
 

Quaternion Based Kalman Filter for Open Loop 

Attitude Estimation

 

  Moraru Andrei 

 Department of Automation And Applied Informatics 

Faculty of Automation and Computer Science 

Technical University of Cluj-Napoca 

Cluj-Napoca, Romania 

Moraru.gh.andrei@student.utcluj.ro

 

Abstract—Sensors, more specifically Inertial Measurement 

Units, or IMUs, are used in various applications ranging from 

mobile phones, the automotive or space industry. The 

understanding of their data and mathematical models is therefore 

a pivotal point in the ever growing industries of autonomous 

driving, IoT, and virtual reality This paper thus proposes an open 

loop real time angle computation algorithm designed in Matlab®. 

Its efficacy was tested using an Arduino Nano® coupled with the 

MPU-6050 as the IMU. The paper also provides a comparison to 

already existing and widely used methods. 

Keywords—sensor fusion, quaternion, Kalman filter, gyroscope, 

accelerometer, attitude estimation, MPU-6050, IMU 

I. INTRODUCTION 

Combining multiple data sources is a way to provide a better 
understanding of the surrounding world. When the data come 
from sensors, this process is known as sensor fusion. As the data 
sources themselves have correlated strengths and weaknesses 
[1], fusing multiple measurements usually provides a 
representation that is closer to reality [1]. The most extensively 
used algorithms in sensor fusion are in general some variation 
of the Kalman filter. For instance, [2] proposes an unscented 
Kalman filter for orientation tracking, while [3] elaborates a 
linear version to fuse magnetic and inertial data for heading 
estimation. In this paper, a Kalman based sensor fusion 
algorithm on accelerometer and gyroscope data will be 
elaborated, and the results will be compared to the already 
implemented imufilter Matlab® function [4], whose return is the 
orientation of an object with the given inputs of the 
accelerometer and gyroscope readings. 

The paper is structured in five sections. After this short 
introductory section, section II describes the used model. 
Section III presents the proposed Kalman filter, with the 
obtained results in section IV. The work ends with section V as 
the concluding remarks. 

II. ATTITTUDE REPRESENTATION 

A. The different types of representation 

Attitude, also called orientation, is a way to describe an 
object’s position in space. Its mathematic representation through 
either Euler angles, direction cosine matrices (DCMs), or 

quaternions is used to describe a body’s reference frame, usually 
with respect to the world frame. As such, changes in attitude are 
represented as quantities in the first frame, expressed in the 
second frame. Out of the three main sets of coordinates 
enumerated earlier, quaternions have been proven to be the most 
independent, immune to gimbal lock [4] and an easily 
interpolated [5] way of representing orientation. Even more, 
their vector form compactness is able to reduce computation 
time when compared to the 3 × 3 , often packed with 
redundancy, matrix alternative [6]. 

B. Changes in attitude 

Changes with time in the orientation (i.e. attitude 
kinematics) can be conveniently expressed using quaternions. 
As such, the attitude rate is a function of the current attitude and 
the measured angular rates [2].  

�̇� = 𝑓(𝑞, �⃗⃗� )                                           (1) 

where 𝑞 is the atttitude representation in quaternion form, �⃗⃗�  is 

the angular rates vector (also called body) and �̇� is the change 

in attitude (also called attitude rate). 

C. Quaternion Algebra 

Invented as an extension of complex number system in the 
three dimensional space [2], quaternions consist of a real 
component, which denotes the rotation angle, and three 
imaginary components, representing each axis of rotation. 
Therefore, their representation uses the Gauss plane [7]:  

              𝑞 = 𝑞0 + 𝑞1ⅈ + 𝑞2𝑗 + 𝑞3𝑘                         (2) 

 
where the rules of the extended complex plane apply as in (3). 
Due to computation demand, in the remainder of the paper, as 
well as in the implementation, we will however represent 
quaternions in vector form [5], as seen in (4). 

ⅈ2 = 𝑗2 = 𝑘2 = ⅈ𝑗𝑘 = −1                            (3) 

𝑞 = [𝑞0, 𝑞1, 𝑞2, 𝑞3]                                     (4) 

D. Quaternion norm 

The normalization of the quaternion vector is a required 
operation when transitioning from one rotation to another [6]. 
When referring to the norm of a quaternion, the Euclidean norm 
is considered as in (5): 



‖𝑞‖ = √𝑞0
2 + 𝑞1

2 + 𝑞2
2 + 𝑞3

2                      (5) 

 

       When representing a rotation, ‖𝑞‖ = 1 is expected to hold 

true. In this regard, a quaternion with a norm equal to one is 

referred to as a unit quaternion [7]. 
 

E. Transformations 

In order to be able to compare results in a comprehensible 

manner, transformations from one form of representation to 

another need to be carried out. As real sensor data is used, first 

computation will be an Euler sequence of angles, which can be 

converted to quaternion form [5] using (6) to (9): 
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where 𝜙, 𝜃 and 𝛹 are the X, Y and Z sequence of angles, also 

called roll, pitch and yaw in the Tait-Bryan convention [6], and 
[𝑞0, 𝑞1, 𝑞2, 𝑞3]  are the elements of the quaternion vector, as 

shown in (4). 

 

To recover the sequence of angles from a quaternion vector, an 

intermediary DCM shall be used [8] as in (10): 

 

𝐷𝐶𝑀 = [

𝑞0
2 + 𝑞1

2 − 𝑞2
2 − 𝑞3

2 2(𝑞1𝑞2 − 𝑞0𝑞3) 2(𝑞1𝑞3 + 𝑞0𝑞2)

2(𝑞1𝑞2 + 𝑞0𝑞3) 𝑞0
2 − 𝑞1

2 + 𝑞2
2 − 𝑞3

2 2(𝑞2𝑞3 − 𝑞0𝑞1)

2(𝑞1𝑞3 − 𝑞0𝑞2) 2(𝑞2𝑞3 + 𝑞0𝑞1) 𝑞0
2 − 𝑞1

2 − 𝑞2
2 + 𝑞3

2

] (10) 

 

From which each angle can be extracted using trigonometric 

functions [6] as in (11), (12) and (13): 

                                    
    𝜃 = −asin(𝐷𝐶𝑀31)                                (11) 

𝜙 = atan2(𝐷𝐶𝑀32, 𝐷𝐶𝑀33)                   (12) 

𝜓 = atan2(𝐷𝐶𝑀21,𝐷𝐶𝑀11)                   (13) 

 

where 𝑎𝑠ⅈ𝑛 is the inverse sine, 𝐷𝐶𝑀31 is the element of the 

DCM matrix located in the third row and first column and 

𝑎𝑡𝑎𝑛2 is the four quadrant inverse tangent. 

 

Lastly, to represent the change in rotation, the expanded 

formula first stated in (1) is carried out as in (14), where the 𝑄 

is the body frame matrix [2] shown in (15). 

 

�̇� =
1

2
𝑄�⃗⃗�                                      (14) 
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]                             (15) 

 
 

III. THE KALMAN FILTER 

Being not only the best linear estimator, as a solver of the 
least squares method, the Kalman filter is also a widely used 
state of the art algorithm in sensor fusion. When working with 
multiple sensors, as the three axis accelerometer and gyroscope 
present in the MPU-6050, the Kalman gain 𝐾  represents the 
proportion of trust given to the different measurements [9], and 
is computed at each measurement update, given the tuning 
parameters 𝑄  and 𝑅 , which represent the process and 
measurement noise [10]. 

A. Process Model 

The process model is  a mathematical representation of a 

dynamic system meant to encapsulate the kinematics of the 

state space representation, which makes it is a focal part of 

estimation algorithms. The orientation is constructed as a 

quaternion vector, whose four components represent the system 

states, which are then propagated in time, using Euler 

integration [10] (also known as dead reckoning in the 

gyroscope context), along with a a matrix consisting of the 

variances of each of the errors present in the states estimation 

(also called covariance matrix 𝑃 [2]) . The quaternion vector 

can be recovered from the angular rates body measured by the 

gyroscope as shown in (14). This is known as the prediction 

phase of the filter [9].  

B. Measurement Model 

The measurements coming into the filter are the sequence of 
tilt angles coming from the accelerometer’s linear and 
gravitational accelerations measurements. As the output of a 
sensor is not linear, the angles cannot be computed through 
simple integration, and rather need to be transformed using 
trigonometric functions [10], as shown in (16) and (17). The 
measurements are then compared to the states computed in the 
prediction phase and the error (also called innovation) is 
calculated as the difference between the estimated state and the 
measured state. The state is then updated based on the Kalman 
gain. This is known as the update step of the filter [2]. 

𝜙𝑚𝑒𝑎𝑠 = atan2 (
𝑎𝑐𝑐𝑒𝑙_𝑦

𝑎𝑐𝑐𝑒𝑙_𝑧
)                           (16) 

          𝜃𝑚𝑒𝑎𝑠 = atan2 (
−𝑎𝑐𝑐𝑒𝑙_𝑥

√𝑎𝑐𝑐𝑒𝑙_𝑦2+𝑎𝑐𝑐𝑒𝑙_𝑧2
)              (17) 

C. Algorithm 

Although consistent usage of trigonometric functions for 
angle computation is present, as the angles themselves are 
introduced directly as measurements, there is no need for 
linearization in this regard, and so the linear Kalman filter was 
chosen over the extended Kalman filter, as its convergence is 
guaranteed [9]. The algorithm is carried out as it is depicted in 
Fig.1. When it comes to the tuning parameters of the filter, the 
process model noise matrix Q is considered as a diagonal matrix 
of the squared standard deviations of each of the quaternion 
vector components, while the measurement noise matrix R is 
constructed as a matrix of the same quaternion vector element 
variance, yet this time as a measurement uncertainty coming 
from the accelerometer measurement which is transformed in 
quaternion form. Equations (18) and (19) provide a 
representation of their choice. 



                              𝑄 = 

[
 
 
 
 
𝜎𝑞0

2     0      0     0

0      𝜎𝑞1
2       0        0

0       0       𝜎𝑞2
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2 ]

 
 
 
 

                                    (18) 

 

                                𝑅 = 

[
 
 
 
 
𝜎𝑞𝑚𝑒𝑎𝑠0
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2       0        0

0       0       𝜎𝑞𝑚𝑒𝑎𝑠2
2        0
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                               (19) 

 
As the linear filter is bound to converge regardless of 

initialization, the covariance matrix 𝑃 can be initialized as a 

diagonal matrix whose trace are numbers greater than the  

expected variance of each state. An example of choice is 

provided in (20), where p is a positive integer chosen 

empirically. If the first state is known, p should be set to zero. 

 

                               𝑃 = 

[
 
 
 
 
𝑝𝜎𝑞0
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0    𝑝 𝜎𝑞1
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0       0      𝑝 𝜎𝑞2
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0       0        0      𝑝𝜎𝑞3
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                                     (20) 

Figure 1. The proposed algorithm 

Considering that the states of the vector are  independent of each 
other, the transition matrix as well as the measurement (also 
called observation) matrix are chosen as the identity matrix 𝐼4. 

Due to only the roll and pitch angles being measured from the 
accelerometer, because the quaternion vector holds 
informantion about the yaw angle as the rotation around the Z 
axis, the measurement vector has to be augmented with the yaw 
state for the matrix multiplications to be valid, yet the value itself 
is not considered, nor verified for convergence. 

The reason why the yaw angle is not computed is because it 
cannot be calculated reliably using only an accelerometer and a 
gyroscope. The explanation for this is straightforward: as the 
sensor is rotated around the Z axis, the acceleration of the axis 
stays the same. While the gyroscope integration can still be 
done, the whole system now lacks a referrence frame and the 
algorithm is no longer performing sensor fusion. State of the art 
methods for calculating the yaw angle usually include a 
magnetometer as a third sensor [3] and are referred to as Attitude 
and Heading Referrence Systems (AHRS) 

The convergence of the filter to the true state is guaranteed by 
the minimization of the trace of the covariance matrix 𝑃 [9]. 

At the expense of convergence speed, an extra IIR first or second 
order butterworth filter may be considered to further reduce the 
noise when the matrix 𝑅 was chosen and tested. For the 
implementation of the filter, the built in butter Matlab® function 
[11] is used, with the measurement biases as the initial 
conditions. 

     Table 1: Performance Analysis 

IV. RESULTS 

The overall performance of each implementation and phase 

was measured using the Mean Squared Error (MSE) as the 

difference between the measured signal and the ground truth, 

when the sensor is not moving, so that the ground truth would 

be zero (0). During the testing phase, it was found that the 

MPU-6050 has run-to-run biases for the angle measurements, 

therefore calibration has to be carried out before each online 

estimation. The biases of the measurements will be subtracted 

from the actual measurement using the mean Matlab® function. 

For this experiment, bias drift [10] due to increase in 

temperature was not considered, nor modelled, because its 
effect was found to be negligible. As seen in Fig.2 and Fig.3, 

the convergence of the imufilter from Matlab® is much slower, 

and the delay in time is caused by the gyroscope measurement 

integrating the error in time as well as the angular velocity. 

While the proposed filter is more affected by noise (as it can be 

Method 

Mean Squared Error 

Phase Roll Angle 
Pitch 

Angle 

Gyroscope Dead Reckoning 
         

Prediction 
0.0341 0.0083 

Accelerometer Measurement Update 0.0374 0.0142 

Proposed Kalman Filter Fusion 0.0306 0.0075 

MATLAB’s imufilter 

(processed to remove delay) 
Fusion 0.0056 

0.0006

7 

Butterworth + Proposed KF IIR Filtering 0.0256 0.0020 

Initialize filter on (16) and (17) 

Initialize 𝑄, 𝑅 and 𝑃 on (18), (19) and (20) 

Initialize 𝑞0 = [0,0,0,0] 

Initialize transition and observation matrices 𝐹 = 𝐻 = 𝐼4  

Set state 𝑥0 = 𝑞0 

do while arduino is connected: 

 read [gyro_x, gyro_y, gyro_z] from gyroscope 

 �⃗⃗�  = [gyro_x, gyro_y, gyro_z]  

  �⃗⃗�  → �̇� using (14), (15) 

  Begin prediction step: 

    𝑥𝑘+1 = 𝑥𝑘 + �̇�𝛥𝑡                            (euler integration) 

   𝑥𝑘+1 =
𝑥𝑘+1

‖𝑥𝑘+1‖
   using (5)   (quaternion normalization) 

      𝑃𝑘+1 = 𝐹𝑃𝑘𝐹𝑇 + 𝑄              (covariance propagation) 

       Begin update step: 

   read [accel_x, accel_y, accel_z] from sensor 

   compute angles using (16) and (17) 

   𝑧 =  𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 =  [𝜙𝑚𝑒𝑎𝑠   𝜃𝑚𝑒𝑎𝑠] 

   map: euler → quaternion for 𝑧 using (6) to (9) 

   �̂� = 𝐻𝑥𝑘                                  (compute estimation) 

   ⅈ𝑛𝑛𝑜𝑣 = 𝑧 − �̂�                                 (compute error) 

                     𝑆𝑘 = 𝐻𝑃𝑘𝐻𝑇 + 𝑅                  (innovation covariance) 

                     𝐾𝑘 = 𝑃𝑘𝐻𝑇𝑆𝑘
−1                                          (Kalman gain) 

                     𝑥𝑘
+ = 𝑥𝑘

− + 𝐾𝑘 ⋅ ⅈ𝑛𝑛𝑜𝑣                              update state) 

                     𝑃𝑘
+ = 𝑃𝑘

− − 𝐾𝑘𝐻𝑃𝑘
−                       (update covariance)  

                     recover euler sequence using (10) to (13) 

       Optional: 

                        IIR filter with Butterworth 



seen in Table 1), its response to changes in attitude is faster and 

proves stable for both angles, as shown in Fig.4 and Fig 5. If 

convergence speed is preferred in favor of less overall noise, 

one might decide to use the accelerometer measurement by 

itself. If the gyroscope is the only available sensor, with the 
correct process model, the angles can be obtained reliably, 

although delay from integration will be present. If both sensors 

are present, data fusion through either of the methods is 

preferred. 

V. CONCLUSIONS 

The present paper proposes a sensor fusion method based 

on a linear Kalman filter with quaternion transformations as          

the process model. The algorithm successfully converges to a 

value closer to the truth than the raw measurements and is able 

to mitigate the integration error and time delay effects of the 

imufilter implementation. 
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                    Figure 2: Roll angle measured in stationary position 

 
                    Figure 3: Pitch angle measured in stationary position 

 
               Figure 4: Roll angle response to orthogonal change in position 

 
               Figure 5: Pitch angle responses to orthogonal changes in position 
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