-
works [12, 38, 60, 63] have been proposed to allow appli-
cations to avoid the heavy overhead of OS network stacks
and provide line-rate network I/O for very high-speed links
(i.e., 100 Gbps). Intel’s data plane development kit (DPDK)
[42] best suits the needs of Gatekeeper as laid down in the
following subsections. DPDK is a set of libraries to acceler-
ate packet processing workloads by allowing applications to
bypass the more general and expensive kernel processing.
DPDK provides excellent performance in terms of through-
put and packet processing latency [32], and its development
is stable and driven by many industry collaborators.

Gatekeeper heavily relies on three key features in DPDK:
(1) NUMA-awarememorymanagement, which reducesmem-
ory access latency by allowing CPU cores to access local
memory instead of remote memory; (2) burst packet I/O,
which allows Gatekeeper to receive and send packets in
batches, reducing the per-packet cost of accessing and up-
dating queues; (3) lockless rings, which provide an efficient
concurrency control mechanism for packet buffer allocation
and inter-thread communication.
3Links to our open-source project and our Linux kernel update omitted to
meet the double-blind requirements; included in the final version.

5

Figure 4: Functional block diagrams of Gatekeeper servers (left) and Grantor servers (right).

4.2 System overview
Figure 4 presents diagrams of the implementations of Gate-
keeper and Grantor. Notice that the model of a Gatekeeper
server has two physical NICs: one interface is connected
to the VP router or switch, which we denote as the front
interface of Gatekeeper, and the other interface is connected
to the private link(s) that lead to the infrastructure of the
AS deploying Gatekeeper, which we call the back interface.
In contrast, Grantor servers each have a single interface
that connects to the network segment of the destination net-
work’s servers. Each arrow leaving or arriving at a network
interface represents a receive (RX) or transmit (TX) queue
on the interface, respectively.
Gatekeeper is decomposed into precise functions, which

we refer to as functional blocks, that represent various data
plane and control plane operations. Each functional block
is mapped to (at least) one DPDK lcore, or logical execution
unit of the processor also known as a hardware thread. Each
rounded-edge block in the diagram represents an lcore. To
better utilize modern NUMA platforms, Gatekeeper carefully
spreads functional blocks evenly among all NUMA nodes,
and ensures that each functional block allocates its memory
on the proper NUMA node to minimize memory access la-
tency. Gatekeeper also creates a packet buffer pool for each
functional block individually to receive packets from the
NIC, which minimizes memory contention between blocks.

Other notable hardware and software features are labeled,
which include (1) RSS, receive-side scaling, which load bal-
ances received packets across multiple queues on the same
NIC; (2) lockless rings for message passing between blocks;
(3) filters, or declarative traffic rules, which enable Gate-
keeper to map certain protocols to functional blocks; (4) the
KNI, or kernel-NIC interface, a way for DPDK to interface
with the Linux kernel through a network device; and (5) a
Unix socket, which provides the means for Gatekeeper to
communicate with a client program for runtime configu-
ration. More information about these components are pre-
sented alongside the hardware requirements and functional
block definitions, which we describe next.

4.3 Hardware requirements
To fully leverage the potential of modern multi-/manycore
CPUs, we choose NICs with multi-queue and RSS support.
This gives Gatekeeper two main advantages: (1) RSS enables
the NIC to distribute incoming packets to different queues,
so that lcores do not need to contend with each other; (2)
RSS ensures that packets belonging to the same flow will be
processed by the same lcore in the same order as they arrive
at Gatekeeper server, thereby avoiding out-of-order packet
delivery. RSS hashes a subset of a received frame’s header to
assign the frame to a queue/lcore. The RSS hash function is
parameterized by a secret key which Gatekeeper randomizes
at startup to mitigate collision-based attacks.
Ideally, Gatekeeper NICs should also support the follow-

ing features in hardware: (1) EtherType filters, which allow
packets to be steered to queues on the basis of the Ether-
Type field of the Ethernet header; (2) n-tuple filters, which
allow packets to be steered to queues on the basis of fields
in L3 and L4 headers; (3) checksum computation in IPv4 and
UDP headers; and (4) VLAN stripping for domains where
VLAN headers are required (e.g., IXPs). However, if Gate-
keeper detects that any of these features are not supported
in hardware, it will fall back to software equivalents.

4.4 Functional blocks
Gatekeeper and Grantor servers share a single piece of soft-
ware, which is composed of modular functional blocks. Con-
figuration settings determine whether the executable runs
as Gatekeeper or Grantor. There are three main advantages
to this approach: a single piece of software simplifies the en-
gineering, configuration, and administration of the system;
(2) blocks that are common to both Gatekeeper and Grantor
can be re-used; and (3) operators can fine-tune the system by
scaling up the blocks that implement data plane operations
without wasting resources on low-bandwidth control plane
operations. We now describe the roles of each block.

4.4.1 Data plane operations. Gatekeeper (GK). The GK
block is the main component of Gatekeeper servers, as its
task is to accept incoming packets, perform lookups that map
flows to policy decisions, and queue requests and granted

6

packets for transmission to Grantor. It is in the data plane and
can scale across multiple GK instances, each with a dedicated
lcore. Gatekeeper utilizes RSS to distribute incoming packets
among the GK instances. Each instance processes a queue
whose packets have unique pairs of source and destination
addresses. Since RSS guarantees that packets belonging to
the same flow will be directed to the same RX queue, and
therefore the same GK instance, each GK instance maintains
its own lockless flow hash table whose keys are (source IP,
destination IP) pairs. Because of its position on the front lines
of the data plane, meaning it will bear the brunt of attacks,
the GK block uses prefetching, batching, and other memory
optimization techniques to achieve high performance [31].

Grantor (GT). The GT block is the main component of
Grantor servers, as its task is to accept incoming packets
from Gatekeeper servers, issue policy decisions for requests,
and forward granted packets to their ultimate destination. It
is in the data plane and can scale across multiple lcores. §5
provides a thorough overview of the role of the policies that
the GT block manages.

Solicitor (SOL). The SOL block is responsible for rate lim-
iting and sending request packets. Packets from flows in the
request state are handed to the SOL block from the GK block
via lockless rings. Requests are sorted by priority and only
permitted a fraction of the link capacity between Gatekeeper
and Grantor, and the SOL block enforces these limits. The
priority queue is implemented as a length-limited linked list
of request packets, indexed by an array whose elements are
references to the portion of the linked list that holds packets
of each priority, providing constant time insertion, dequeu-
ing of the highest priority request, and deletion of the lowest
priority request when the queue is full. The SOL block only
runs on Gatekeeper servers, and multiple SOL instances are
used to spread the load coming from multiple GK instances.

GT-GK unit (GGU). The GGU processes all policy deci-
sions that arrive from Grantor servers. Policy decisions are
steered directly to the GGU block using n-tuple filters. The
GGU block demultiplexes each decision to the GK instance
that is responsible for the flow in question, according to its
RSS hash. The GGU only operates on the back interface of
Gatekeeper servers.

4.4.2 Control plane operations and configuration. Con-
trol plane services (CPS). Gatekeeper servers must sup-
port control plane protocols (e.g., BGP, OSPF, and IS-IS) to
peer in VPs and to integrate with the destination AS. Instead
of adding support for a multitude of common control plane
protocols in Gatekeeper directly, we enable network opera-
tors to use existing routing daemons and management tools
by leveraging the DPDK kernel-NIC interface (KNI) library.
This approach is similar to the one employed in Google’s
Espresso [75]. Our deployments have used the popular BGP
speaker BIRD [14]. Gatekeeper uses n-tuple filters to steer
BGP packets to the CPS block.

Link layer support (LLS). The LLS block has the respon-
sibility of handling all link layer protocols and address res-
olution services, such as ARP, ND, and LACP. Instead of
resolving IP addresses to MAC addresses on demand, other
functional blocks must register the IP addresses that they are
interested in, and the LLS block keeps IP address-to-link layer
address maps updated. Gatekeeper uses EtherType filters to
steer ARP packets to the LLS block.

Dynamic configuration.The dynamic configuration block
allows operators to change the parameters of Gatekeeper
and Grantor servers and to diagnose runtime issues. For ex-
ample, operators can update the IP ranges handled by GK
blocks, list the ARP and ND tables for network diagnosis,
update the enforced policy on Grantor servers, and flush
all policy decisions cached at Gatekeeper servers associated
with a given destination IP.

5 DESTINATION POLICIES
The correctness and precision of a policy make or break a
Gatekeeper deployment. This section presents the design
choices that shaped the format of policies and a deployment-
tested template to write policies.

5.1 Design choices
The design of Gatekeeper policies borrows heavily from two
streams of prior work: capability and filtering systems to
regulate the transmission rate of flows, and SDN to cen-
tralize this decision-making process. However, the design
choice of implementing destination policies as programs rep-
resents a breakthrough. Prior work implemented policies as
sets of rules that are pattern matched to packets or flows.
These rules and patterns are described under a predefined
declarative language. The motivation for using declarative
languages is to provide abstractions for hardware operations
and filters. These languages, however, become the weakest
link in a DDoS protection system when attacks target their
limitations. For example, attackers can force source address
filtering mechanisms in legacy routers into an untenable
position: either use coarse-grained filtering rules and incur
much collateral damage, or use fine-grained filtering rules
and risk not mitigating the attack [66].

Running Gatekeeper policies as programs does not require
giving up the hardware abstractions. However, it enables
us to move away from declarative languages and toward
bytecode virtual machines (VMs). We chose to adopt policies
as programs in two ways:
(1) A set of policy enforcement programs that are run

at Gatekeeper servers. On ingress, a packet’s flow is
extracted and mapped to the enforcement program
that it has been assigned. Policy enforcement programs
may keep state, e.g. for a token bucket algorithm to
rate-limit traffic.

(2) A single policy decision program that is run at Grantor
servers. The decision program maps flows to policy
enforcement programs, and installs rules reflecting

7

those decisions at Gatekeeper servers so that the en-
forcement program can be run on subsequent packets
in the given flow.

This approach has two advantages. First, it enables Gate-
keeper to take prompt action on flows that misbehave after
receiving a favorable policy decision, e.g. by applying sec-
ondary rate limits or by tracking negative bandwidth at
policy enforcement time (§5.2). Previous capability systems
have relied on capability expiration or bandwidth caps to
mitigate this issue [72, 73].
Second, it allows us to separately choose the best fitting

bytecode VMs for Gatekeeper and Grantor servers. Gate-
keeper servers perform policy enforcement using VMs that
run eBPF programs [54], whereas the policy decision pro-
gram running on Grantor servers are implemented using a
Lua VM [41]. The key requirements that led us to choose Lua
on Grantor servers was (1) its support for dynamically edit-
ing the policy (e.g. redefining functions, modules, variables)
in order to enable changing the policy with minimum impact
to deployed systems, and (2) ease of integration with exter-
nal libraries (typically in C). eBPF was chosen to implement
policy enforcement programs due to (1) the availability of
static analysis to guarantee termination, memory safety, and
bounded resources [33] and (2) ease of packet inspection.
While eBPF has been used in production to implement

packet redirection in load balancers [67, 71] and high-per-
formance, ad hoc packet filters in DDoS protection systems
[27], the use of eBPF programs in Gatekeeper to perform
policy enforcement brings greater flexibility. The difference
in these approaches is in the amount of state space under
the control of eBPF programs. For example, eBPF programs
in Gatekeeper can limit bandwidth per flow, while the eBPF
programs running on other systems have only enough state
to do so for a limited number of classes.

5.2 Writing production policies
As a guideline, we found that a policy is generally organized
as follows: policy decision programs (in Lua) inspect IP ad-
dresses to map flows to policy enforcement (eBPF) programs,
and eBPF programs inspect transport headers to monitor the
behavior of flows and adhere to the given policy decision.
As a rule of thumb, each eBPF program reflects a net-

work service profile. Consider the profile of outgoing email
servers. They have no listening sockets – they only open
connections to the SMTP port of remote email servers, and
these connections have very small ingress traffic footprints.
This profile-to-program heuristic leads to a simple break-
down of the work to write a policy: (1) identify all network
profiles, (2) write an eBPF program for each of those profiles,
and (3) map flows to those eBPF programs in the Lua policy.
Following this proposed breakdown of work, Lua poli-

cies are configured with a set of network prefixes, and use
those prefixes to classify incoming packets based on their
destination addresses. We use longest prefix matching on

destination addresses by default, but source address classi-
fication could also be used, such as to approximate source
location [52], identify threats [21, 68], check the purpose of
the source [20, 36, 65], etc. Regardless of whether source or
destination (or both) addresses are inspected, this classifica-
tion is used to decide on denying or granting communication,
limiting bandwidth, and differentiating service.

When translating a network profile into an eBPF program,
the policy writer should classify packets into three bins: pri-
mary, secondary, and unwanted traffic. Primary traffic carries
the main purpose of the service, while secondary traffic is
permitted traffic that has no reason to be present at the same
scale of the primary traffic. Examples of secondary traffic are
TCP SYN, ICMP, and fragmented packets. Unwanted traf-
fic, such as malformed packets, is dropped. Once the code
for the classification of packets is in place, the policy writer
overlays it with two bandwidth limits: one limit before the
classification to control the bandwidth of the flow as a whole,
and another limit for secondary traffic after the classification.
These limits can be implemented as token bucket algorithms.

We use a variation of the token bucket algorithm on the
primary traffic that allows the number of tokens to go nega-
tive. This negative bandwidth works as an automatic punish-
ment for flows that consistently exceed their bandwidth limit,
which is crucial for mitigating attacks where the adversary
obtains a capability to send, and then abuses the capability by
flooding Gatekeeper with packets. Such an abusive flow will
only have its packets forwarded again once it stops sending
(or reduces its rate), and enough time has passed to bring the
token balance to a positive value. Therefore, the duration of
the bandwidth shutoff is proportional to the offense.

Policies that follow the template explained above can eas-
ily handle the most common forms of infrastructure attacks,
such as floods (e.g. SYN, UDP, ICMP), amplifications (e.g.
DNS, NTP, Memcached), and arbitrary combinations of these
attacks (also known as multi-vector attacks). The fraction
of the attack traffic that bypasses these policies depends on
how narrow the network profiles are, how precise they are
implemented in the eBPF programs, and the quality of the
classifications of the source addresses in the Lua policy. But
even if these are all finely tuned, some attack traffic can only
be identified by the protected applications or intrusion de-
tection systems (IDSes). In this case, applications and IDSes
can feed the Lua policy with source addresses and packet sig-
natures to mitigate this sneaky traffic through ad hoc eBPF
programs and assignment of lower bandwidth limits. Gate-
keeper cannot help when there is no distinction between
attack and legitimate traffic.

Finally, the policy template presented here leaves room for
potential improvements by leveraging the fact that Grantor
servers are colocated geographically. This geographical prox-
imity provides for low latency and ample bandwidth between
Grantor servers, which in turn enables the employment of
a distributed database for policies to use. With the help of
this database, Lua policies could potentially identify spoofed

8

source addresses analyzing the (source address, incoming
vantage point address) pair for inconsistencies, as well as
make sophisticated bandwidth allocation based on the source
AS and load of the links behind the Gatekeeper servers.

6 EVALUATION
We now evaluate Gatekeeper along several axes, including
the effect of different policies during attacks (§6.1), the cost
impact of destination policies (§6.2), performance bench-
marking (§6.3), and cost estimates of deployments (§6.4).

6.1 Effect of policies
Gatekeeper policies define how flows are admitted, rate lim-
ited, and monitored, and ultimately determine which packets
are transmitted or dropped at Gatekeeper servers. Therefore,
they drive the ability of Gatekeeper to mitigate attacks.
To measure the effect of various policies on attack miti-

gation, we used an Amazon Web Services Elastic Compute
Cloud (EC2) testbed. The testbed is composed of two at-
tacking clients (instance type m5.4xlarge), which run packet
generators to launch attacks from a total of 16K virtual at-
tackers (source IPs) to a destination Web server (m4.2xlarge).
The testbed also has a legitimate client (t3.medium), which
uses curl to repeatedly upload a 20 KB file to the destination
server. We chose uploading instead of downloading because
competing with attackers for uploading bandwidth is more
challenging for the legitimate client. For each experiment,
the client uploads the file 50 times, and the average file trans-
fer time is computed across all transfers. All client traffic is
redirected through a Gatekeeper server (m5.8xlarge), which
transmits requests and granted traffic through a path router
to a Grantor instance (m5.8xlarge), which forwards traffic to
the destination server.
We encountered several testbed limitations when using

EC2, including lack of full support for hardware offloading
(such as RSS), as well as packet throughput caps. This limited
our ability to test Gatekeeper and Grantor servers at their
full potential. Full details about these limitations and the EC2
settings we used are available in related work [26, §2.4].

6.1.1 Bandwidth floods & negative bandwidth. We first
measured Gatekeeper’s ability to mitigate bandwidth floods.
We configured the attacker to flood the destination server
using 1024B TCP (non-SYN) packets while the legitimate
client repeatedly attempts to upload the file. We evaluated
attack strengths from 100 Mbps up to 10 Gbps. All traffic was
first directed through Gatekeeper, which applied a policy of
granting all flows4. We performed different trials, in which
we granted traffic at rates of 32, 64, and 128 Kbps. We com-
pared these policies against a scenario in which Gatekeeper
is not used and all client traffic is forwarded directly to the
destination server (label “No Defense” in the graphs).

4This policy is favorable to the adversary; §5 describes how Gatekeeper
policies can differentiate flows by sender behavior and identity.

The result shown in Figure 5 (left) is that Gatekeeper is
able to completely mitigate the effect of the attack. Any
inflation in the legitimate client’s file transfer time is due to
the applied policy. For example, under a 32 Kbps policy, it
takes about 10 seconds (10 token bucket refill periods) for the
legitimate client to transfer the file regardless of the attack
strength. As the rate limit increases to 64 Kbps, the legitimate
client is able to transfer the file more quickly while the attack
itself is still mitigated. Without any defensive system, the file
transfer time increases exponentially up through trials with
5 Gbps of attack traffic. Beyond that point, the legitimate
client times out when trying to perform the transfer.
Although doubling the rate limit from 32 to 64 Kbps de-

creased the file transfer time, doubling it again to 128 Kbps
actually drives the file transfer time up. This is due to the
fact that the Gatekeeper server now admits enough attack
traffic to start to effect the service of the legitimate client.
To show how policy richness can mitigate this effect, we

also deployed a 128 Kbps policy enforcement program that
uses negative bandwidth, i.e., which drops all packets from
flows while they have exceeded their bandwidth allotment
(§5.2). This simple enhancement still mitigates the attack
while allowing the legitimate client to transfer the file within
two seconds – the fastest among the policies tested.

6.1.2 SYN floods & secondary bandwidth. We also eval-
uated Gatekeeper against TCP SYN floods, for which we
used policies that enforce two bandwidth limits for each
flow. A secondary bandwidth limit (§5.2) allows Gatekeeper
to impose a second, lower limit for certain types of traffic
within flows, such as ICMP, UDP, or TCP SYN packets. In
this evaluation, we change the traffic flood to be composed of
TCP SYN packets, and change the policy decision to apply a
secondary bandwidth to TCP SYNs. The primary bandwidth
limit is 256 Kbps, and the secondary bandwidth is set to be
12.8 Kbps (5% of the primary limit). Figure 5 (center) shows
that using such a a policy, Gatekeeper mitigates SYN floods
and allows the legitimate client to transfer the file in one
rate limiting period. When no defensive system is used, the
file transfer time grows exponentially.

6.2 The cost of destination policies
With the use of expressive destination policies in Gatekeeper,
two cost-related questions arise: (1) what is the memory cost
associated with the flow tables of Gatekeeper servers? and (2)
how much effort is required to write and maintain a policy?
This section shows that the amount of memory needed to
implement the flow tables of Gatekeeper is not excessive by
current standards, and market trends make it even more cost-
effective. We then summarize a policy used in production to
show that policies are modest in size.
A flow entry in a Gatekeeper server consumes approxi-

mately 256 bytes5. Nowadays, a dual socket x86 server can
easily have more than 512GB of RAM, and therefore a single
5Each flow entry is effectively 128 bytes long, but we assume 256 bytes per
flow to account for auxiliary hash table data structures.

9

Attack Strength (Mbps)

Fi
le

 T
ra

ns
fe

r
Ti

m
e

(s
)

(l
og

)

1

5

10

50

100

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

No Defense 32 Kbps 64 Kbps 128 Kbps 128 Kbps w/neg

SYN Flood Attack Strength (Kpps)

Fi
le

 T
ra

ns
fe

r
Ti

m
e

(s
)

(l
og

)

0.5

1

5

10

50

100

0 250 500 750 1000 1250

No Defense TCP SYN Secondary Limit

Table Size

Th
ro

ug
hp

ut
 (

M
pp

s)

0

5

10

15

2^20 2^25 2^29

1 lcore 2 lcores 3 lcores 4 lcores

Figure 5: Average transfer time of a legitimate client under various Gatekeeper policies during bandwidth floods
(left) and SYN floods (center); throughput of a Gatekeeper server during a flow state exhaustion attack (right).

Gatekeeper server can track roughly 231 (≈ 2 billion) flows.
To put this figure in perspective, consider the large attack
[19] that Cloudflare defended against in June 2020, in which
over 316,000 IP addresses targeted a single Cloudflare IP ad-
dress. This attack would have consumed less than 0.02% of
the flow tables of a single Gatekeeper server.

On top of a reasonablememory footprint, the flow tables of
Gatekeeper servers are bound to become less of a burden in
the future. The cost of memory has continuously fallen more
than 30% per year for over 50 years [3], and the cost of DRAM
is less than $4 per GB [53]. The Gatekeeper architecture is
also horizontally scalable , as each Gatekeeper server adds
memory to the system, and with more vantage points comes
less memory pressure per vantage point.
The effort to write a policy following the template de-

scribed in §5.2 is mostly proportional to the number of net-
work profiles and the number of exceptions in the Lua policy
in order to map flows to eBPF programs. Much of this infor-
mation can come from existing system configurations. We
expect that most of the effort in writing policies will come
from bringing organizations up to speed with the knowledge
required to write them, and not the writing process itself.

For example, consider one of the first production deploy-
ments of Gatekeeper, established by Digirati. Their policy
has 17 eBPF programs with an average of 66 source lines of
code (SLOC) per eBPF program, and its Lua policy has 289
SLOC. These metrics show that the amount of effort to write
and maintain policies is fairly low once all of the needed
information is gathered.

6.3 Microbenchmarks
Gatekeeper servers examine 100% of ingress traffic, and this
examination is more intensive than simple forwarding deci-
sions as highlighted in the previous sections. Each data plane
packet is passed through an eBPF program, which may calcu-
late and impose (potentially multiple) bandwidth constraints,
apply conditional logic, perform deep packet inspection, etc.
Therefore, in this section we evaluate Gatekeeper’s packet
processing capacity while (1) varying the multithreading
level and flow table size of the GK block and (2) processing
all packets through eBPF programs.

6.3.1 Flow table churn. We measured the performance of
a single Gatekeeper server with overwhelmed flow tables.
To do so, we fully randomized the source addresses of the
attack traffic, creating a virtually indefinite stream of new
flows. Attack traffic was composed of minimum-sized, 64B
packets. When processing packets, Gatekeeper treated all
flows as requests. We measured the capacity of Gatekeeper
to process this traffic by varying the flow table size per GK
instance and the number of GK instances.

The experiment was run on a Dell PowerEdge R640 server,
which has 768 GB of memory and two Intel Xeon Silver
4214R 2.4 GHz processors, each equipped with 16.5 MB of
cache space and 12 cores with 24 threads. For networking,
the server uses Intel X550 10 Gbps adapters.
The results are shown in Figure 5 (right). Even under ex-

treme conditions – minimum-sized packets, a full flow table,
and new flows constantly arriving – Gatekeeper can process
at least 11 Mpps under all flow table sizes and GK instances
configurations. Note that the configuration with flow table
size of 229 flows per GK instance and 4 GK instances sup-
ports ∼2 billion flows; a configuration whose memory cost is
discussed in §6.2. For context, being able to process 10 Mpps
is considered highly performant by industry standards [49].
Additionally, a rate of 11 Mpps equates to a transfer rate
of 7.7 Gbps when factoring in the hardware transmission
overhead imposed on 64B packets.
Gatekeeper cannot process all packets with a single GK

block instance. However, with more than one GK block in-
stance, Gatekeeper can process packets as fast as the gen-
erator sends them. Due to limitations of our testbed, the
packet rate of the generator decreases as the number of GK
instances increases. Therefore, under the limitations of our
testbed, Gatekeeper operates at line speed in all experiments
with more than one GK instance.

6.3.2 Per-packet program invocation. Tomeasure the over-
head of processing 100% of ingress traffic through arbitrary
eBPF programs, we profiled Gatekeeper on the EC2 testbed
using Intel VTune [62]. We ran a 3 Gbps bandwidth flooding
attack with the same setup as in §6.1.1, and analyzed the
CPU usage of the GK block (using one GK instance) to find
the CPU time spent processing ingress packets. We com-
pared the built-in routines for declined and granted flows,

10

Built-in eBPF

0.65% 2.16% 2.32% 3.30% 2.45%

Figure 6: Profile of the GK block’s CPU usage.

which consist of simple packet dropping and rate limiting
respectively, with eBPF programs that perform the same op-
erations. In addition, we ran a trial that used a “Web” eBPF
program, a policy that represents a Web server and inspects
transport-layer fields to decide how to handle packets.
Figure 6 shows the breakdown of the CPU usage during

ingress packet processing on the front NIC. We choose to
ignore the other operations that the CPU runs (ingress pro-
cessing on the back NIC, packet transmission, inter-block
communication, etc.) to magnify the operation-specific packet
processing time, which is the measurement of interest. The
operation-specific processing times represent the CPU times
spent running eBPF programs or performing the built-in
operations, and are labeled in the figure.

There is almost no difference between running eBPF pro-
grams (2-3%) and performing built-in processing of granted
packets (2.16%). Declined flows can use significantly less
CPU time when using the built-in routine (0.65%), but since
all packets of declined flows are simply dropped, an eBPF
program is unnecessary anyway. Although the Web eBPF
program is a more complex routine, it is less expensive than
the Granted eBPF program. This happens because the Web
eBPF program drops many more packets than the Granted
eBPF program due to the enforcement of negative and sec-
ondary bandwidth. When considered in the context of to-
tal CPU usage instead of only front NIC RX processing, all
operation-specific processing consumes <1% of CPU time.

6.4 Cost estimates of deployments
One of the motivating factors that drove the design of Gate-
keeper was to keep it affordable and within reach of smaller
ISPs, enterprises, institutions, etc. In this section, we provide
a back-of-the-envelope evaluation of the cost of Gatekeeper
under three deployment scenarios: (1) a deployment of 2.3
Tbps of bandwidth protection, which represents one of the
largest reported DDoS attacks by volume [9]; (2) a 2.3 Tbps
deployment shared among 20 companies; and (3) a deploy-
ment that balances peak capacity and cost.

As a baseline, we first consider various publicly available
cost estimates for DDoS protection. After the 620 Gbps DDoS
attack against KrebsOnSecurity [44], Akamai estimated a cost
of “millions of dollars” to defend against an attack of that

scale [16], while a separate (anonymous) cost estimate was
in the $150K to $200K per year range [44]. At a different price
point (and in reach of small and medium size companies),
our partner has been quoted a 20 Gbps protection contract
against infrastructure-layer attacks by an established secu-
rity company at a rate of $24K per year. Finally, cloud services
like AWS Shield [10] also provide DDoS defense, albeit with
a pay-as-you-go model, as opposed to a flat annual rate.
Now consider the cost of Gatekeeper. To shield a single

AS with 2.3 Tbps of bandwidth protection, our modeled de-
ployment for Scenario 1 would use 23 VPs, each with 100
Gbps of incoming traffic capacity. Conservatively estimating
the cost of operating at each VP at $5K per month6, the op-
erational cost of this deployment would be $1.4M per year.
This estimate includes the quoted price to contract a link in
an IXP, and factors in an estimate of additional operational
costs, such as those to contract layer 2 connectivity to the de-
ploying network. In Scenario 2, we envision the Gatekeeper
architecture being deployed in a cooperativemodel, shielding
multiple customers in parallel and amortizing costs. While
this would require some additional overhead to orchestrate
policies of multiple ASes in one Gatekeeper instance, there
would nevertheless be significant economies of scale (and
ample processing power to share). We estimate that twenty
companies could band together to share the 2.3 Tbps defense
shield, for less than $100K per year per company.
We next consider Scenario 3. According to Arbor Net-

works, 99% of the DDoS attacks in 2016 peaked at less than
20Gbps [6, Figure AT3]. Thus, a small company willing to
endure downtime when a 1% DDoS attack hits could deploy
a 20Gbps Gatekeeper shield for about $12K per year, using
the same assumptions as Scenario 1.
To make an apples-to-apples comparison to commercial

solutions, we must account for additional operational costs
such as labor costs, other supply costs, and administrative
overhead. The simplest option would involve IXPs offering
Gatekeeper servers as a service using their existing infras-
tructure. Interested companies would incur lower costs to
add VPs and Gatekeeper servers to their deployments, keep-
ing incremental operational cost to a minimum. IXPs would
be interested in such an option because of the new revenue
stream without a major infrastructure investment. Similarly,
a deployment based at cloud providers rather than at IXPs
can also keep operational costs low, as the elastic services
provided enable companies to quickly scale the number of
VPs and computing capacity up and down.

At the other extreme, one could deploy Gatekeeper for
a large number of clients on top of a dedicated, managed
worldwide infrastructure. While it is challenging to esti-
mate the associated costs, one baseline can be extrapolated
from Hurricane Electric [40], a profitable Internet backbone
and colocation provider with estimated revenue of $38M in

6We could not identify public data to back this estimate, but our industry
partners have verified that this value covers their market price estimate to
deploy Gatekeeper at an IXP.

11

2020 [76]. Hurricane Electric is present in over 240 Internet
exchange points, with over 100 terabits of edge capacity, ter-
abits of bandwidth to route traffic from its edges to over 250
colocation facilities around the world, and professional man-
agement of its network. Given the similarities between what
a company like Hurricane Electric does and what would be
required from a company offering Gatekeeper protection at
the same scale, this hypothetical 100+ terabit deployment
of Gatekeeper would be at least a decade ahead of the peak
capacity of DDoS attacks, and could be operated for roughly
$40M annually. At this scale, one could profitably onboard
hundreds of high-value customers at multi-Tbps protection
($100K/Tbps/year), and thousands of smaller ISPs and enter-
prises at, say, 100 Gbps protection ($10K/year).

Taken together, these rough estimates illustrate that Gate-
keeper has the potential to be cost-competitive with current
market solutions, both large and small, with savings com-
fortably in the 2 to 4x range.

7 DISCUSSION
Any production deployment carries both foreseeable and
unforeseen risks. This section discusses some vulnerabilities
of Gatekeeper in terms of possible attacks and failures.

Control channel co-option. Attackers could attempt to dis-
rupt the control channel between Grantor and Gatekeeper
servers. Since this channel is used to provide policy deci-
sions, it is an especially attractive target for attackers, who
could try to alter decisions to grant access for their traffic
or deny service to others. Physically isolating this channel
using leased, private links would mitigate this kind of at-
tack since all links behind a Gatekeeper server are under
the control of the deploying AS. The channel could also be
cryptographically protected – for example, by requiring TLS
authentication of Grantor servers.

Attacks against a VP. Gatekeeper does not protect against
volumetric attacks attempting to overwhelm the resources
of the VP itself. However, the impact of these attacks is
limited in Gatekeeper deployments leveraging multiple VPs,
since routes would eventually be announced to direct traffic
away from any affected VP. As a last resort, Gatekeeper can
blackhole traffic at a VP to geographically bound the impact.

Novel infrastructure-layer attacks. In recently proposed at-
tacks, attackers send flows to a large number of destinations
(Crossfire [43]) or to other colluding attackers (Coremelt
[69]). These flows flood a small set of carefully chosen links,
denying service to the targets and to other destinations as
collateral damage. Although systems like SIBRA [13] can
help mitigate these attacks, they would be complex to im-
plement and deploy. Gatekeeper also has the potential to
mitigate these attacks by virtue of its distributed architec-
ture and ability to be deployed in cloud environments, the
feasibility of which was analyzed in previous work [26].

Non infrastructure-layer attacks. Although non infrastruc-
ture attacks comprised ∼1% of all DDoS attacks in 2017 [1,

Figure 2-1]), they could become more prevalent as infras-
tructure attacks are neutralized. Gatekeeper can mitigate any
attack that its policy programs can capture via packet header
data and metadata (e.g. timing). Gatekeeper policies could
also be informed of application abuses reported via APIs.
However, the full effects of this have not been investigated, so
we only claim that Gatekeeper is effective against infrastruc-
ture attacks. Meanwhile, Gatekeeper may be used alongside
application-layer DDoS defense systems, especially those
designed for encrypted application traffic.
Fault tolerance. Gatekeeper is a distributed system, and

must gracefully deal with failures to minimize end user
impact. Grantor servers are stateless, and therefore new
Grantors can easily be provisioned on failure. However, Gate-
keeper servers keep state over incoming flows, so when fail-
ures occur, flows with existing capabilities will initially be
handled as requests when assigned to a new Gatekeeper.
Ethical considerations. We recognize that new methods
for defending against DDoS attacks run the risk of being used
for harmful ends, notably including censorship. That said,
our methods are intended only as a mechanism to block un-
wanted traffic; moreover, our study does not involve human
subjects, and thus does not raise ethical concerns.

8 CONCLUSION AND FUTUREWORK
We have proposed Gatekeeper, a DDoS protection system
that empowers various actors, small and large, to afford-
ably defend themselves against the attacks that cripple the
Internet today. To do so, we prioritize deployability, and
therefore designed Gatekeeper to fit within the existing In-
ternet ecosystem and architecture. We do not propose new
hardware, modifications to servers or clients, new wire pro-
tocols, or shared mechanisms between networks. Instead,
we propose injecting a new architectural spin on old ideas,
combining the benefits of previous approaches and putting
them into practice.

Central to our design is the choice of vantage points, which
lowers costs, obviates the need for mutual deployments, and
minimizes the amount of wasted upstream resources during
attacks. Additionally, to meet production demands, we utilize
modern, software-defined management techniques and state-
of-the-art packet processing technology.
Perhaps the most compelling evidence of the strength of

our approach is the fact that there are two ongoing deploy-
ments of Gatekeeper at the time of submission. In the future,
we hope to expand access to Gatekeeper by supporting shared
deployments. We believe in an open, community-driven ap-
proach to software and security, and want to enable every
stakeholder to have affordable DDoS protection on their
own terms by sharing infrastructure and management. We
are working on making this practical from a technical per-
spective, including further optimizing Gatekeeper (e.g. with
SmartNICs) to achieve 100+ Gbps throughput on a single
commodity server, as well as supporting cloud environments.

12

REFERENCES
[1] 2017. State of the Internet / Security Report Q1 2017. Technical Report.

Akamai.
[2] 2019. 14𝑡ℎ Annual Worldwide Infrastructure Security Report. Technical

Report. Arbor Networks.
[3] AI Impacts. 2021. Trends in DRAM price per gigabyte. https:

//aiimpacts.org/trends-in-dram-price-per-gigabyte/. (2021).
[4] David G Andersen. 2003. Mayday: Distributed Filtering for Internet

Services. In USENIX Symposium on Internet Technologies and Systems
(USITS ’03), Vol. 4. 20–30.

[5] Tom Anderson, Timothy Roscoe, and David Wetherall. 2004. Pre-
venting Internet denial-of-service with capabilities. ACM SIGCOMM
Computer Communication Review (CCR) 34, 1 (2004), 39–44.

[6] Darren Anstee, Paul Bowen, C.F. Chui, and Gary Sockrider. 2017. 12𝑡ℎ
Annual Worldwide Infrastructure Security Report. Technical Report.
Arbor Networks.

[7] Katerina Argyraki and David Cheriton. 2005. Network capabilities: The
good, the bad and the ugly. ACM Hot Topics in Networks (HotNets-IV)
(2005).

[8] Katerina J. Argyraki and David R. Cheriton. 2005. Active Internet
Traffic Filtering: Real-Time Response to Denial-of-Service Attacks. In
USENIX Annual Technical Conference (ATEC ’05). 135–148.

[9] AWS. 2020. AWS Shield Threat Landscape Report, Q1 2020. https:
//aws-shield-tlr.s3.amazonaws.com/2020-Q1_AWS_Shield_TLR.pdf.
(2020).

[10] AWS. 2021. AWS Shield Pricing. https://aws.amazon.com/shield/
pricing. (2021).

[11] AWS. 2021. Global Infrastructure. https://aws.amazon.com/about-aws/
global-infrastructure. (2021).

[12] Tom Barbette, Cyril Soldani, and Laurent Mathy. 2015. Fast userspace
packet processing. In 2015 ACM/IEEE Symposium on Architectures for
Networking and Communications Systems (ANCS ’15). 5–16.

[13] Cristina Basescu, Raphael M. Reischuk, Pawel Szalachowski, Adrian
Perrig, Yao Zhang, Hsu-Chun Hsiao, Ayumu Kubota, and Jumpei
Urakawa. 2016. SIBRA: Scalable Internet Bandwidth Reservation Ar-
chitecture. In Network and Distributed System Security Symposium
(NDSS ’16).

[14] BIRD 2021. The BIRD Internet Routing Daemon. https://bird.network.
cz/. (2021).

[15] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, et al. 2014. P4: Programming protocol-independent packet
processors. ACM SIGCOMM Computer Communication Review (CCR)
44, 3 (2014), 87–95.

[16] Hiawatha Bray. 2016. Akamai breaks ties with security expert. Boston
Globe. (23 Sept. 2016).

[17] Martin Casado, Michael J Freedman, Justin Pettit, Jianying Luo, Nick
McKeown, and Scott Shenker. 2007. Ethane: Taking control of the
enterprise. ACM SIGCOMM Computer Communication Review (CCR)
37, 4 (2007), 1–12.

[18] Cisco Visual Networking Index 2020. Cisco Visual Networking Index.
Technical Report.

[19] Cloudflare. 2020. Network-layer DDoS attack
trends for Q2 2020. https://blog.cloudflare.com/
network-layer-ddos-attack-trends-for-q2-2020/. (2020).

[20] Cloudflare. 2021. IP Ranges. https://www.cloudflare.com/ips/. (2021).
[21] Team Cymru. 2021. The Bogon Reference. https://team-cymru.com/

community-services/bogon-reference/. (2021).
[22] Jakub Czyz, Michael Kallitsis, Manaf Gharaibeh, Christos Papadopou-

los, Michael Bailey, and Manish Karir. 2014. Taming the 800 pound
gorilla: The rise and decline of NTP DDoS attacks. In ACM Internet
Measurement Conference (IMC ’14). 435–448.

[23] Amogh Dhamdhere and Constantine Dovrolis. 2010. The Internet
is flat: modeling the transition from a transit hierarchy to a peering
mesh. In ACM Conference on emerging Networking EXperiments and
Technologies (CoNEXT ’10). 1–12.

[24] Christoph Dietzel, Matthias Wichtlhuber, Georgios Smaragdakis, and
Anja Feldmann. 2018. Stellar: network attack mitigation using ad-
vanced blackholing. In Proceedings of the 14th International Conference
on emerging Networking EXperiments and Technologies. 152–164.

[25] Colin Dixon, Thomas E Anderson, and Arvind Krishnamurthy. 2008.
Phalanx: Withstanding Multimillion-Node Botnets.. In USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI ’08).
45–58.

[26] Cody Doucette. 2021. An Architectural Approach for Mitigating Next-
Generation Denial of Service Attacks. Ph.D. Dissertation. Boston Uni-
versity.

[27] Arthur Fabre. 2019. L4Drop: XDP DDoS Mitigations. https://blog.
cloudflare.com/l4drop-xdp-ebpf-based-ddos-mitigations/. (2019).

[28] Seyed Kaveh Fayaz, Yoshiaki Tobioka, Vyas Sekar, and Michael Bailey.
2015. Bohatei: Flexible and Elastic DDoS Defense.. In USENIX Security
Symposium (SEC ’15). 817–832.

[29] Paul Ferguson. 1998. Network ingress filtering: Defeating denial of
service attacks which employ IP source address spoofing. RFC 2827.

[30] Sally Floyd and Van Jacobson. 1993. Random early detection gateways
for congestion avoidance. IEEE/ACM ToN (1993), 397–413.

[31] Qiaobin Fu. 2020. High-performance software packet processing. Ph.D.
Dissertation. Boston University.

[32] Sebastian Gallenmüller, Paul Emmerich, Florian Wohlfart, Daniel
Raumer, and Georg Carle. 2015. Comparison of frameworks for high-
performance packet IO. In 2015 ACM/IEEE Symposium on Architectures
for Networking and Communications Systems (ANCS ’15). 29–38.

[33] Elazar Gershuni, Nadav Amit, Arie Gurfinkel, Nina Narodytska,
Jorge A Navas, Noam Rinetzky, Leonid Ryzhyk, and Mooly Sagiv.
2019. Simple and precise static analysis of untrusted Linux kernel
extensions. In ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’19). 1069–1084.

[34] Phillipa Gill, Martin Arlitt, Zongpeng Li, and Anirban Mahanti. 2008.
The Flattening Internet Topology: Natural Evolution, Unsightly Bar-
nacles or Contrived Collapse?. In International Conference on Passive
and Active Network Measurement (PAM ’08). 1–10.

[35] Deli Gong, Muoi Tran, Shweta Shinde, Hao Jin, Vyas Sekar, Prateek
Saxena, and Min Suk Kang. 2019. Practical verifiable in-network filter-
ing for DDoS defense. In IEEE International Conference on Distributed
Computing Systems (ICDCS ’19). 1161–1174.

[36] Google. 2021. Where can I find Compute Engine IP ranges? https:
//cloud.google.com/compute/docs/faq#find_ip_range. (2021).

[37] Bo Han, Vijay Gopalakrishnan, Lusheng Ji, and Seungjoon Lee. 2015.
Network function virtualization: Challenges and opportunities for
innovations. IEEE Communications Magazine 53, 2 (2015), 90–97.

[38] Sangjin Han, Keon Jang, KyoungSoo Park, and Sue Moon. 2010. Packet-
Shader: a GPU-accelerated software router. ACM SIGCOMM Computer
Communication Review (CCR) 40, 4 (2010), 195–206.

[39] Richard Hummel, Carol Hildebrand, Hardik Modi, Gary Sockrider,
Roland Dobbins, Steinthor Bjarnason, Jill Sopko, Suweera DeSouza,
Ivan Bondar, and Oliver Daff. 2020. NETSCOUT Threat Intelligence
Report for 2H 2019. Technical Report. Arbor Networks.

[40] Hurricane Electric Internet Services. 2021. IP Transit Service. https:
//www.he.net/ip_transit.html. (Dec. 2021).

[41] Roberto Ierusalimschy, Luiz Henrique De Figueiredo, and Waldemar
Celes. 2006. Lua 5.1 reference manual. (2006).

[42] Intel Data Plane Development Kit [n. d.]. Intel Data Plane Development
Kit. https://www.dpdk.org/. ([n. d.]).

[43] Min Suk Kang, Soo Bum Lee, and Virgil D Gligor. 2013. The crossfire
attack. In IEEE Symposium on Security and Privacy (S&P ’13). 127–141.

[44] Brian Krebs. 2016. The Democratization of Censorship. https:
//krebsonsecurity.com/2016/09/the-democratization-of-censorship.
(2016).

[45] Xin Liu, Xiaowei Yang, and Yanbin Lu. 2008. To filter or to authorize:
Network-layer DoS defense against multimillion-node botnets. InACM
SIGCOMM. 195–206.

13

https://aiimpacts.org/trends-in-dram-price-per-gigabyte/
https://aiimpacts.org/trends-in-dram-price-per-gigabyte/
https://aws-shield-tlr.s3.amazonaws.com/2020-Q1_AWS_Shield_TLR.pdf
https://aws-shield-tlr.s3.amazonaws.com/2020-Q1_AWS_Shield_TLR.pdf
https://aws.amazon.com/shield/pricing
https://aws.amazon.com/shield/pricing
https://aws.amazon.com/about-aws/global-infrastructure
https://aws.amazon.com/about-aws/global-infrastructure
https://bird.network.cz/
https://bird.network.cz/
https://blog.cloudflare.com/network-layer-ddos-attack-trends-for-q2-2020/
https://blog.cloudflare.com/network-layer-ddos-attack-trends-for-q2-2020/
https://www.cloudflare.com/ips/
https://team-cymru.com/community-services/bogon-reference/
https://team-cymru.com/community-services/bogon-reference/
https://blog.cloudflare.com/l4drop-xdp-ebpf-based-ddos-mitigations/
https://blog.cloudflare.com/l4drop-xdp-ebpf-based-ddos-mitigations/
https://cloud.google.com/compute/docs/faq##find_ip_range
https://cloud.google.com/compute/docs/faq##find_ip_range
https://www.he.net/ip_transit.html
https://www.he.net/ip_transit.html
https://www.dpdk.org/
https://krebsonsecurity.com/2016/09/the-democratization-of-censorship
https://krebsonsecurity.com/2016/09/the-democratization-of-censorship

[46] Zhuotao Liu, Hao Jin, Yih-Chun Hu, and Michael Bailey. 2016. Middle-
Police: Toward enforcing destination-defined policies in the middle of
the Internet. In ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS ’16). 1268–1279.

[47] Ratul Mahajan, Steven M Bellovin, Sally Floyd, John Ioannidis, Vern
Paxson, and Scott Shenker. 2002. Controlling high bandwidth aggre-
gates in the network. ACM SIGCOMM CCR 32, 3 (2002), 62–73.

[48] Marek Majkowski. 2017. Meet Gatebot - a bot
that allows us to sleep. https://blog.cloudflare.com/
meet-gatebot-a-bot-that-allows-us-to-sleep. (2017).

[49] Marek Majkowski. 2018. How to drop 10 million packets per second.
https://blog.cloudflare.com/how-to-drop-10-million-packets/. (July
2018).

[50] Denis Makrushin. 2017. The cost of launching a DDoS
attack. https://securelist.com/analysis/publications/77784/
the-cost-of-launching-a-ddos-attack/. (2017).

[51] Rob Marvin. 2019. Chinese DDoS Attack Hits Telegram During Hong
Kong Protests. https://www.pcmag.com/news/chinese-ddos-attack-
hits-telegram-during-hong-kong-protests. (2019).

[52] MaxMind, Inc. 2021. GeoIP Products. https://dev.maxmind.com/geoip/.
(2021).

[53] John C. McCallum. 2021. Historical Memory Prices 1957+. https:
//jcmit.net/memoryprice.htm. (2021).

[54] Steven McCanne and Van Jacobson. 1993. The BSD Packet Filter: A
New Architecture for User-level Packet Capture.. In USENIX Winter,
Vol. 46.

[55] Rui Miao, Rahul Potharaju, Minlan Yu, and Navendu Jain. 2015. The
dark menace: characterizing network-based attacks in the cloud. In
ACM Internet Measurement Conference (IMC ’15). 169–182.

[56] NexusGuard. 2020. NexusGuard DDoS Threat Report, 2020
Q1. https://blog.nexusguard.com/threat-report/ddos-threat-report-
2020-q1. (2020).

[57] Packet Clearing House. 2021. Internet Exchange Point Growth by
Country. https://www.pch.net/ixp/summary_growth_by_country.
(2021).

[58] Bryan Parno, Dan Wendlandt, Elaine Shi, Adrian Perrig, Bruce Maggs,
and Yih-Chun Hu. 2007. Portcullis: protecting connection setup from
denial-of-capability attacks. In ACM SIGCOMM. 289–300.

[59] PeeringDB. 2021. The Interconnection Database.
https://www.peeringdb.com/. (2021).

[60] PF_RING. 2021. PF_RING: high-speed packet capture, filtering and
analysis. https://www.ntop.org/products/packet-capture/pf_ring/.
(2021).

[61] Providers that offer BGP sessions 2021. Providers that offer BGP
sessions. http://bgp.services/. (2021).

[62] James Reinders. 2005. VTune performance analyzer essentials. (2005).
[63] Luigi Rizzo. 2012. Netmap: a novel framework for fast packet I/O. In

USENIX Security Symposium (SEC ’12). 101–112.
[64] Dongwon Seo, Heejo Lee, and Adrian Perrig. 2013. APFS: adaptive

probabilistic filter scheduling against distributed denial-of-service
attacks. Computers & Security 39 (2013), 366–385.

[65] Amazon Web Services. 2021. AWS IP address ranges. https://docs.aws.
amazon.com/general/latest/gr/aws-ip-ranges.html. (2021).

[66] Lumin Shi, Devkishen Sisodia, Mingwei Zhang, Jun Li, Alberto Dain-
otti, and Peter Reiher. 2019. The Catch-22 Attack. In IEEE Annual
Computer Security Applications Conference (ACSAC ’19).

[67] Nikita Shirokov and Ranjeeth Dasineni. 2018. Open-
sourcing Katran, a scalable network load bal-
ancer. https://engineering.fb.com/open-source/
open-sourcing-katran-a-scalable-network-load-balancer/. (2018).

[68] The Spamhaus Project SLU. 2021. The Spamhaus Don’t Route Or Peer
Lists. https://www.spamhaus.org/drop/. (2021).

[69] Ahren Studer and Adrian Perrig. 2009. The coremelt attack. In Eu-
ropean Symposium on Research in Computer Security (ESORICS ’09).
37–52.

[70] Thomas Vissers, Tom Van Goethem, Wouter Joosen, and Nick Niki-
forakis. 2015. Maneuvering around clouds: Bypassing cloud-based
security providers. In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security. 1530–1541.

[71] David Wragg. 2020. Unimog - Cloudflare’s edge load balancer. https://
blog.cloudflare.com/unimog-cloudflares-edge-load-balancer/. (2020).

[72] Abraham Yaar, Adrian Perrig, and Dawn Song. 2004. SIFF: A state-
less internet flow filter to mitigate DDoS flooding attacks. In IEEE
Symposium on Security and Privacy (S&P ’04). 130–143.

[73] Xiaowei Yang, David Wetherall, and Tom Anderson. 2005. A DoS-
Limiting Network Architecture. In ACM SIGCOMM. 241–252.

[74] Zhenjie Yang, Yong Cui, Baochun Li, Yadong Liu, and Yi Xu. 2019.
Software-defined wide area network (SD-WAN): Architecture, ad-
vances and opportunities. In IEEE International Conference on Computer
Communication and Networks (ICCCN ’19). 1–9.

[75] Kok-Kiong Yap, Murtaza Motiwala, Jeremy Rahe, Steve Padgett,
Matthew Holliman, Gary Baldus, Marcus Hines, Taeeun Kim, Ashok
Narayanan, Ankur Jain, et al. 2017. Taking the edge off with Espresso:
Scale, reliability and programmability for global internet peering. In
ACM SIGCOMM. 432–445.

[76] ZoomInfo report page on Hurricane Electric 2020. ZoomInfo re-
port page on Hurricane Electric. https://www.zoominfo.com/c/
hurricane-electric-inc/56495174. (2020).

14

https://blog.cloudflare.com/meet-gatebot-a-bot-that-allows-us-to-sleep
https://blog.cloudflare.com/meet-gatebot-a-bot-that-allows-us-to-sleep
https://blog.cloudflare.com/how-to-drop-10-million-packets/
https://securelist.com/analysis/publications/77784/the-cost-of-launching-a-ddos-attack/
https://securelist.com/analysis/publications/77784/the-cost-of-launching-a-ddos-attack/
https://dev.maxmind.com/geoip/
https://jcmit.net/memoryprice.htm
https://jcmit.net/memoryprice.htm
https://www.pch.net/ixp/summary_growth_by_country
https://www.ntop.org/products/packet-capture/pf_ring/
http://bgp.services/
https://docs.aws.amazon.com/general/latest/gr/aws-ip-ranges.html
https://docs.aws.amazon.com/general/latest/gr/aws-ip-ranges.html
https://engineering.fb.com/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://engineering.fb.com/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://www.spamhaus.org/drop/
https://blog.cloudflare.com/unimog-cloudflares-edge-load-balancer/
https://blog.cloudflare.com/unimog-cloudflares-edge-load-balancer/
https://www.zoominfo.com/c/hurricane-electric-inc/56495174
https://www.zoominfo.com/c/hurricane-electric-inc/56495174

	Abstract
	1 Introduction
	2 Related work
	3 System components
	3.1 Vantage points
	3.2 Gatekeeper servers
	3.3 Grantor servers
	3.4 Queue management
	3.5 End-to-end example

	4 Implementation
	4.1 Intel DPDK
	4.2 System overview
	4.3 Hardware requirements
	4.4 Functional blocks

	5 Destination policies
	5.1 Design choices
	5.2 Writing production policies

	6 Evaluation
	6.1 Effect of policies
	6.2 The cost of destination policies
	6.3 Microbenchmarks
	6.4 Cost estimates of deployments

	7 Discussion
	8 Conclusion and future work
	References

