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ABSTRACT
With tremendous amount of recommendation algorithms proposed
every year, one critical issue has attracted a considerable amount of
attention: there are no effective benchmarks for evaluation, which
leads to two major concerns, i.e., unreproducible evaluation and
unfair comparison. This paper aims to conduct rigorous (i.e., re-
producible and fair) evaluation for implicit-feedback based top-N
recommendation algorithms. We first systematically review 85 rec-
ommendation papers published at eight top-tier conferences (e.g.,
RecSys, SIGIR) to summarize important evaluation factors, e.g., data
splitting and parameter tuning strategies, etc. Through a holistic
empirical study, the impacts of different factors on recommendation
performance are then analyzed in-depth. Following that, we create
benchmarks with standardized procedures and provide the per-
formance of seven well-tuned state-of-the-arts across six metrics
on six widely-used datasets as a reference for later study. Addi-
tionally, we release a user-friendly Python toolkit, which differs
from existing ones in addressing the broad scope of rigorous eval-
uation for recommendation. Overall, our work sheds light on the
issues in recommendation evaluation and lays the foundation for
further investigation. Our code and datasets are available at GitHub
(https://github.com/AmazingDD/daisyRec).
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1 INTRODUCTION
Recent decades have witnessed the great prosperity of recom-
mender systems in both academia and industry [32]. Aiming to
provide personalized services to customers, recommendation algo-
rithms have been widely studied and applied in various domains,
ranging from e-commerce (e.g., Amazon, Tmall) to location-based
social networks (e.g., Foursquare, Yelp) and multi-media (e.g., Net-
flix, Spotify). Existing algorithms are dominated by three types of
underlying techniques: memory-based methods (MMs) [7, 29], la-
tent factor-based methods (LFMs) [32], and representation learning-
based methods (RLMs), including item embedding-based meth-
ods [2], and deep learning-based methods (DLMs) [14, 44].

With tremendous amount of recommendation algorithms being
proposed, one critical issue has attracted much attention from re-
searchers in the community: there are no effective benchmarks for
evaluation. It, consequently, leads to two major concerns, namely
unreproducible evaluation and unfair comparison. These problems
were first pointed out by [27, 28]. A recent study [26] shows that the
results of baselines reported in numerous publications over the past
five years are suboptimal. With a careful setup, the baselines can
outperform most of the newly proposed methods. This is consistent

23

https://github.com/AmazingDD/daisyRec
https://doi.org/10.1145/3383313.3412489
https://doi.org/10.1145/3383313.3412489
https://doi.org/10.1145/3383313.3412489


RecSys ’20, September 22–26, 2020, Virtual Event, Brazil Zhu Sun et al.

with another latest study [7], discovering that the recently proposed
DLMs [14] can be defeated by simpler baselines, e.g., ItemKNN [29],
with fine-tuned parameters. These findings have triggered heated
discussions on the evaluation of recommendation methods.

Different from other domains, e.g., computer vision, where ma-
ture benchmarks [8] are available to fairly evaluate the proposed
approaches, benchmarking recommendation is more challenging in
two aspects: (1) there exists a lot of datasets from different platforms
in each application domain. For example, widely used datasets in
the movie domain includes MovieLens (ML), Netflix and Amazon-
Movie, etc. Even for the same dataset, it may have various versions
covering different durations, e.g., ML-100K/1M/10M/20M/25M/Latest.
It is common that researchers choose different datasets heuristi-
cally, and only report results on the selected datasets; (2) there are
different data-processing strategies, data splitting methods, evalua-
tion metrics and parameter settings, etc. For instance, some studies
adopt 5-filter setting [41] to filter out users and items with less
than 5 ratings, while others adopt 10-filter setting [37, 38]. In terms
of data splitting methods, some utilize leave-one-out [14], while
others leverage split-by-ratio (e.g., training: validation: test = 80%:
10%: 10%) [37]. Most importantly, the majority of papers do not
report details on data processing and parameter settings, leading
to inconsistent results in reproduction by different researchers.

These issues motivate us to investigate evaluation rigorousness
(i.e., reproducibility and fairness) in recommendation. We choose
to focus on the top-N recommendation task, one of the most promi-
nent tasks in recommendation, and leave other tasks (e.g., temporal,
session, location, group and cross domain aware recommendation)
for future exploration. To achieve this, (1) we first systematically
review 85 papers related to implicit feedback based top-N recom-
mendation published in the recent three years (2017-2019) on eight
top-tier conferences as representatives, including RecSys, KDD,
SIGIR, WWW, IJCAI, AAAI, WSDM and CIKM (most important
venues that accept high-quality recommendation papers). From
those papers, we summarize essential factors related to evaluation,
including utilized datasets, data pre-processing strategies, compari-
son baselines, loss function designs, negative sampling strategies,
data splitting methods, evaluation metrics, and parameter tuning
strategies. (2) Through a holistic empirical study, we then com-
prehensively analyze the influence of different factors on recom-
mendation performance. Our results further confirm the findings
obtained in the recent study [7, 26]. Besides, several interesting
observations are noted, for example, (a) the recommendation per-
formance does not necessarily improve with denser datasets; (b) the
objective function with pair-wise log loss generally outperforms
other types of objective functions; (c) uniform sampler, though sim-
ple, performs better than the popularity based sampler; and (d) the
best hyper-parameter settings for one specific metric does not nec-
essarily guarantee optimums w.r.t. other metrics. (3) Based on the
empirical results, we create benchmarks where we propose the stan-
dardized procedures to improve the reproducibility and fairness
of evaluation. Meanwhile, the performance of seven well-tuned
state-of-the-arts on six widely-used datasets across six metrics is
provided as a reference for later study. (4) Furthermore, we have
released a user-friendly Python toolkit for rigorous evaluation. We
point out that although there are several existing libraries (e.g.,
LibRec [11] and DeepRec [45]) in recommendation, they mainly

aim to reproduce the logic of various state-of-the-arts. They seldom
consider reproducibility from the angle of performing rigorous eval-
uation in recommendation. To sum up, our work sheds lights on the
urgent issues of rigorousness in the evaluation for recommendation,
and lays foundation for further investigation on this topic.

2 PAPER COLLECTION AND ANALYSIS
2.1 Paper Collection
To achieve rigorous evaluation for recommendation, we first con-
duct a comprehensive review over papers published in the recent
three years (2017-2019) on eight top-tier conferences, namely, Rec-
Sys, KDD, SIGIR, WWW, IJCAI, AAAI, WSDM and CIKM. As a
starting point, we mainly focus on methods for implicit feedback
based top-N recommendation, which is one of the most important
tasks in recommendation. Other tasks (e.g., session-aware recom-
mendation) are left for future exploration. We first search the ac-
cepted full paper lists (8 ∗ 3 = 24) for the eight conferences in the
three years. Given our interest and the 24 lists, we consider papers
with titles containing the keywords ‘recommend∗’ or ‘collaborative
filtering’. After that, we manually select papers that adopt ranking
metrics (e.g., Precision, Recall) to evaluate the performance of rec-
ommendation. In the end, we obtain a collection of 85 papers and
summarize their distribution over the conferences and publication
years in Figure 1(a). Due to space limitation, details of these papers
are listed in the Additional Material of our GitHub repository. Based
on this collection, we conduct a systematic analysis to investigate
the essential factors related to evaluation, including the utilized
datasets, data pre-processing, comparison baselines, loss function de-
signs, negative sampling strategies, data splitting methods, evaluation
metrics, and parameter tuning strategies, as detailed below.

2.2 Paper Analysis
2.2.1 Datasets. Analyzing the collected papers, we find two major
issues of the utilized datasets: (1) domain diversity, i.e., there are
plenty of datasets within and across various domains, as shown in
the Additional Material of our GitHub repository; (2) version diver-
sity, i.e., many datasets, although with the same name, may have
different versions. For example, we find more than three versions
for Yelp, as it has been updated for different rounds of the hosting
challenge. Overall, there are 65 different datasets used in the 85 pa-
pers (different versions of a dataset counted only once). Figure 1(b)
shows the popularity of the top-15 datasets , measured by the per-
centage of relevant papers: around 90% of the 85 papers adopt at
least one of the 15 datasets. Considering dataset popularity and
domain coverage, we select six datasets for our study as highlighted
in red in Figure 1(b): ML-1M (Movie), Lastfm (Music), Yelp (LB-
SNs), Epinions (SNs), Book-X (Book) and AMZe (Consumable).
The selected datasets cover 67% papers of the collection.

To ease the version diversity issue, we conduct a careful selec-
tion by considering the authority and information richness of data
sources, which could benefit the study on diverse recommenders.
Specifically, we use MovieLens-1M (ML-1M) released by GroupLens
(grouplens.org/datasets/movielens/); Lastfm was released by the
2nd international workshop HetRec 2011 (ir.ii.uam.es/hetrec2011/);
Yelp was created by Kaggle in 2018 (www.kaggle.com/yelp-dataset/
yelp-dataset); Epinions was crawled by [33] containing timestamp
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Figure 1: (a) shows the summary of the collected papers; (b) depicts the popularity of top-15 datasets, where ‘ML, Book-X,
AMZm/b/e/c/s’ are MovieLens, Book-Crossing and Amazon Music/Book/Electronic/Clothing/Sports, respectively. The six se-
lected datasets are highlighted in red; (c) shows the popularity of top-10 baselines, where the selected seven baselines are
highlighted in red.; and (d) shows the popularity of evaluation metrics, where the six selected metrics are highlighted in red.

and item category information; Book-Crossing (Book-X) [47] was
collected by Cai-Nicolas Ziegler from the Book-Crossing commu-
nity (grouplens.org/datasets/book-crossing/); Amazon Electronic
(AMZe) was released by Julian McAuley (jmcauley.ucsd.edu/data/
amazon/links.html). The statistics of all datasets are listed in Table 1.

2.2.2 Data Pre-Processing. Aswe focus on implicit feedback, datasets
with explicit feedback (e.g., ratings or counts) are binarized into
implicit data. Let u ∈ U, i ∈ I denote user u and item i;U,I are
user and item sets; and rui ∈ R is the binary feedback of u over i .
For each user, we convert all her explicit feedback with no less than
a threshold t into positive feedback (rui = 1); otherwise, negative
feedback (rui = 0). Regarding t , different papers may have different
settings (e.g., t = 1/2/3/4). Following majority studies [34, 36, 39],
we set t = 4 for ML-1M, and t = 1 for the rest datasets.

Generally, the original datasets are extremely sparse, where most
users only interact with a small number of items, e.g., less than
five. In evaluation, the datasets are usually pre-processed to filter
out the extremely inactive users and items. By analyzing the paper
collection, we have found out that around 50% of papers adopt
pre-processing strategies; while 27% of papers utilize the original
datasets; and 23% of papers do not report details on data processing.
Among the papers adopting pre-processing strategies, more than
60% of them utilize 5- or 10-filter setting on the datasets, i.e., by
filtering out users and items with less than 5 or 10 interactions, re-
spectively. While, others adopt, such as 1-, 2-, 3-, 4-, 20- or 30-filter
settings, on the datasets. To measure the performance and robust-
ness of methods across different data sparsity, we take, besides
original datasets, the two most common settings (i.e., 5- and 10-
filter) on all selected datasets. Detailed statistics of the datasets are
summarized in Table 1. Note that K−fiter is different from K−core:
the former means that users and items are only filtered with less
than K interactions in one pass; by contrast, the latter indicates a
recursive filter until all users and items have at least K interactions.

2.2.3 Comparison Baselines. As observed from the collected pa-
pers, the compared baselines vary a lot in different papers. We

show the top-10 widely-compared baselines in these papers in
Figure 1(c), covering 93% of papers in total, that is, 93% of the pa-
pers consider at least one of the 10 baselines. The baselines fall
into three broad categories, (1) memory-based methods (MMs):
MostPop, ItemKNN [29]; (2) latent factor-based methods (LFMs):
BPRMF [25], FM [24], WRMF [17], PureSVD [6], SLIM [22] and
eALS [13]; and (3) representation learning-based methods (RLMs):
NeuMF [14] and CKE [43]. For our study, we take 7 baselines into
account, as highlighted in red in Figure 1(c).

In particular, two MMs are considered: MostPop is a
non-personalized method and recommends most popular items
to all users; ItemKNN1 is a K-nearest neighborhood based method
recommending items based on item similarity. We adapt it for im-
plicit feedback data following [17], and adopt cosine similarity. In
terms of the LFMs, we selectBPRMF as the representative of matrix
factorization method, and leave WRMF and eALS for future explo-
ration; BPRFM (factorization machine) considers the second-order
feature interactions between inputs. We train it by optimizing the
BPR loss [25]; PureSVD directly performs conventional singular
value decomposition on the user-item implicit interaction matrix,
where all the unobserved entries are set as 0; SLIM [22] learns a
sparse item-item similarity matrix by minimizing a constrained
reconstruction square loss. Regarding to the RLMs, NeuMF [14]
is considered, which is a state-of-the-art neural network method.
CKE is left for future study, as it involves textual and visual in-
formation in addition to the user-item interaction data. Besides,
more advanced deep learning baselines, e.g., NeuFM [15], VAE [19],
CDAE [40] are also left for future exploration.

2.2.4 Objective Function. Two types of objective functions are
widely utilized: point-wise (49% of the collected papers) and pair-
wise (42% of the collected papers). The former only relies on the
accuracy of the prediction of individual preferences; whilst the
latter approximates ranking loss by considering the relative order
of the predictions for pairs of items. Regardless of which one is

1We copied two (cython and python) files from the source code of paper [7] for the item
similarity calculation; ItemKNN and SLIM are built on the source code of paper [7].
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Table 1: Statistics of datasets.
Dataset ML-1M Lastfm Yelp Epinions Book-X AMZe

origin
#User 6,038 1,892 1,326,101 22,164 105,283 4,201,696
#Item 3,533 17,632 174,567 296,277 340,556 476,002
#Record 575,281 92,834 5,261,669 922,267 1,149,780 7,824,482
Density 2.697e-2 2.783e-3 2.273e-5 1.404e-4 3.207e-5 3.912e-6

5-filter
#User 6,034 1,874 227,109 21,995 22,072 253,994
#Item 3,125 2,828 123,985 31,678 43,748 145,199
#Record 574,376 71,411 3,419,587 550,117 623,405 2,109,869
Density 3.046e-2 1.348e-2 1.214e-4 7.895e-4 6.456e-4 5.721e-5

10-filter
#User 5,950 1,867 96,168 21,111 12,720 63,161
#Item 2,811 1,530 80,351 14,030 18,318 85,930
#Record 571,549 62,984 2,458,153 434,162 443,196 949,416
Density 3.412e-2 2.205e-2 3.181e-4 1.466e-3 1.902e-3 1.749e-4

Timestamp
√

×
√ √

×
√

deployed, it is critical to properly exploit unobserved feedback
within the model, as merely considering the observed feedback fails
to account for the fact that feedback is not missing at random, thus
being not suitable for top-N recommenders [40].

Let L denote the objective function of recommendation task, the
point- and pair-wise objectives are thus given by:

Lpoi =
∑

(u,i)∈Õ
f (rui , r̂ui ) + λΩ(Θ)

Lpai =
∑

(u,i, j)∈Õ
f (rui j , r̂ui j ) + λΩ(Θ)

where Õ = {O+ ∪ O−} is the augmented dataset with the unob-
served user-item pairs O− = {(u, j)|ruj = 0} in addition to the
observed user-item set O+ = {(u, i)|rui = 1}; f (·) is the loss func-
tion; rui , r̂ui are the observed and estimated feedback of user u on
item i , respectively; (u, i, j) is the triple meaning that user u prefers
positive item i to negative item j; rui j = rui − ruj , r̂ui j = r̂ui − r̂uj ;
Ω(Θ) is the regularization term; Θ is the set of model parameters to
be learnt. W.r.t. the loss function f (·), point-wise objective usually
adopts square loss and cross-entropy (CE) loss, whereas pair-wise
objective generally employs log loss and hinge loss:

Lpoi =

{
Square fsl (rui , r̂ui ) =

1
2 (rui − r̂ui )

2

CE fcl (rui , r̂ui ) = −rui loд(r̂ui ) − (1 − rui )loд(1 − r̂ui )

Lpai =

{
Log fl l (rui j , r̂ui j ) = loд(1 + exp(−rui j · r̂ui j ))
Hinge fhl (rui j , r̂ui j ) =max(0, 1 − rui j · r̂ui j )

We follow majority studies [14, 31, 36, 37] and treat the unob-
served feedback as negative feedback. We note that there may be
different explanations behind the unobserved feedback [46], which
we leave for further exploration. Table 2(a) shows the original ob-
jective functions used by BPRMF, BPRFM, NeuMF and SLIM (see
formulas in the Additional Material of our GitHub repository). Be-
sides, we vary different objective functions on these baselines to
further investigate their respective impacts. Note that MostPop,
ItemKNN and PureSVD do not have objective functions; we did not
consider the square loss, as it is more suitable for rating prediction
task instead of ranking problem [25]; and we did not study the
impacts of different objectives on SLIM due to its high complexity
and low scalability, which will be discussed in Section 3.6.

2.2.5 Negative Sampling. As pointed out in Section 2.2.4, prop-
erly exploiting the unobserved feedback (treated as negative sam-
ples [14, 37]) helps learn users’ relative preferences and benefits
more accurate top-N recommendation. This can be further sup-
ported by the fact that 70% of the collected papers consider the

Table 2: For each record in Table (b), the 1st and 2ndnumbers
separated by commadenote the average sizes of training and
test sets for each user, respectively.

(a) Objective functions of different baselines
Method BPRMF BPRFM SLIM NeuMF

Origin Lpai + fl l Lpai + fl l Lpoi + fsl Lpoi + fcl
To explore Lpai + fhl Lpai + fhl – Lpai + fl l

Lpoi + fcl Lpoi + fcl – Lpai + fhl

(b) Average size of training & test sets for each user.
Setting ML-1M Lastfm Yelp Epinions Book-X AMZe

origin 86, 64 39, 10 4, 2 35, 30 10, 5 2, 2
5-filter 86, 64 30, 8 13, 5 23, 13 23, 7 7, 3
10-filter 86, 64 27, 7 21, 8 20, 10 28, 8 12, 5

unobserved feedback when designing objective functions regard-
less of point-wise and pair-wise ones. However, it is not practical to
leverage all unobserved feedback in large volume, asmost users only
provide feedback for a small number of items. Negative sampling
is, therefore, adopted to balance the efficiency and effectiveness.

Typically, there are different kinds of negative sampling strate-
gies. For instance, uniform sampler [14], where all unobserved
items of each user are sampled with an equal probability, has been
adopted by almost all the papers in the collection on our observa-
tion. To better study the impact of negative sampling, we addition-
ally consider and compare item popularity-based samplers, which
have also been considered in recommendation [13, 41]: (1) low-
popularity sampler: for each user, her unobserved items with
a lower popularity are sampled with a higher probability. This is
based upon the assumption that a user is less likely to prefer less
popular items; and (2) high-popularity sampler: it is opposite
to the low-popularity sampler, and the unobserved items of each
user with a higher popularity are more probably to be sampled. The
rationale behind is that: if a user provides no feedback for a quite
popular item favored by a large number of users, it indicates that
she may be really not into this item.

2.2.6 Data Splitting Methods. There are mainly two types of data
splittingmethods in the collected papers: split-by-ratio (61% of the
papers) and leave-one-out (28% of the papers). In particular, split-
by-ratio means that a proportion ρ (e.g., ρ = 80%) of the dataset
(i.e., user-item interaction records) is treated as training set, and the
rest (1 − ρ = 20%) as test set. While, leave-one-out refers to that for
each user, only one record is kept for test and the remaining are for
training. Besides, 5% of papers directly split training and test sets
by a fixed timestamp, that is, the data before the fixed timestamp
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is used as training set, and the rest as test set; 6% of papers do not
report their data splitting methods.

Although 61% of papers adopt split-by-ratio, they are quite differ-
ent due to: (1) different proportion settings, e.g., ρ = 50%, 70%, 90%;
(2) global- or user-level split. That is, some globally split the en-
tire records into training and test sets regardless of different users;
whilst others split training and test sets on the user basis; and
(3) random- or time-aware split. Among papers exploiting split-
by-ratio, 88% of papers merely randomly split the data, whereas
12% of papers split the data based on the timestamp, i.e., the ear-
lier (e.g., ρ = 80%) records as training and the later ones as test.
In terms of leave-one-out, the split is generally on the user basis,
and we find that timestamp is taken into account by 54% of pa-
pers with leave-one-out. Besides, to improve the test efficiency,
they usually randomly sample a number of negative items (e.g.,
neд_test = 99, 100, 999, 1, 000) that are not interacted by each user,
and then rank each test item among the (neд_test +1) items [14]. In
our study, we follow the majority practice and select both random-
and time-aware split-by-ratio at global-level with ρ = 80% as
our data splitting method, and leave the exploration on leave-one-
out as future work. Meanwhile, to speed up the test process, we
randomly sample negative items for each user to ensure her test
candidates to be 1, 000, and rank all test items among the 1, 000
items. Table 2(b) depicts the average number of test items for each
user on the six datasets across origin, 5- and 10-filter settings, where
all values are smaller than 100, indicating that 1, 000 test candidates
is sufficient to examine the performance of recommenders.

2.2.7 Evaluation Metrics. The evaluation metrics change a lot in
different papers in the collection. Figure 1(d) depicts the popularity
of the used evaluation metrics. We thus adopt the top-6 metrics
covering 94% of the collected papers, meaning 94% of these pa-
pers adopt at least one of the six metrics. They are Precision,
Recall, Mean Average Precision (MAP), Hit Ratio (HR), Mean
Reciprocal Rank (MRR) and Normalized Discounted Cumulative
Gain (NDCG), where the first four metrics measure whether a test
item is present in the top-N recommendation list, whilst the latter
two metrics accounts for the ranking positions of test items (see
formulas in the Additional Material of our GitHub repository).

2.2.8 Hyper-parameter Tuning. Hyper-parameter tuning, includ-
ing parameter validation and searching strategies, plays a vital role
in training recommenders, thus influencing the final performance.

Validation Strategy. Through analysis, we notice that more than
37% of papers directly tune hyper-parameters based upon the per-
formance on the test set. That is to say, they use the same data to
tune model parameters and evaluate model performance. Informa-
tion may thus leak into the model and overfit the historical data. In
fact, besides the split for training and test sets in cross-validation,
an extra validation set should be retained to help tune the hyper-
parameters, which is called nested validation. With nested valida-
tion, the optimal hyper-parameter settings are obtained when the
model achieves the best performance on the validation set. By doing
so, the information leak issue is well avoided in the model training
and evaluation process. In our study, we adopt the nested validation
strategy, that is, in each fold of cross-validation, we further select
from the training set 10% of records as the validation set to tune

hyper-parameters. Once the optimal settings for hyper-parameters
are decided, we feed the whole training set (including the validation
set) to train the final model and then report the performance on
the test set. Due to the computational requirements of certain of
baselines, we were unable to search in a reasonable amount of time
the hyper-parameter space for a inner-loop of cross-validation for
splitting the validation set from the training set.
Searching Strategy. From our observation, almost all of the col-
lected papers employ grid search [14, 37] to find out the optimal
parameter settings. In particular, each hyper-parameter is provided
with a set of possible values (i.e., search space) based on the prior-
knowledge, and the optimal setting is then obtained by traversing
the entire search space. Suppose a model hasm parameters, where
each parameter has an average of n possible values, the model
needs to be executed for nm times to find out optimal settings for
all parameters. Therefore, grid search is more suitable for models
with less parameters; otherwise, it may suffer from the combina-
tion explosion issue. To improve the parameter tuning efficiency,
other strategies have been introduced. Given the search space of
each parameter, random search [4] randomly chooses trials for a
pre-defined times (e.g., 30) instead of traversing the entire search
space. It is able to find models that are as good or slightly worse but
within a smaller fraction of the computation time. On the contrary,
Bayesian HyperOpt [30] is not a brute force but more intelligent
technique compared to grid and random search. It makes use of in-
formation from past trials to inform the next set of hyperparameters
to explore, while not compromising the quality of the results [7].
To achieve an efficient hyper-parameter tuning, we adopt Bayesian
HyperOpt to perform hyper-parameter optimization on NDCG,
which is the most popular metrics among all evaluation metrics as
shown in Figure 1(d). In this case, other metrics are expected to be
simultaneously optimized with the optimal results on NDCG.

3 IMPACTS OF DIFFERENT FACTORS
3.1 Data Pre-processing
To study the impacts of pre-processing strategies (origin, 5- and 10-
filter), we adopt Bayesian HyperOpt to perform hyper-parameter
optimization w.r.t. NDCG@10 for each baseline under each strategy
on each dataset for 30 trails [7]. We keep original objective func-
tions for each baseline (see Table 2(a)), employ the uniform sampler,
and adopt time-aware split-by-ratio at global level (ρ = 80%) as the
data splitting method. Besides, 10% of the latest training set is held
out as the validation set to tune the hyper-parameters. Once the op-
timal settings for hyper-parameters are decided, we feed the whole
training set to train the final model and report the performance
on the test set (without further statement, the subsequent studies
follow these settings). Figure 2 depicts the final results, where SLIM
is omitted due to its extremely high computational complexity,
which is unable to complete in a reasonable amount of time (see
Section 3.6). Meanwhile, the results of NeuMF on AMZe with origin
setting are not available due to lack of computational memory. Due
to the space limitation, we only report the results on NDCG@10.

Overall, three different trends can be observed from the results:
(1) the performance of different baselines keeps relatively stable on
ML-1M with varied settings; (2) on Yelp, Book-X and AMZe, the
performance of all baselines generally climbs up; and (3) a clear
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Figure 2: Performance of baselines w.r.t. time-aware split-by-ratio on the six datasets across origin, 5- and 10-filter settings.
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Figure 3: Impacts of different objective functions on different baselines w.r.t. time-aware split-by-ratio across the six datasets.

performance drop is observed on Lastfm and Epinions. The most
probable explanation is that although the density of the datasets
increases (origin → 5-filter → 10-filter) as shown in Table 1, the
average length of the training sets for each user keeps stable on
ML-1M (86); increases on Yelp, Book-X and AMZe; and decreases
on Lastfm (39 → 30 → 27) and Epinions (35 → 23 → 20), as
depicted by Table 2(b). The more training data per user, the better a
model can be trained, meaning that the more accurate performance
can be achieved, and vice versa.

Regarding the performance of different baselines, we notice that
(1) in most cases, the MMs – MostPop performs the worst, sug-
gesting the importance of personalization in recommendation; and
ItemKNN is defeated by the LFMs and DLMs, indicating the superi-
ority of LFMs and DLMs on effective recommendation. However,
on ML-1M, the performance of MostPop exceeds that of ItemKNN,
PureSVD and even BPRMF, demonstrating the potential of popular-
ity in effective recommendation; and on Lastfm, ItemKNN achieves
comparable even better performance in comparison with LFMs and
DLMs. This implies that, the neighborhood-based idea, though sim-
ple, could be absorbed by LFMs and DLMs to further improve the
recommendation accuracy [18]; (2) w.r.t. the three LFMs, BPRMF
generally performs better than PureSVD but worse than BPRFM. Al-
though PureSVD is simple – directly applying conventional sigular
value decomposition on the user-item implicit interaction matrix,
it sometimes can achieve comparable and even better performance
when compared with BPRMF and BPRFM (see Lasfm-origin, Yelp-
10-filter, Book-X-10-filter); (3) NeuMF, as the sole DLM among all
baselines, performs comparably to BPRFM, and better than BPRMF
on ML-1M and AMZe. However, on the rest four datasets, it gen-
erally underperforms BPRFM, BPRMF, and even PureSVD. This is
consistent with the previous findings [7] that DLMs are not always
better than traditional methods with well-tuned parameters, but
mostly cost much more in training as verified by Table 3.

3.2 Objective Function
To examine the impacts of different objective functions, we adopt
the optimal parameters for the baselines found on 10-filter set-
ting in Section 3.1, and only vary objective functions for BPRMF,
BPRFM and NeuMF (without further statement, the subsequent

studies are based on 10-filter setting and adopt the corresponding
optimal parameters found in Section 3.1). The results are depicted
by Figure 3, where Poi+CL (point-wise cross entropy loss), Pai+LL
(pair-wise log loss), Pai+HL (pair-wise hinge loss) correspond to
Lpoi + fcl ,Lpai + fl l and Lpai + fhl in Table 2(a), respectively.
Several conclusions can be drawn: (1) as a whole, Pai+LL generally
achieves the best performance on the six datasets, but it is hard
to compare the performance of Poi+CL and Pai+HL. For example,
Poi+CL outperforms Pai+HL on AMZe, whereas cases are different
on the other datasets; (2) from the perspective of different base-
lines, BPRMF usually achieves the best performance with Pai+LL;
BPRFM is relatively less sensitive to different objectives, indicating
its robustness; and NeuMF performs comparably with Poi+CL and
Pai+LL, whilst obtains worse results with Pai+HL.

3.3 Negative Sampling
This subsection explores the impact of different negative samplers,
i.e., uniform, low-popularity (L-pop) and high-popularity (H-pop)
on BPRMF, BPRFM and NeuMF across the six datasets with 10-
filter settings. To this end, we only vary negative samplers for
the baselines while keeping other parameters fixed. To sum up,
uniform sampler, though simple, achieves the best performance, as
illustrated by Figure 4. In particular, a counter-intuitive observation
is observed – the baselines with uniform sampler performs better
than those with Low-pop. Intuitively, users may not tend to buy the
less popular items, that is, the items with low popularity are more
likely to be the negative items for users. However, it is overturned
by the empirical results. Besides, L-pop slightly outperforms H-
pop, which indicates that generally the popular items have a lower
probability to become negative items than the less popular ones.
Meanwhile, we also notice that on ML-1M the performance of H-
pop for BPRMF far exceeds that of Uniform and L-pop, suggesting
that a proper combination of uniform and popularity based samplers
may potentially enhance the recommendation accuracy [16].

3.4 Data Splitting Methods
Here, we aim to test the impacts of different data splitting methods
on the recommendation performance. For a practical study, we only
compare random- and time-aware split-by-ratio at global level with
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Figure 4: Impacts of different negative samplers on different baselines w.r.t. time-aware split-by-ratio across the six datasets.
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Fig. 5. (a-d) depict the performance of random- and time-aware split-by-ratio on different baselines across the four datasets; (e-f)
show the correlations of evaluation metrics w.r.t. time-aware split-by-ratio, where ‘Pre’, ‘Rec’ denote Precision and Recall, respectively.

However, on ML-1M, the performance of MostPop exceeds that of ItemKNN, PureSVD and even BPRMF, demonstrating
the potential of popularity in effective recommendation; and on Lastfm, ItemKNN achieves comparable even better
performance in comparison with LFMs and DLMs. This implies that, the neighborhood-based idea, though simple,
could be absorbed by LFMs and DLMs to further improve the recommendation accuracy [18]; (2) in terms of the
three LFMs, BPRMF generally performs better than PureSVD but worse than BPRFM. Although PureSVD is simple –
directly applying conventional sigular value decomposition on the user-item implicit interaction matrix, it sometimes
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and better than BPRMF on ML-1M and AMZe. However, on the rest four datasets, it generally underperforms BPRFM,
BPRMF, and even PureSVD. This is consistent with the previous findings [7] that DLMs are not always better than
traditional methods with well-tuned parameters, but mostly cost much more in training as verified by Table 3.

3.2 Objective Function

To examine the impacts of different objective functions, we adopt the optimal parameters for the baselines found on
10-filter setting in Section 3.1, and only vary objective functions for BPRMF, BPRFM and NeuMF (without further
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Figure 5: (a-d) depict the performance of random- and time-aware split-by-ratio on baselines across the four datasets; (e-f) show
the correlations of evaluation metrics w.r.t. time-aware split-by-ratio, where ‘Pre’, ‘Rec’ are Precision and Recall, respectively.

ρ = 80%, and leave other data splitting methods (e.g., leave-one-out)
as futurework. Figure 5(a-d) display the results of seven baselines on
the four datasets with 10-filter setting, where we can clearly observe
that baselines with random-aware split-by-ratio outperform those
with time-aware split-by-ratio, especially on Epinions. The reason
behind is that compared with random-aware split, time-aware split
poses a stronger constraint on the pattern of training and test data,
thus increasing the training difficulty. However, this is more close to
the real recommendation scenario, which strives to infer future by
history. Our study also implies that the empirical results disclosed
in previous studies using random-aware split-by-ratio might be
overestimated compared to those for real-world scenarios.

3.5 Evaluation Metrics
As discussed in Section 3.1, we adopt Bayesian HyperOpt to perform
hyper-parameter optimization for 30 trials via optimizing NDCG.
However, six metrics are utilized in this study, including Precision,
Recall, HR, MAP, MRR and NDCG. The best hyper-parameter set-
tings for optimal NDCG does not necessarily guarantee optimums
w.r.t. the other five metrics. Hence, we study the correlation of
different metrics when their respective optimums are achieved. In
particular, for each baseline on each dataset with 10-filter setting,
the Bayesian HyperOpt executes 30 trails, we thus have 30 entries
for the validation performance of the baseline correspondingly,
where each entry includes the results on the six metrics, e.g., [Pre-
cision: 0.24; Recall: 0.07; HR: 0.57; MAP: 0.17; MRR: 0.76; NDCG:
0.42]. Due to the optimal results for the six metrics may not achieve
simultaneously, we select the optimal one among the 30 entries for
each metric, and ultimately obtain six entries, where each entry
records the best result on the corresponding metric.

Based on this, we pair-wisely calculate and record the times that
any two of them (e.g., NDCG and HR) can achieve their best results
simultaneously entry by entry. For example, given the optimal
entry for NDCG, we will check whether the rest five metrics (e.g.,
HR) in this entry are optimal or not. If yes, we will add one at
the corresponding position (NDCG, HR) of the correlation matrix;
otherwise 0. The same rule is applied to the optimal entries for

the other five metrics. Except MostPop, as it does not have any
hyper-parameters, we accumulate the results of six baselines across
the six datasets (6*6=36), and ultimately obtain their correlation
matrix as illustrated by Figure 5(e), where all values are normalized
into the range of [0, 1] (divided by 36), and a darker color indicates
a stronger correlation, that is, a higher probability of two metrics
achieving their best results in the meanwhile. The results help
verify our argument that best hyper-parameter settings for optimal
NDCG cannot ensure optimal results for all the other five metrics.
Moreover, we notice that the correlation matrix is asymmetrical.
For instance, the correlation for (NDCG, HR, 0.72) is higher than
(HR, NDCG, 0.64). That is to say, the probability of a model with
best NDCG to achieve the best HR is higher than that of a model
with best HR to reap the optimal NDCG. Meanwhile, the best MRR
and MAP are more easily to be guaranteed concurrently with (MRR,
MAP, 0.78) and (MAP, MRR, 0.75). Additionally, we examine the
Kendall’s correlation [35] among metrics in terms of indicating
recommendation performance on the seven baselines across six
datasets. The results are depicted by Figure 5(f), where a darker
color (a stronger correlation) implies that the metrics produce more
identical ranking. We see that Recall is noticeably poorly correlated
with other metrics, whilst the ranking produced by the rest of the
metrics shows a fairly strong correlation. In sum, a convincing and
solid evaluation should be performed w.r.t. more diverse metrics.

3.6 Complexity Analysis
Table 3 shows the training time (with optimal hyper-parameters
found by Bayesian HyperOpt under 10-filter setting) for the seven
baselines on the six datasets. All the experiments are executed on
an Amazon EC2 P2 instance (p2.8xlarge) with eight NVIDIA Tesla
K80 Accelerators, each running a pair of NVIDIA GK210 GPUs
and providing 12 Gib of memory; 16 CPU core (2.3 GHZ) sharing
488 GiB memory. Several major findings are noted. (1)MostPop is
the fastest one in training, as it merely ranks all the items by the
calculated popularity; (2) PureSVD is the runner-up with time com-
plexity O(min{m2 f ,n2 f }), wherem,n, f are the number of users,
items and singular values, respectively. Compared with other LFMs
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Table 3: Baseline comparisons on training time (seconds).

MMs LFMs DLMs MMs LFMs DLMs
MostPop ItemKNN PureSVD BPRMF BPRFM SLIM NeuMF MostPop ItemKNN PureSVD BPRMF BPRFM SLIM NeuMF

ML-1M 0.0149 50.976 0.7994 453.24 1,377.7 65.451 10,991 Epinions 0.0142 40.486 1.6707 1,696.8 2,081.1 827.29 8,476.5
Lastfm 0.0036 4.6749 0.0968 260.98 326.43 5.4544 397.08 Book-X 0.0151 43.137 1.4517 1,876.8 2,186.9 695.57 24,783
Yelp 0.0624 311.29 12.325 15,407 17,746 18,746 29,376 AMZe 0.0343 134.00 1.5266 2,807.7 4,674.6 7,410.0 47,103
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Figure 6: Overall Structure of DaisyRec.

and DLMs, it achieves a better balance between time complexity
and accuracy. Particularly, it performs comparably and sometimes
even better than BPRMF as depicted by Figure 2, while its train-
ing time is thousands times less than that of BPRMF; (3) although
ItemKNN ranks third among all baselines with 10-filter setting,
the time cost quadratically increases with origin setting due to its
time complexity O(mn2). Besides, the similarity matrix also takes
up huge memory, for example, on the original AMZe (n ≈ 106),
it will cost (64 bit ∗ 106 ∗ 106)/1012 = 64T to save the similarity
matrix. To ease this issue, we only keep the top-100 similar items
for each target item in the memory; (4) the training time of BPRFM
is slightly higher than that of BPRMF, as it requires updating global,
user and item biases in addition to the user and item latent factors.
The time complexity for both methods is O(|R|d), where R is the
total number of observed feedback and d is the dimension of latent
factors; (5) similar to ItemKNN, the time cost of SLIM with 10-filter
setting is acceptable, while it tremendously increases with origin
setting due to its time complexity O(|R |n). Meanwhile, it also suf-
fers from the huge memory cost issue because of the learned item
similarity matrix. Hence, both ItemKNN and SLIM are not scalable
for large-scale datasets; and (6) NeuMF, although yields compa-
rable performance, costs much more training time than BPRFM,
especially on larger datasets. For example, on AMZe, the training
time of NeuMF is ten times larger than that of BPRFM.

4 BENCHMARKING EVALUATION
4.1 Introduction to DaisyRec
To support our study, we build a Python toolkit named asDaisyRec,
where Daisy is short for ‘Multi-Dimension fAIrly compArIson
for recommender SYstem’. Different from existing open-source li-
braries (e.g., LibRec [11], OpenRec [42] and DeepRec [45]), which
mainly aim to reproduce various state-of-the-art recommenders,
DaisyRec is designed with the goal of performing rigorous eval-
uation in recommendation. It is built upon the widely-used deep
learning framework Pytorch (pytorch.org/), and Figure 6 depicts
its overall structure consisting of three modules: Loader, Recom-
mender and Evaluator. In particular, Loader mainly aims to: (1) load
and pre-process the dataset; (2) split it into training and test sets

based on the selected Splitter; (3) divide validation set from training
set by choosing proper Splitter according to Step 2; (4) sample neg-
ative items for training by choosing samplers; and (5) convert the
data into the specific format to fit the Recommender. Two compo-
nents are included in Recommender, where ‘Algorithm’ implements
a number of state-of-the-arts, including MMs (e.g., MostPop and
ItemKNN), LFMs (e.g., MF, PureSVD, SLIM and FM), and RLMs
(e.g., Item2Vec, MLP and NeuMF); LossSelector makes it flexible to
change different objective functions for the algorithms. Evaluator
is equipped with Tuner and Metric, where the former helps ac-
complish hyper-parameter optimization and the latter implements
the classic ranking metrics, e.g., Precision. To sum, all modules
in DaisyRec are wrapped friendly for users to deploy, and new
algorithms can be easily added into this extensible and adaptable
framework.

We are keeping DaisyRec updated, and an updated version will
be relased soon, where several new influential factors are added, for
example, (1) different parameter initialization methods; (2) different
regularization terms e.g., L1 and L2 norms; (3) different prediction
functions, e.g., consine simialrity and negative Euclidean distance
(4) more objective functions, e.g., top-1 loss [16]; and (5) more
advanced baselines, e.g., NeuFM [15], CDAE [40], VAE [19], etc.

4.2 Standardized Procedures
Section 2 shows the essential factors in recommendation evaluation,
which have been empirically analyzed in Section 3. To achieve a
rigorous evaluation, we propose a series of standardized procedures
and correspondingly call for endeavors of all researchers, aiming
for effectively enhancing the standardization of recommendation
evaluation. (1) It is impossible to evaluate recommenders on all
public datasets covering each domain. However, at least one widely-
used dataset discussed in Section 2 should be considered, especially
for the papers evaluated on the private datasets (e.g., confidential
data from commercial companies). Otherwise, the results could
not be easily reproduced by subsequent studies. (2) Section 3.1
verifies that different data pre-processing strategies impact the
performance. Besides original datasets, 5- and 10-filter settings are
recommended to ease the data sparsity issue, and a clear description
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Table 4: Performance of seven baselines across six metrics on six datasets, where the best performance is underlined.

10-filter ML-1M Lastfm Yelp
Pre Rec HR MAP MRR NDCG Pre Rec HR MAP MRR NDCG Pre Rec HR MAP MRR NDCG

MostPop 0.2569 0.0532 0.7024 0.1745 0.8339 0.4975 0.0677 0.0880 0.4097 0.0349 0.2712 0.2476 0.0031 0.0040 0.0262 0.0012 0.0111 0.0137
ItemKNN 0.2208 0.0619 0.6381 0.1443 0.6821 0.4233 0.1851 0.2621 0.7840 0.1188 0.7708 0.5577 0.1174 0.1765 0.4882 0.0792 0.4600 0.3380
PureSVD 0.2270 0.0676 0.6900 0.1416 0.6984 0.4479 0.1862 0.2522 0.7556 0.1201 0.7673 0.5418 0.1508 0.2239 0.5837 0.0975 0.5493 0.3918
BPRMF 0.2711 0.0671 0.6454 0.1957 0.8453 0.4632 0.1987 0.2824 0.8167 0.1256 0.8058 0.5734 0.1538 0.2320 0.6034 0.0953 0.5439 0.3944
BPRFM 0.4082 0.1044 0.8534 0.3072 1.2834 0.6515 0.1974 0.2724 0.7976 0.1252 0.7930 0.5623 0.1579 0.2352 0.6154 0.0970 0.5483 0.3980
SLIM 0.2182 0.0642 0.6832 0.1377 0.6879 0.4450 0.2120 0.3064 0.8369 0.1380 0.8713 0.6018 0.1128 0.1655 0.4819 0.0778 0.4625 0.3432
NeuMF 0.3868 0.0915 0.8309 0.2912 1.2210 0.6278 0.1690 0.2382 0.7529 0.1001 0.6621 0.5044 0.1364 0.2090 0.5753 0.0794 0.4700 0.3615

10-filter Epinions Book-X AMZe
Pre Rec HR MAP MRR NDCG Pre Rec HR MAP MRR NDCG Pre Rec HR MAP MRR NDCG

MostPop 0.0040 0.0058 0.0370 0.0015 0.0139 0.0189 0.0134 0.0192 0.1081 0.0062 0.0547 0.0630 0.0085 0.0179 0.0793 0.0040 0.0387 0.0470
ItemKNN 0.0261 0.0315 0.1388 0.0150 0.0916 0.0813 0.0516 0.0786 0.2780 0.0335 0.2314 0.1921 0.0136 0.0312 0.1136 0.0067 0.0603 0.0679
PureSVD 0.0238 0.0285 0.1332 0.0124 0.0782 0.0736 0.1079 0.1622 0.4740 0.0695 0.4223 0.3216 0.0758 0.1781 0.4530 0.0429 0.3248 0.2935
BPRMF 0.0270 0.0341 0.1463 0.0149 0.0957 0.0862 0.1088 0.1905 0.5192 0.0617 0.3928 0.3241 0.0747 0.1735 0.4500 0.0416 0.3178 0.2894
BPRFM 0.0303 0.0357 0.1696 0.0161 0.1086 0.1006 0.1079 0.1842 0.5172 0.0602 0.3823 0.3185 0.0868 0.1908 0.4926 0.0509 0.3778 0.3280
SLIM 0.0260 0.0327 0.1423 0.0147 0.0936 0.0840 0.0753 0.1014 0.3475 0.0510 0.3264 0.2504 0.0342 0.0802 0.2426 0.0213 0.1769 0.1702
NeuMF 0.0302 0.0375 0.1772 0.0164 0.1160 0.1084 0.1057 0.1684 0.4915 0.0610 0.3831 0.3109 0.0866 0.1901 0.4921 0.0507 0.3768 0.3277

on data pre-processing details is indispensable. (3) The baselines
with different types (MMs, LFMs and DLMs) in Section 2.2.3 are
recommended to be selected and compared. As shown in Section 3.1,
the performance of different types of baselines vary a lot in different
scenarios, that is, the MMs (e.g., MostPop) and simple LFMs (e.g.,
PureSVD) sometimes even perform better than DLMs (e.g., NeuMF).
The more diverse baselines are compared, the more comprehensive
and reliable the evaluation is. (4) The performance is influenced by
different objective functions as empirically proved by Section 3.2.
For a fair comparison, it is better to evaluate all methods with dif-
ferent types of objective functions for a comprehensive evaluation,
and thus better positioning a proposed method’s contributions. (5)
All the compared methods should adopt the same negative sampler,
except the papers with the goal of proposing or studying different
negative sampling strategies. (6) Regarding data splitting methods,
both time-aware split-by-ratio and time-aware leave-one-out are
recommended. With timestamp, the real recommendation scenario
will be better simulated. W.r.t. split-by-ratio, both global- and user-
level work well and ρ = 80% is recommended for a more feasible
and convenient comparison. (7) At least two of the six metrics in
Section 2.2.7 should be adopted, where one (e.g., Precision) mea-
sures whether a test item is present on the top-N recommendation
list, and the other (e.g., NDCG) measures the ranking positions
of the recommended items. (8) W.r.t. hyper-parameter tuning, a
nested validation is mandatory, that is, retaining partial (e.g., 10%)
training data as validation set. Bayesian HyperOpt, as a more in-
telligent parameter searching strategy, is recommended, and the
search space should be kept the same for the shared parameters of
baselines. The number of trails (we set 30 by following [7]) may
be increased for further performance improvements. The optimal
parameter settings should be well reported for reproduction. (9)
The code and datasets should be available for reproduction [23].
The conference venues could make them as necessities, measure
the quality, and even require a short code demonstration along with
each accepted paper during the conference.

4.3 Performance of Baselines
With the goal of providing a better reference for fair comparison,
Table 4 shows the performance of seven baselines across six metrics
on the six datasets under 10-filter setting with N = 10. Due to space
limitation, other results (e.g., origin and 5-filter settings with N =
1, 10, 5, 20, 30, 50) are on our GitHub. All optimal hyper-parameters
are found by Bayesian HyperOpt to optimize NDCG@10 for 30

trials (see Section 3.1), and the detailed parameter settings are in the
Additional Material of our GitHub. Similar observations discussed
in Section 3.1 can be noted. Specifically, BPRFM achieves the best
performance on ML-1M and AMZe; SLIM performs the best on
Lastfm; NeuMF is the winner on Epinions; the best performance for
Yelp is obtained by BPRFM w.r.t. (Precision, Recall, HR, NDCG) and
PureSVD w.r.t. (MAP, MRR); while on Book-X, BPRMF achieves
the best performance w.r.t. (Precision, Recall, HR, NDCG), and still
PureSVD helps reach the best MAP and MRR.

5 RELATEDWORK
While long been recognized as a key feature of scientific discover-
ies, reproducibility has been increasingly characterized as a crisis
recently [1, 21]. It is becoming a primary concern in computer and
information science, evidenced by the recently developed ACM
policy on Artifact Review and Badging2 and emerging efforts in-
cluding seminars [10], workshops [5], and focused tracks at major
conferences [12]. Specific to recommender systems research, the
discussions have been concentrated on the fairness of comparison
between newly proposed and baseline methods [7, 26]. In very re-
cent work, Dacrema et al. [7] find that neural models can hardly
outperform fine-tuned memory- and latent factor-based methods,
a similar finding also discovered by Rendle et al. [26].

Despite the importance, improving reproducibility in recom-
mender systems research is highly challenging due to the many
influential evaluation factors for recommendation performance.
Said et al. [27] find large differences in the effectiveness of recom-
mendation methods across different implementation frameworks as
well as across evaluation datasets and metrics. A companion toolkit
RiVal [28] was released to allow for the control of data splitting
and evaluation metrics. Beel et al. [3] find a similar phenomenon in
news and research paper recommendation and identify influential
factors such as user characteristics and time of recommendation.
Valcarce et al. [35] specifically study the properties of evaluation
metrics for item ranking, marking precision as the most robust and
NDCG presenting the highest discriminative power. More recently,
Rendle et al. [26] demonstrate the importance of hyperparameter
search in baseline methods, e.g., matrix factorization, and stress
the need for standardized benchmarks where methods should be
extensively tuned for fair comparison.

2https://www.acm.org/publications/policies/artifact-review-badging; see also SIGIR’s
implementation of the policy [9].
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Existing benchmarks are, however, either restricted to pre-neural
methods [27], a single evaluation factor [35], or rating prediction
[26] which has been discouraged as a way to formulate the recom-
mendation problem [20]; besides, all existing benchmarks consider
two or three datasets (including [7]), ignoring the richness of avail-
able datasets often chosen by newly published work. Aimed for
a full treatment of evaluation issues, our work takes a bottom-up
approach analyzing an extensive amount of literature to search for
important evaluation factors (e.g., objective function and negative
sampling missing in existing benchmarks). We present a benchmark
supported by an empirical study at a bigger-than-ever scale with
the hope of laying a strong foundation for future research.

6 CONCLUSION
Due to lack of effective benchmarks, unreproducible evaluation and
unfair comparison have become two major concerns in recommen-
dation. This paper, therefore, aims to benchmark recommendation
for reproducible evaluation and fair comparison. To this end, 85 rec-
ommendation papers published in the three recent years (2017-2019)
from eight top tier conferences have been systematically reviewed,
whereby we summarize the essential factors related to evaluation,
e.g., data splittingmethods, evaluationmetrics and hyper-parameter
tuning strategies, etc. Through an extensive empirical study, the
impacts of different factors on evaluation are then comprehensively
analyzed. Accordingly, we create benchmarks for rigorous eval-
uation by proposing standardized procedures and providing the
performance of seven well-tuned state-of-the-art algorithms on six
widely-used datasets across six metrics as a reference for later study.
Lastly, a user-friendly Python toolkit – DaisyRec has been released
from the angle of achieving rigorous evaluation in recommendation.
For the future work, we plan to deepen our investigation by, for
example, studying more baselines from other venues, and diving
into more diverse recommendation tasks (e.g., session-aware).

ACKNOWLEDGMENTS
We thanks the support of National Natural Science Foundation of
China (Grant No. 71601104, 71601116 and 71771141). This work
was partly conducted within the Delta-NTU Corporate Lab for
Cyber-Physical Systems with funding support from Delta Electron-
ics Inc. We thank Dacrema et al. [7] for allowing us to use their
item similarity calculation code and to adapt the implementation
of ItemKNN and SLIM for our experiment.

REFERENCES
[1] Monya Baker. 2016. Reproducibility crisis? Nature 533, 26 (2016), 353–66.
[2] Oren Barkan and Noam Koenigstein. 2016. Item2vec: neural item embedding for

collaborative filtering. In IEEE 26th International Workshop MLSP.
[3] Joeran Beel et al. 2016. Towards reproducibility in recommender-systems research.

UMUAI 26, 1 (2016), 69–101.
[4] James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter

optimization. JMLR 13, 1 (2012), 281–305.
[5] Ryan Clancy et al. 2019. Overview of the 2019 Open-Source IR Replicability

Challenge (OSIRRC 2019). In OSIRRC@ SIGIR.
[6] Paolo Cremonesi et al. 2010. Performance of recommender algorithms on top-n

recommendation tasks. In RecSys.
[7] Maurizio Ferrari Dacrema et al. 2019. Are we really making much progress? A

worrying analysis of recent neural recommendation approaches. In RecSys.
[8] Jia Deng et al. 2009. Imagenet: A large-scale hierarchical image database. In

CVPR.
[9] Nicola Ferro and Diane Kelly. 2018. SIGIR initiative to implement ACM artifact

review and badging. In ACM SIGIR Forum, Vol. 52. 4–10.

[10] Juliana Freire, Norbert Fuhr, and Andreas Rauber. 2016. Reproducibility of Data-
Oriented Experiments in e-Science (Dagstuhl Seminar 16041). Dagstuhl Reports
6, 1 (2016), 108–159.

[11] Guibing Guo et al. 2015. LibRec: A Java Library for Recommender Systems.. In
UMAP Workshops, Vol. 4.

[12] Allan Hanbury et al. 2015. Proc. 37th European Conference on IR Research. Vol. 9022.
Springer.

[13] Xiangnan He et al. 2016. Fast matrix factorization for online recommendation
with implicit feedback. In SIGIR.

[14] Xiangnan He et al. 2017. Neural collaborative filtering. In WWW.
[15] Xiangnan He and Tat-Seng Chua. 2017. Neural factorization machines for sparse

predictive analytics. In SIGIR.
[16] Balázs Hidasi et al. 2018. Recurrent neural networks with top-k gains for session-

based recommendations. In CIKM.
[17] Yifan Hu et al. 2008. Collaborative filtering for implicit feedback datasets. In

ICDM.
[18] Dietmar Jannach and Malte Ludewig. 2017. When recurrent neural networks

meet the neighborhood for session-based recommendation. In RecSys.
[19] Dawen Liang et al. 2018. Variational autoencoders for collaborative filtering. In

WWW.
[20] Sean M McNee, John Riedl, and Joseph A Konstan. 2006. Being accurate is

not enough: how accuracy metrics have hurt recommender systems. In CHI’06
Extended Abstracts on Human Factors in Computing Systems. 1097–1101.

[21] Marcus R Munafò et al. 2017. A manifesto for reproducible science. Nature
human behaviour 1, 1 (2017), 1–9.

[22] Xia Ning and George Karypis. 2011. Slim: Sparse linear methods for top-n
recommender systems. In ICDM.

[23] Edward Raff. 2019. A Step Toward Quantifying Independently Reproducible
Machine Learning Research. In NIPS.

[24] Steffen Rendle. 2010. Factorization machines. In ICDM.
[25] Steffen Rendle et al. 2009. BPR: Bayesian personalized ranking from implicit

feedback. In IUI.
[26] Steffen Rendle et al. 2019. On the difficulty of evaluating baselines: A study on

recommender Systems. arXiv preprint arXiv:1905.01395 (2019).
[27] Alan Said et al. 2014. Comparative recommender system evaluation: benchmark-

ing recommendation frameworks. In RecSys.
[28] Alan Said et al. 2014. Rival: a toolkit to foster reproducibility in recommender

system evaluation. In RecSys.
[29] Badrul Sarwar et al. 2001. Item-based collaborative filtering recommendation

algorithms. In WWW.
[30] Jasper Snoek et al. 2012. Practical bayesian optimization of machine learning

algorithms. In NIPS.
[31] Zhu Sun et al. 2018. Recurrent knowledge graph embedding for effective recom-

mendation. In RecSys.
[32] Zhu Sun et al. 2019. Research commentary on recommendations with side

information: A survey and research directions. ECRA 37 (2019), 100879.
[33] Jiliang Tang, Huiji Gao, Huan Liu, and Atish Das Sarma. 2012. eTrust: Under-

standing trust evolution in an online world. In KDD.
[34] Xiaoli Tang et al. 2019. AKUPM: Attention-enhanced knowledge-aware user

preference model for recommendation. In KDD.
[35] Daniel Valcarce et al. 2018. On the robustness and discriminative power of

information retrieval metrics for top-n recommendation. In RecSys.
[36] Hongwei Wang et al. 2019. Multi-task feature learning for knowledge graph

enhanced recommendation. In WWW.
[37] Xiang Wang et al. 2019. Kgat: Knowledge graph attention network for recom-

mendation. In KDD.
[38] Xiang Wang et al. 2019. Neural graph collaborative filtering. In SIGIR.
[39] Ga Wu et al. 2019. Noise contrastive estimation for one-class collaborative

filtering. In SIGIR.
[40] YaoWu et al. 2016. Collaborative denoising auto-encoders for top-n recommender

systems. In WSDM.
[41] Fengli Xu et al. 2019. Relation-aware graph convolutional networks for agent-

initiated social e-commerce recommendation. In CIKM.
[42] Longqi Yang et al. 2018. Openrec: A modular framework for extensible and

adaptable recommendation algorithms. In WSDM.
[43] Fuzheng Zhang et al. 2016. Collaborative knowledge base embedding for recom-

mender systems. In KDD.
[44] Shuai Zhang et al. 2019. Deep learning based recommender system: A survey

and new perspectives. CSUR 52, 1 (2019), 1–38.
[45] Shuai Zhang et al. 2019. DeepRec: An Open-source Toolkit for Deep Learning

based Recommendation. In IJCAI.
[46] Qian Zhao et al. 2018. Interpreting user inaction in recommender systems. In

RecSys.
[47] Cai-Nicolas Ziegler et al. 2005. Improving recommendation lists through topic

diversification. In WWW.

32


	Abstract
	1 Introduction
	2 Paper Collection and Analysis
	2.1 Paper Collection
	2.2 Paper Analysis

	3 Impacts of Different Factors
	3.1 Data Pre-processing
	3.2 Objective Function
	3.3 Negative Sampling
	3.4 Data Splitting Methods
	3.5 Evaluation Metrics
	3.6 Complexity Analysis

	4 Benchmarking Evaluation
	4.1 Introduction to DaisyRec
	4.2 Standardized Procedures
	4.3 Performance of Baselines

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

