
AVL Tree

Invented by the Adelson- Velky and
Landis

Is a self balancing binary search tree

What is self balancing binary search
tree?

 It maintains a property where the
heights of the two child subtrees of
any node differ by at most one, thus

ensuring that the tree remains
balanced.

So, the difference between the left
side height and right side height or

the balance of the tree will be -1 or 0
or 1. If the tree will be balancee

based on height.

Why we use the AVL tree?

The main advantage of AVL trees is
that they provide guaranteed

logarithmic time complexity for basic
operations like insertion, deletion,

and search. This makes them
efficient for applications where the
data set is frequently modified or

accessed.

This is widely used when we need
faster addition, deletion or
searching on some dynamic

data.This will give me much better
performance than binary search

tree.

Compare with Binary Search Tree

This both sitution BST will take O(n)
complexity to search or make any

addition or deletion operation.

But AVL tree will ensure O(log(n))
complexity via this sitution.

How can it balance the trees?

Via Rotations

How many types of rotation it has?

Basically two-way

Left Rotation
Right Rotation

When we will use them?

It’s mainly vary on the balance of the
tree.

When the balance of the tree is > 1, in
that sitution the tree will look like

this way.

This is also called the left heavy
situation

In this sitution we have to use the
right rotation.

If the balance factor of the tree is ≤
-2, then the sitution will look like this

way.

This is called the right heavy sitution

In this sitution we need to perform
the left rotation.

After performing the right rotation
the tree will look like this.

After performing the left rotation the
tree will look like this

This is called the Right-Right sitution

This is called the left - left sitution

we mainly can perform the right
rotation in this L-L sitution

We mainly can perform the left
rotaton in this R-R situation.

So, how we can perform the Right
rotation?

Set this node
as the right
node of the
left node of

this main
node.

Set this left right
node as the left of the main node.

Previous left node

node

Center Node

Now how can we perform the left
rotation?

Now set this
node as the left

of the right
node.

node

right node

right left /center node

root of the main node

But, there is a spetial case at here.

If, we perform the right rotation at
here.

Basically this sitution violoate the
rules of BST.

So, how can we solve this issue?

Perform the left rotation on the left
node.

Now, we get the wanted L-L sitution
and can perform the right rotate on

the node

After perform the right rotation

We have an another sitution at here.

This is called the Right - left sitution.

If we perform the left rotation on
here.

This violate the BST tree rules.

First perform the right
rotation on the right node.

Now, we get the right-right sitution.

So, can perform the left rotation.

If the left-right sitution occur
then perform the left rotation on

the left node. 0 > balance(left)
if the right-left sitution occur

then perform the right rotation
on the right node.balance(right) >

0

Then mainly the left-left sitution
occur and can perform the right

rotation.
Then mainly the right-right

sitution occur and can perform
the left rotation.

Let’s Solve an example.

53, 43, 32, 12, 23, 33, 70, 60,65, 83,
10, 9, 2

53

53

43

53

43

32

53

43

32

53

43

32

53

43

32

12

53

43

32

12

23

53

43

32

12

23

balance = 2 - 0 = 2

53

43

32

12

23

balance = 2 - 0 = 2

apply left on the 12

53

43

32

12

23

53

43

32

12

23 apply right on 32

53

43

32
12

23

53

43

32
12

23

33

53

43

32
12

23

33

balance = 3 - 1 = 2

53

43

32
12

23

33

balance = 3 - 1 = 2

perform left on the 23

53

43

32

12

23 33

53

43

32

12

23 33

Perform the right on 43

53

43

32

12

23

33

53

43

32

12

23

33

70

53
43

32

12

23
33 70

60

53
43

32

12

23
33 70

60

balance = 0 - 2 = -2

53
43

32

12

23
33 70

60

balance = 0 - 2 = -2

53
43

32

12

23
33 70

60

balance = 0 - 2 = -2

Perform right on 70

53

43
32

12

23
33

70

60

53

43
32

12

23
33

70

60

53

43
32

12

23
33

70

60

65

53

43
32

12

23
33

70

60

65

53

43
32

12

23
33

70

60

65

balance = 1 - 3 = -2

53

43
32

12

23
33

70

60

65

balance = 1 - 3 = -2

perform the left on the 43

53

43

32

12

23

33

70

60

65

53

43

32

12

23

33

70

60

65 83

53

43

32

12

23

33

70

60

65 83

10

53

43

32

12

23

33

70

60

65 83

10

balance = 2 - 0 = 2

53

43

32

12

23

33

70

60

65 83

10

balance = 2 - 0 = 2

perform the right on the 23

53

43

32
12

23

33

70

60

65 83

10

53

43

32
12

23

33

70

60

65 83

10

9

53

43

32
12

23

33

70

60

65 83

10

9

2

53

43

32
12

23

33

70

60

65 83

10

9

2

balanc
e = 2 -
0 = 2

53

43

32
12

23

33

70

60

65 83

10

9

2

balanc
e = 2 -
0 = 2

perform right on 10

53

43

32
12

23

33

70

60

65 83
10

9

2

Now our tree is a fully avl tree

deletion operation is same as the
binary search tree. Just e have to
perform this balancing operation

fter perform the deletion operation.

Let’s Go to the implementation.

