
Flexible Applications
&

Ampersand

Agenda

Goals & Principles
Variation points

Architecture of prototypes

New features of Ampersand

Goals & Objectives of Ampersand

Support businesses with systems that behave in desired

ways

Transform business rules into compliant software

System behaviour mimics rules correctly

Business stakeholders can validate correctness

Software is designed for change

Agenda

Goals & Principles

Variation points
Architecture of prototypes

New features of Ampersand

Change ahead!

Business domains

Business rules

Business data

(User) Interfaces

…

&
Generator

Input

Output

Read

Write

• Formalized Specification:

• Concepts

• Relations

• Rules

• Interfaces

• ...

• Configuration (optional)

• Functional prototype

• Documentation

• Domain language (for business)

• Diagnosis (for &-analist)

• Functional specification (for IT)

• Technical artefacts (mainly for QA)

• ‘Meatgrinder’ (experimental)

Flexible ??

Variation point Approach Flexible?

Business specific

(concepts, relations, rules)

Isolation (In &-model) ++

Rule types Behavioural rules (Decision rules) -

Interfaces In model:

• Which interfaces

• What information

• What can be modified

• Who is it for

In configuration:

• Look & feel

+

Business data Both in model (design time) and RDBMS

(runtime)

++

Formal definitions Model must be correct --

Format of definitions Currently plain text files. Different

formats could be supported

+

Flexibility in input

P-structure

A-structure

F-structure

Read

Typecheck

Calculations

Write

Flexibility inside &-generator

Variation point Approach Flexible?

Documentation of specific

model

Based on natural language annotations

(meanings and purposes) in

specification.

++

Documentation (generic) Different types of documents (chapters)

are generated.

+

Documentation format Pandoc (library) +/-

Documentation language Currently two: English and Dutch +/-

Prototype (more later) ++

Reasoning about rules ‘Meatgrinder’. Follows the formal

specification of & itself.

+

Other output Extend the generator ++

Flexibility in output

Design Principles

Flexibility

Isolate whatever is known to change

Loose coupling of components

Single responibility of components

Reuse existing software where it makes sense

Validation & verification

Document the ‘why’ (purpose, source, for tracability)

Automate when possible

Throw errors quickly

…

Agenda

Goals & Principles

Variation points

Architecture of prototypes
New features of Ampersand

Extensions

Exec
engine

Excel
import

DB model

MySQL
Information

model

Application
(prototype)

Model View

Controller

API

Views

(html)

Ctrls

(js)

Default appLibraries

Boot
strap

Angular
JS

jQuery

HTML interface
Architecture of an &-prototype

Ampersand FW

Mysql
adapter

Installer

Local
settings

Transactions

Inter
faces

Rule
engine

Concept
classes

RBAC

Variation point Approach Flexible?

Persistence of data Relational database ++

Method of changing data Transactional --

Control of changes API is generated according to &-model ++

Look & feel Html templates

Support for web-frameworks

++

Behaviour Controlers +

Flexibility in prototype

Agenda

Goals & Principles

Variation points

Architecture of prototypes

New features of Ampersand

New features

Support for Classifications

Architecture of frontend + backend-API

Extended features in interface specification

Bulk import / export

Improved performance of prototype

Improved error messages for modeller

Execution engine (rulebased execution of actions)

Improved software process

Improved QA

Enhancements in document generation

Flexible Applications?

Ampersand!

Reserve dia’sReserve dia’s

How does this work?

Permit

Person

Decision

How does this work?

Permit

Person

Decision

Interface specification : Old

Interface specification: New

