Skip to content
master
Switch branches/tags
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
R
 
 
 
 
man
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

hddtest

Functions for two sample hypothesis testing of high dimensional discrete data, specifically multinomial and multivariate binary data.

Installation

You can install hddtest from github with:

install.packages("devtools")
devtools::install_github("AmandaRP/hddtest", build = TRUE, build_opts = c("--no-resave-data", "--no-manual"))
library("hddtest")

Example

Generate two multinomial vectors and test whether they come from the same underlying distribution:

data <- genMultinomialData(null_hyp=FALSE, sample_size = 1)
multinom.test(x=data[[1]], y=data[[2]])
#> $statistic
#> [1] 9.266349
#> 
#> $pvalue
#> [1] 0

The last call can also be done using the magrittr forward pipe:

data %>% multinom.test
#> $statistic
#> [1] 9.266349
#> 
#> $pvalue
#> [1] 0

Available functions and datasets

See help documentation on each of the following via ?functionname

  • multinom.test
  • multinom.neighborhood.test
  • genMultinomialData
  • mvbinary.test
  • genMVBinaryData
  • twoNewsGroups

Vignette

Read more about the multinomial neighborhood test:

vignette("multinomial-neighborhood-test-vignette")

References

[1] Plunkett, A. & Park, J. (2018) Two-sample test for sparse high-dimensional multinomial distributions, TEST, doi.org/10.1007/s11749-018-0600-8

[2] Plunkett, A. & Park, J. (2017) Two-sample tests for sparse high-dimensional binary data, Communications in Statistics - Theory and Methods, 46:22, 11181-11193, DOI: 10.1080/03610926.2016.1260743

About

R package containing hypothesis tests for sparse high dimensional discrete data

Resources

Releases

No releases published

Packages

No packages published

Languages