Permalink
Cannot retrieve contributors at this time
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
# The script below has been modified to create TFRecord files for | |
# datasets that use the PASCAL VOC annotation format. | |
# | |
# This script assumes that files exist in a data directory with a strict | |
# format. The annotation file path must be the same as the image file | |
# path, but 'xml' instead of 'jpg' as the extension. File path information | |
# inside the XML file is ignored. | |
# | |
# The original can be found here: | |
# https://github.com/tensorflow/models/blob/master/research/object_detection/dataset_tools/create_pascal_tf_record.py | |
r"""Convert raw PASCAL dataset to TFRecord for object_detection. | |
Example usage: | |
python object_detection/dataset_tools/create_pascal_tf_record.py \ | |
--data_dir=/home/user/data \ | |
--output_path=/home/user/pascal.record \ | |
--label_map_path=/home/user/data/map.pbtxt | |
""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import hashlib | |
import io | |
import logging | |
import os | |
import glob | |
from lxml import etree | |
import PIL.Image | |
import tensorflow as tf | |
from object_detection.utils import dataset_util | |
from object_detection.utils import label_map_util | |
flags = tf.app.flags | |
flags.DEFINE_string('data_dir', None, 'Root directory to raw PASCAL VOC dataset.') | |
flags.DEFINE_string('output_path', None, 'Path to output TFRecord') | |
flags.DEFINE_string('label_map_path', None, | |
'Path to label map proto') | |
flags.DEFINE_boolean('ignore_difficult_instances', False, 'Whether to ignore ' | |
'difficult instances') | |
FLAGS = flags.FLAGS | |
def dict_to_tf_example(data, | |
image_path, | |
label_map_dict, | |
ignore_difficult_instances=False): | |
"""Convert XML derived dict to tf.Example proto. | |
Notice that this function normalizes the bounding box coordinates provided | |
by the raw data. | |
Args: | |
data: dict holding PASCAL XML fields for a single image (obtained by | |
running dataset_util.recursive_parse_xml_to_dict) | |
image_path: Path to image described by the PASCAL XML file | |
label_map_dict: A map from string label names to integers ids. | |
ignore_difficult_instances: Whether to skip difficult instances in the | |
dataset (default: False). | |
Returns: | |
example: The converted tf.Example. | |
Raises: | |
ValueError: if the image pointed to by data['filename'] is not a valid JPEG | |
""" | |
with tf.gfile.GFile(image_path, 'rb') as fid: | |
encoded_jpg = fid.read() | |
encoded_jpg_io = io.BytesIO(encoded_jpg) | |
image = PIL.Image.open(encoded_jpg_io) | |
if image.format != 'JPEG': | |
raise ValueError('Image format not JPEG') | |
key = hashlib.sha256(encoded_jpg).hexdigest() | |
width = int(data['size']['width']) | |
height = int(data['size']['height']) | |
xmin = [] | |
ymin = [] | |
xmax = [] | |
ymax = [] | |
classes = [] | |
classes_text = [] | |
truncated = [] | |
poses = [] | |
difficult_obj = [] | |
for obj in data['object']: | |
difficult = bool(int(obj['difficult'])) | |
if ignore_difficult_instances and difficult: | |
continue | |
difficult_obj.append(int(difficult)) | |
xmin.append(float(obj['bndbox']['xmin']) / width) | |
ymin.append(float(obj['bndbox']['ymin']) / height) | |
xmax.append(float(obj['bndbox']['xmax']) / width) | |
ymax.append(float(obj['bndbox']['ymax']) / height) | |
classes_text.append(obj['name'].encode('utf8')) | |
classes.append(label_map_dict[obj['name']]) | |
truncated.append(int(obj['truncated'])) | |
poses.append(obj['pose'].encode('utf8')) | |
example = tf.train.Example(features=tf.train.Features(feature={ | |
'image/height': dataset_util.int64_feature(height), | |
'image/width': dataset_util.int64_feature(width), | |
'image/filename': dataset_util.bytes_feature( | |
data['filename'].encode('utf8')), | |
'image/source_id': dataset_util.bytes_feature( | |
data['filename'].encode('utf8')), | |
'image/key/sha256': dataset_util.bytes_feature(key.encode('utf8')), | |
'image/encoded': dataset_util.bytes_feature(encoded_jpg), | |
'image/format': dataset_util.bytes_feature('jpeg'.encode('utf8')), | |
'image/object/bbox/xmin': dataset_util.float_list_feature(xmin), | |
'image/object/bbox/xmax': dataset_util.float_list_feature(xmax), | |
'image/object/bbox/ymin': dataset_util.float_list_feature(ymin), | |
'image/object/bbox/ymax': dataset_util.float_list_feature(ymax), | |
'image/object/class/text': dataset_util.bytes_list_feature(classes_text), | |
'image/object/class/label': dataset_util.int64_list_feature(classes), | |
'image/object/difficult': dataset_util.int64_list_feature(difficult_obj), | |
'image/object/truncated': dataset_util.int64_list_feature(truncated), | |
'image/object/view': dataset_util.bytes_list_feature(poses), | |
})) | |
return example | |
def main(_): | |
data_dir = FLAGS.data_dir | |
if not data_dir: | |
logging.error('Must provide a data directory') | |
return | |
output_path = FLAGS.output_path | |
if not output_path: | |
logging.error('Must provide an output path') | |
return | |
label_map_path = FLAGS.label_map_path | |
if not label_map_path: | |
logging.error('Must provide a label map path') | |
return | |
writer = tf.python_io.TFRecordWriter(output_path) | |
label_map_dict = label_map_util.get_label_map_dict(label_map_path) | |
logging.info('Reading from data directory.') | |
data_dir_jpg_query = os.path.join(data_dir, '*.jpg') | |
for idx, image_path in enumerate(glob.glob(data_dir_jpg_query)): | |
if idx % 20 == 0: | |
logging.info('On image %d (%s)', idx, image_path) | |
annotation_path = os.path.splitext(image_path)[0] + '.xml' | |
with tf.gfile.GFile(annotation_path, 'r') as fid: | |
xml_str = fid.read() | |
xml = etree.fromstring(xml_str) | |
data = dataset_util.recursive_parse_xml_to_dict(xml)['annotation'] | |
tf_example = dict_to_tf_example(data, image_path, label_map_dict, | |
FLAGS.ignore_difficult_instances) | |
writer.write(tf_example.SerializeToString()) | |
writer.close() | |
if __name__ == '__main__': | |
tf.app.run() |