AVL Tree

Invented by the Adelson- Velky and

 Landis
Is a self balancing binary search tree

What is self balancing binary search

 tree?It maintains a property where the heights of the two child subtrees of any node differ by at most one, thus ensuring that the tree remains balanced.

So, the difference between the left side height and right side height or the balance of the tree will be -1 or 0 or 1. If the tree will be balancee based on height.

Why we use the AVL tree?

The main advantage of AVL trees is that they provide guaranteed logarithmic time complexity for basic operations like insertion, deletion, and search. This makes them efficient for applications where the data set is frequently modified or accessed. faster addition, deletion or searching on some dynamic data.This will give me much better performance than binary search tree.

Compare with Binary Search Tree

riont skew

This both sitution BST will take $O(n)$

 complexity to search or make any addition or deletion operation.But AVL tree will ensure O(log(n)) complexity via this sitution.

How can it balance the trees?

Via Rotations

How many types of rotation it has?

Basically two-way

Left Rotation

-

Right Rotation

When we will use them?

It's mainly vary on the balance of the

tree.

When the balance of the tree is >1, in that sitution the tree will look like this way.

This is also called the left heavy situation

In this sitution we have to use the right rotation.

If the balance factor of the tree is \leq -2 , then the sitution will look like this way.

This is called the right heavy sitution

In this sitution we need to perform the left rotation.

After performing the right rotation the tree will look like this.

 tree will look like this

$10)^{2}$
(11)
(12)

This is called the Right-Right sitution

(0)
(8)

This is called the left - left sitution

- we mainly can perform the right rotation in this L-L sitution We mainly can perform the left rotaton in this R-R situation.

So, how we can perform the Right rotation?

Set this node as the right node of the left node of $(\overline{)}) \leftarrow$ lest this main
nod BSet thisleft right node as the left of the main node.

Now how can we perform the left rotation?

But, there is a spetial case at here.

If, we perform the right rotation at here.

Basically this sitution violoate the rules of BST.

So, how can we solve this issue?

 and can perform the right rotate on the node

After perform the right rotation

We have an another sitution at here.

This is called the Right - left sitution.

If we perform the left rotation on

 here.

This violate the BST tree rules.

First perform the right rotation on the right node.

Now, we get the right-right sitution.

- If the left-right sitution occur then perform the left rotation on the left node. $0>$ balance(left) if the right-left sitution occur then perform the right rotation on the right node.balance(right) > 0
- Then mainly the left-left sitution occur and can perform the right rotation.
Then mainly the right-right sitution occur and can perform the left rotation.

Let's Solve an example.

53, 43, 32, 12, 23, 33, 70, 60,65, 83, 10, 9, 2

balance $=2-0=2$

balance $=2-0=2$ 53
$12)_{23}$

balance = 3-1 = 2

balance = 3-1 = 2

Perform the right on 43

balance $=1-3=-2$

perform the right on the 23

balanc

e=2-
$0=2$
12
23.43

balanc

e=2-
$0=2$

12

10

2
perform right on 10

Now our tree is a fully avl tree

deletion operation is same as the

 binary search tree. Just e have to perform this balancing operation fter perform the deletion operation.
Let's Go to the implementation.

