Skip to content
Switch branches/tags
Go to file
Cannot retrieve contributors at this time
80 lines (64 sloc) 3.27 KB
import numpy as np
import os
import tensorflow as tf
from PIL import Image
from utils import label_map_util
from pascal_voc_writer import Writer
if tf.__version__ < '1.4.0':
raise ImportError('Please upgrade your tensorflow installation to v1.4.* or later!')
PATH_TO_CKPT = 'inference/frozen_inference_graph.pb'
PATH_TO_LABELS = 'data/map.pbtxt'
TOTAL_IMAGES = 10 #Edit this number to the numbers of images you have.
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph =
tf.import_graph_def(od_graph_def, name='')
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
def load_image_into_numpy_array(image):
(im_width, im_height) = image.size
return np.array(image.getdata()).reshape(
(im_height, im_width, 3)).astype(np.uint8)
TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_TEST_IMAGES_DIR, '{}.jpg'.format(i)) for i in range(1,TOTAL_IMAGES) ]
with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
# Definite input and output Tensors for detection_graph
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Each box represents a part of the image where a particular object was detected.
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represent how level of confidence for each of the objects.
# Score is shown on the result image, together with the class label.
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
for image_path in TEST_IMAGE_PATHS:
image =
image_width, image_height = image.size
# the array based representation of the image will be used later in order to prepare the
# result image with boxes and labels on it.
image_np = load_image_into_numpy_array(image)
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
# Actual detection.
(boxes, scores, classes, num) =
[detection_boxes, detection_scores, detection_classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
boxes = np.squeeze(boxes)
classes = np.squeeze(classes)
scores = np.squeeze(scores)
writer = Writer(image_path, image_width, image_height)
for index, score in enumerate(scores):
if score < 0.5:
label = category_index[classes[index]]['name']
ymin, xmin, ymax, xmax = boxes[index]
writer.addObject(label, int(xmin * image_width), int(ymin * image_height),
int(xmax * image_width), int(ymax * image_height))
annotation_path = os.path.splitext(image_path)[0] + '.xml'