

Quaternion Based Kalman Filter for Open Loop

Attitude Estimation

 Moraru Andrei

 Department of Automation And Applied Informatics

Faculty of Automation and Computer Science

Technical University of Cluj-Napoca

Cluj-Napoca, Romania

Moraru.gh.andrei@student.utcluj.ro

Abstract—Sensors, more specifically Inertial Measurement

Units, or IMUs, are used in various applications ranging from

mobile phones, the automotive or space industry. The

understanding of their data and mathematical models is therefore

a pivotal point in the ever growing industries of autonomous

driving, IoT, and virtual reality This paper thus proposes an open

loop real time angle computation algorithm designed in Matlab®.

Its efficacy was tested using an Arduino Nano® coupled with the

MPU-6050 as the IMU. The paper also provides a comparison to

already existing and widely used methods.

Keywords—sensor fusion, quaternion, Kalman filter, gyroscope,

accelerometer, attitude estimation, MPU-6050, IMU

I. INTRODUCTION

Combining multiple data sources is a way to provide a better
understanding of the surrounding world. When the data come
from sensors, this process is known as sensor fusion. As the data
sources themselves have correlated strengths and weaknesses
[1], fusing multiple measurements usually provides a
representation that is closer to reality [1]. The most extensively
used algorithms in sensor fusion are in general some variation
of the Kalman filter. For instance, [2] proposes an unscented
Kalman filter for orientation tracking, while [3] elaborates a
linear version to fuse magnetic and inertial data for heading
estimation. In this paper, a Kalman based sensor fusion
algorithm on accelerometer and gyroscope data will be
elaborated, and the results will be compared to the already
implemented imufilter Matlab® function [4], whose return is the
orientation of an object with the given inputs of the
accelerometer and gyroscope readings.

The paper is structured in five sections. After this short
introductory section, section II describes the used model.
Section III presents the proposed Kalman filter, with the
obtained results in section IV. The work ends with section V as
the concluding remarks.

II. ATTITTUDE REPRESENTATION

A. The different types of representation

Attitude, also called orientation, is a way to describe an
object’s position in space. Its mathematic representation through
either Euler angles, direction cosine matrices (DCMs), or

quaternions is used to describe a body’s reference frame, usually
with respect to the world frame. As such, changes in attitude are
represented as quantities in the first frame, expressed in the
second frame. Out of the three main sets of coordinates
enumerated earlier, quaternions have been proven to be the most
independent, immune to gimbal lock [4] and an easily
interpolated [5] way of representing orientation. Even more,
their vector form compactness is able to reduce computation
time when compared to the 3 × 3 , often packed with
redundancy, matrix alternative [6].

B. Changes in attitude

Changes with time in the orientation (i.e. attitude
kinematics) can be conveniently expressed using quaternions.
As such, the attitude rate is a function of the current attitude and
the measured angular rates [2].

�̇� = 𝑓(𝑞, �⃗⃗�) (1)

where 𝑞 is the atttitude representation in quaternion form, �⃗⃗� is

the angular rates vector (also called body) and �̇� is the change

in attitude (also called attitude rate).

C. Quaternion Algebra

Invented as an extension of complex number system in the
three dimensional space [2], quaternions consist of a real
component, which denotes the rotation angle, and three
imaginary components, representing each axis of rotation.
Therefore, their representation uses the Gauss plane [7]:

 𝑞 = 𝑞0 + 𝑞1ⅈ + 𝑞2𝑗 + 𝑞3𝑘 (2)

where the rules of the extended complex plane apply as in (3).
Due to computation demand, in the remainder of the paper, as
well as in the implementation, we will however represent
quaternions in vector form [5], as seen in (4).

ⅈ2 = 𝑗2 = 𝑘2 = ⅈ𝑗𝑘 = −1 (3)

𝑞 = [𝑞0, 𝑞1, 𝑞2, 𝑞3] (4)

D. Quaternion norm

The normalization of the quaternion vector is a required
operation when transitioning from one rotation to another [6].
When referring to the norm of a quaternion, the Euclidean norm
is considered as in (5):

‖𝑞‖ = √𝑞0
2 + 𝑞1

2 + 𝑞2
2 + 𝑞3

2 (5)

 When representing a rotation, ‖𝑞‖ = 1 is expected to hold

true. In this regard, a quaternion with a norm equal to one is

referred to as a unit quaternion [7].

E. Transformations

In order to be able to compare results in a comprehensible

manner, transformations from one form of representation to

another need to be carried out. As real sensor data is used, first

computation will be an Euler sequence of angles, which can be

converted to quaternion form [5] using (6) to (9):

𝑞0 = 𝑐𝑜𝑠 (
𝜙

2
) 𝑐𝑜𝑠 (

𝜃

2
) 𝑐𝑜𝑠 (

𝜓

2
) + 𝑠ⅈ𝑛 (

𝜙

2
)𝑠ⅈ𝑛 (

𝜃

2
) 𝑠ⅈ𝑛 (

𝛹

2
) (6)

𝑞1 = 𝑠ⅈ𝑛 (
𝜙

2
)𝑐𝑜𝑠 (

𝜃

2
) 𝑐𝑜𝑠 (

𝜓

2
) − 𝑐𝑜𝑠 (

𝜙

2
)𝑠ⅈ𝑛 (

𝜃

2
) 𝑠ⅈ𝑛 (

𝛹

2
) (7)

𝑞2 = 𝑐𝑜𝑠 (
𝜙

2
) 𝑠ⅈ𝑛 (

𝜃

2
) 𝑐𝑜𝑠 (

𝜓

2
) + 𝑠ⅈ𝑛 (

𝜙

2
) 𝑐𝑜𝑠 (

𝜃

2
) 𝑠ⅈ𝑛 (

𝛹

2
) (8)

𝑞3 = 𝑐𝑜𝑠 (
𝜙

2
) 𝑐𝑜𝑠 (

𝜃

2
) 𝑠ⅈ𝑛 (

𝜓

2
) − 𝑠ⅈ𝑛 (

𝜙

2
) 𝑠ⅈ𝑛 (

𝜃

2
) 𝑐𝑜𝑠 (

𝛹

2
) (9)

where 𝜙, 𝜃 and 𝛹 are the X, Y and Z sequence of angles, also

called roll, pitch and yaw in the Tait-Bryan convention [6], and
[𝑞0, 𝑞1, 𝑞2, 𝑞3] are the elements of the quaternion vector, as

shown in (4).

To recover the sequence of angles from a quaternion vector, an

intermediary DCM shall be used [8] as in (10):

𝐷𝐶𝑀 = [

𝑞0
2 + 𝑞1

2 − 𝑞2
2 − 𝑞3

2 2(𝑞1𝑞2 − 𝑞0𝑞3) 2(𝑞1𝑞3 + 𝑞0𝑞2)

2(𝑞1𝑞2 + 𝑞0𝑞3) 𝑞0
2 − 𝑞1

2 + 𝑞2
2 − 𝑞3

2 2(𝑞2𝑞3 − 𝑞0𝑞1)

2(𝑞1𝑞3 − 𝑞0𝑞2) 2(𝑞2𝑞3 + 𝑞0𝑞1) 𝑞0
2 − 𝑞1

2 − 𝑞2
2 + 𝑞3

2

] (10)

From which each angle can be extracted using trigonometric

functions [6] as in (11), (12) and (13):

 𝜃 = −asin(𝐷𝐶𝑀31) (11)

𝜙 = atan2(𝐷𝐶𝑀32, 𝐷𝐶𝑀33) (12)

𝜓 = atan2(𝐷𝐶𝑀21,𝐷𝐶𝑀11) (13)

where 𝑎𝑠ⅈ𝑛 is the inverse sine, 𝐷𝐶𝑀31 is the element of the

DCM matrix located in the third row and first column and

𝑎𝑡𝑎𝑛2 is the four quadrant inverse tangent.

Lastly, to represent the change in rotation, the expanded

formula first stated in (1) is carried out as in (14), where the 𝑄

is the body frame matrix [2] shown in (15).

�̇� =
1

2
𝑄�⃗⃗� (14)

𝑄 = [

−𝑞1
 −𝑞2

 −𝑞3

𝑞0
 𝑞3

 −𝑞2

−𝑞3
 𝑞0

 𝑞1

𝑞2
 −𝑞1

 𝑞0

] (15)

III. THE KALMAN FILTER

Being not only the best linear estimator, as a solver of the
least squares method, the Kalman filter is also a widely used
state of the art algorithm in sensor fusion. When working with
multiple sensors, as the three axis accelerometer and gyroscope
present in the MPU-6050, the Kalman gain 𝐾 represents the
proportion of trust given to the different measurements [9], and
is computed at each measurement update, given the tuning
parameters 𝑄 and 𝑅 , which represent the process and
measurement noise [10].

A. Process Model

The process model is a mathematical representation of a

dynamic system meant to encapsulate the kinematics of the

state space representation, which makes it is a focal part of

estimation algorithms. The orientation is constructed as a

quaternion vector, whose four components represent the system

states, which are then propagated in time, using Euler

integration [10] (also known as dead reckoning in the

gyroscope context), along with a a matrix consisting of the

variances of each of the errors present in the states estimation

(also called covariance matrix 𝑃 [2]) . The quaternion vector

can be recovered from the angular rates body measured by the

gyroscope as shown in (14). This is known as the prediction

phase of the filter [9].

B. Measurement Model

The measurements coming into the filter are the sequence of
tilt angles coming from the accelerometer’s linear and
gravitational accelerations measurements. As the output of a
sensor is not linear, the angles cannot be computed through
simple integration, and rather need to be transformed using
trigonometric functions [10], as shown in (16) and (17). The
measurements are then compared to the states computed in the
prediction phase and the error (also called innovation) is
calculated as the difference between the estimated state and the
measured state. The state is then updated based on the Kalman
gain. This is known as the update step of the filter [2].

𝜙𝑚𝑒𝑎𝑠 = atan2 (
𝑎𝑐𝑐𝑒𝑙_𝑦

𝑎𝑐𝑐𝑒𝑙_𝑧
) (16)

 𝜃𝑚𝑒𝑎𝑠 = atan2 (
−𝑎𝑐𝑐𝑒𝑙_𝑥

√𝑎𝑐𝑐𝑒𝑙_𝑦2+𝑎𝑐𝑐𝑒𝑙_𝑧2
) (17)

C. Algorithm

Although consistent usage of trigonometric functions for
angle computation is present, as the angles themselves are
introduced directly as measurements, there is no need for
linearization in this regard, and so the linear Kalman filter was
chosen over the extended Kalman filter, as its convergence is
guaranteed [9]. The algorithm is carried out as it is depicted in
Fig.1. When it comes to the tuning parameters of the filter, the
process model noise matrix Q is considered as a diagonal matrix
of the squared standard deviations of each of the quaternion
vector components, while the measurement noise matrix R is
constructed as a matrix of the same quaternion vector element
variance, yet this time as a measurement uncertainty coming
from the accelerometer measurement which is transformed in
quaternion form. Equations (18) and (19) provide a
representation of their choice.

 𝑄 =

[

𝜎𝑞0

2 0 0 0

0 𝜎𝑞1
2 0 0

0 0 𝜎𝑞2
2 0

0 0 0 𝜎𝑞3
2]

 (18)

 𝑅 =

[

𝜎𝑞𝑚𝑒𝑎𝑠0

2 0 0 0

0 𝜎𝑞𝑚𝑒𝑎𝑠1
2 0 0

0 0 𝜎𝑞𝑚𝑒𝑎𝑠2
2 0

0 0 0 𝜎𝑞𝑚𝑒𝑎𝑠3
2]

 (19)

As the linear filter is bound to converge regardless of

initialization, the covariance matrix 𝑃 can be initialized as a

diagonal matrix whose trace are numbers greater than the

expected variance of each state. An example of choice is

provided in (20), where p is a positive integer chosen

empirically. If the first state is known, p should be set to zero.

 𝑃 =

[

𝑝𝜎𝑞0

2 0 0 0

0 𝑝 𝜎𝑞1
2 0 0

0 0 𝑝 𝜎𝑞2
2 0

0 0 0 𝑝𝜎𝑞3
2]

 (20)

Figure 1. The proposed algorithm

Considering that the states of the vector are independent of each
other, the transition matrix as well as the measurement (also
called observation) matrix are chosen as the identity matrix 𝐼4.

Due to only the roll and pitch angles being measured from the
accelerometer, because the quaternion vector holds
informantion about the yaw angle as the rotation around the Z
axis, the measurement vector has to be augmented with the yaw
state for the matrix multiplications to be valid, yet the value itself
is not considered, nor verified for convergence.

The reason why the yaw angle is not computed is because it
cannot be calculated reliably using only an accelerometer and a
gyroscope. The explanation for this is straightforward: as the
sensor is rotated around the Z axis, the acceleration of the axis
stays the same. While the gyroscope integration can still be
done, the whole system now lacks a referrence frame and the
algorithm is no longer performing sensor fusion. State of the art
methods for calculating the yaw angle usually include a
magnetometer as a third sensor [3] and are referred to as Attitude
and Heading Referrence Systems (AHRS)

The convergence of the filter to the true state is guaranteed by
the minimization of the trace of the covariance matrix 𝑃 [9].

At the expense of convergence speed, an extra IIR first or second
order butterworth filter may be considered to further reduce the
noise when the matrix 𝑅 was chosen and tested. For the
implementation of the filter, the built in butter Matlab® function
[11] is used, with the measurement biases as the initial
conditions.

 Table 1: Performance Analysis

IV. RESULTS

The overall performance of each implementation and phase

was measured using the Mean Squared Error (MSE) as the

difference between the measured signal and the ground truth,

when the sensor is not moving, so that the ground truth would

be zero (0). During the testing phase, it was found that the

MPU-6050 has run-to-run biases for the angle measurements,

therefore calibration has to be carried out before each online

estimation. The biases of the measurements will be subtracted

from the actual measurement using the mean Matlab® function.

For this experiment, bias drift [10] due to increase in

temperature was not considered, nor modelled, because its
effect was found to be negligible. As seen in Fig.2 and Fig.3,

the convergence of the imufilter from Matlab® is much slower,

and the delay in time is caused by the gyroscope measurement

integrating the error in time as well as the angular velocity.

While the proposed filter is more affected by noise (as it can be

Method

Mean Squared Error

Phase Roll Angle
Pitch

Angle

Gyroscope Dead Reckoning

Prediction
0.0341 0.0083

Accelerometer Measurement Update 0.0374 0.0142

Proposed Kalman Filter Fusion 0.0306 0.0075

MATLAB’s imufilter

(processed to remove delay)
Fusion 0.0056

0.0006

7

Butterworth + Proposed KF IIR Filtering 0.0256 0.0020

Initialize filter on (16) and (17)

Initialize 𝑄, 𝑅 and 𝑃 on (18), (19) and (20)

Initialize 𝑞0 = [0,0,0,0]

Initialize transition and observation matrices 𝐹 = 𝐻 = 𝐼4

Set state 𝑥0 = 𝑞0

do while arduino is connected:

 read [gyro_x, gyro_y, gyro_z] from gyroscope

 �⃗⃗� = [gyro_x, gyro_y, gyro_z]

 �⃗⃗� → �̇� using (14), (15)

 Begin prediction step:

 𝑥𝑘+1 = 𝑥𝑘 + �̇�𝛥𝑡 (euler integration)

 𝑥𝑘+1 =
𝑥𝑘+1

‖𝑥𝑘+1‖
 using (5) (quaternion normalization)

 𝑃𝑘+1 = 𝐹𝑃𝑘𝐹𝑇 + 𝑄 (covariance propagation)

 Begin update step:

 read [accel_x, accel_y, accel_z] from sensor

 compute angles using (16) and (17)

 𝑧 = 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 = [𝜙𝑚𝑒𝑎𝑠 𝜃𝑚𝑒𝑎𝑠]

 map: euler → quaternion for 𝑧 using (6) to (9)

 �̂� = 𝐻𝑥𝑘 (compute estimation)

 ⅈ𝑛𝑛𝑜𝑣 = 𝑧 − �̂� (compute error)

 𝑆𝑘 = 𝐻𝑃𝑘𝐻𝑇 + 𝑅 (innovation covariance)

 𝐾𝑘 = 𝑃𝑘𝐻𝑇𝑆𝑘
−1 (Kalman gain)

 𝑥𝑘
+ = 𝑥𝑘

− + 𝐾𝑘 ⋅ ⅈ𝑛𝑛𝑜𝑣 update state)

 𝑃𝑘
+ = 𝑃𝑘

− − 𝐾𝑘𝐻𝑃𝑘
− (update covariance)

 recover euler sequence using (10) to (13)

 Optional:

 IIR filter with Butterworth

seen in Table 1), its response to changes in attitude is faster and

proves stable for both angles, as shown in Fig.4 and Fig 5. If

convergence speed is preferred in favor of less overall noise,

one might decide to use the accelerometer measurement by

itself. If the gyroscope is the only available sensor, with the
correct process model, the angles can be obtained reliably,

although delay from integration will be present. If both sensors

are present, data fusion through either of the methods is

preferred.

V. CONCLUSIONS

The present paper proposes a sensor fusion method based

on a linear Kalman filter with quaternion transformations as

the process model. The algorithm successfully converges to a

value closer to the truth than the raw measurements and is able

to mitigate the integration error and time delay effects of the

imufilter implementation.

ACKNOWLEDGMENT

Very great appreciation goes towards my professors, Dr. eng.

Eva H. Dulf and Dr. eng. Zsófia Lendek for their patient

guidance, useful critiques and encouragement.

 Figure 2: Roll angle measured in stationary position

 Figure 3: Pitch angle measured in stationary position

 Figure 4: Roll angle response to orthogonal change in position

 Figure 5: Pitch angle responses to orthogonal changes in position

REFERENCES

[1] Abyarjoo, Fatemeh, et al. "Implementing a sensor fusion algorithm for 3D

orientation detection with inertial/magnetic sensors." Innovations and
advances in computing, informatics, systems sciences, networking and

engineering. Springer, Cham, (2015):305-310.

[2] Kraft, Edgar. "A quaternion-based unscented Kalman filter for orientation

tracking." Proceedings of the sixth international conference of

information fusion. Vol. 1. No. 1. IEEE Cairns, 2003.

[3] Neto, Pedro, Nuno Mendes, and A. Paulo Moreira. "Kalman filter-based

yaw angle estimation by fusing inertial and magnetic sensing: A case

study using low cost sensors." Sensor Review (2015).

[4] ***Matlab, https://de.mathworks.com/help/fusion/ref/imufilter-system-

object.html - Accessed April 2022

[5] Perumal, Logah. "Quaternion and its application in rotation using sets of
regions." International Journal of Engineering and Technology

Innovation 1.1 (2011): 35.

[6] Diebel, James. "Representing attitude: Euler angles, unit quaternions, and

rotation vectors." Matrix 58.15-16 (2006): 1-35.

[7] Jia, Yan-Bin. "Quaternions and rotations." Com S 477.577 (2008): 15.

[8] Sarabandi, Soheil, and Federico Thomas. "Accurate computation of
quaternions from rotation matrices." International Symposium on

Advances in Robot Kinematics. Springer, Cham, 2018.

[9] Choukroun, Daniel, Itzhack Y. Bar-Itzhack, and Yaakov Oshman. "Novel
quaternion Kalman filter." IEEE Transactions on Aerospace and

Electronic Systems 42.1 (2006): 174-190.

[10] Wu, Zheming, et al. "Attitude and gyro bias estimation by the rotation of
an inertial measurement unit." Measurement Science and Technology

26.12 (2015): 125102.

[11] ***Matlab, https://www.mathworks.com/help/signal/ref/butter.html -

Accesed April 2022

.

https://de.mathworks.com/help/fusion/ref/imufilter-system-object.html%20%20%20-%20Accessed%20April%202022
https://de.mathworks.com/help/fusion/ref/imufilter-system-object.html%20%20%20-%20Accessed%20April%202022
https://www.mathworks.com/help/signal/ref/butter.html

	I. Introduction
	II. Attittude Representation
	A. The different types of representation
	B. Changes in attitude
	C. Quaternion Algebra
	D. Quaternion norm
	E. Transformations

	III. The Kalman Filter
	A. Process Model
	B. Measurement Model
	C. Algorithm

	IV. Results
	V. Conclusions
	Acknowledgment
	References

