
Ternary Search
Tree

Advance String tree data structure

What is ternary search tree?
• A ternary search tree (TST) is a prefix base tree-

based data structure used for efficiently storing and
searching strings. Unlike binary trees, each node in a
TST has three children: one for characters less than
the current node's character, one for characters equal
to it, and one for characters greater than it. TSTs are
particularly useful for tasks like spell checking,
autocomplete, and symbol tables due to their efficient
handling of string operations and memory usage.

Why we learn ternary search tree data
structure?

• Efficient Searching

• Memory efficiency

• prefix searching

• ordered operations

• versatility

In summary

• We use ternary search trees when we need to efficiently store and
search for strings, especially in scenarios where memory
efficiency, fast searching, and prefix-based operations are crucial.
Common applications include spell checkers, autocomplete
features, symbol tables in compilers, IP routing tables, and more.
The benefit of employing a ternary search tree lies in its balance
between memory efficiency and fast searching capabilities,
making it a versatile choice for a wide range of string-related tasks.

A simple visualization of ternary search
tree

Added strings
1. Ant
2. And

Node properties of ternary search tree

•Has a character data.
•Has a left child(smaller char than parent

node).
•Has a right child(greater char than parent).
•Has a middle child(carry out the same

string character).
•A marked up Boolean value to represent this

is the end character of the string or not.

Same character
of a word set as the
middle node.

When try to add ant
at here.

When add anas at here.

Let's solve an example to
understand the insertion.

and, ant, cat, car, rat, ram, anas, anam, at, cow, tie,
tide, am.

Add and at here.

Add ant at here.

Add cat at here.

Add car at here.

Add rat at here.

Add ram at here.

Add anas at here.

Add anam at here.

Add at

Add cow at here.

Add am

Add tie

Please try to add tide at
here.

Now come to see the operations
of searching.

• For searching
- we will follow the same rules as bst.
- If our searching strings character is greater than
the present node, then go right.
- If our present string character is smaller than the
present nod, go left.
- If they are equal go to the middle and continue
searching until find the end of the character of the
string and that is marked as true at there.

Search rat at here.

Both of them same.

Go next
middle.

Find it.

Now come for the delete operations.

- This is as like as same as the bst and trie data
structure.
- First time find the word we want to delete.
Then mark the end character as false if this is
prefix of other string.
- If no other string use that node, then just delete it.

Let's solve an example.

Now, let's go to the
implementations

	Slide 1: Ternary Search Tree
	Slide 2: What is ternary search tree?
	Slide 3: Why we learn ternary search tree data structure?
	Slide 4: In summary
	Slide 5: A simple visualization of ternary search tree
	Slide 6: Node properties of ternary search tree
	Slide 7: Same character of a word set as the middle node.
	Slide 8: When try to add ant at here.
	Slide 9: When add anas at here.
	Slide 10: Let's solve an example to understand the insertion.
	Slide 11: and, ant, cat, car, rat, ram, anas, anam, at, cow, tie, tide, am.
	Slide 12: Add and at here.
	Slide 13: Add ant at here.
	Slide 14: Add cat at here.
	Slide 15: Add car at here.
	Slide 16: Add rat at here.
	Slide 17: Add ram at here.
	Slide 18: Add anas at here.
	Slide 19: Add anam at here.
	Slide 20: Add at
	Slide 21: Add cow at here.
	Slide 22: Add am
	Slide 23: Add tie
	Slide 24: Please try to add tide at here.
	Slide 25: Now come to see the operations of searching.
	Slide 26: For searching 🔎 - we will follow the same rules as bst. - If our searching strings character is greater than the present node, then go right. - If our present string character is smaller than the present nod, go left. - If they are equal go to
	Slide 27: Search rat at here.
	Slide 28: Both of them same.
	Slide 29: Go next middle.
	Slide 30: Find it.
	Slide 31: Now come for the delete operations.
	Slide 32: This is as like as same as the bst and trie data structure. - First time find the word we want to delete. Then mark the end character as false if this is prefix of other string. - If no other string use that node, then just delete it.
	Slide 33: Let's solve an example.
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45: Now, let's go to the implementations

