ALGORITHM 616
Fast Computation of the Hodges-Lehmann
Location Estimator

JOHN F. MONAHAN
North Carolina State University

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems—sorting and searching; G.3 [Mathematics of Comput-
ing}: Probability and Statistics—statistical computing

General Terms: Algorithms, Design

Additional Key Words and Phrases: Computational complexity, Hodges-Lehmann loeation estimator,
divide and conquer, quicksort, median

DESCRIPTION

HLQEST is a FORTRAN function subprogram for computing the Hodges-
Lehmann [5] estimator

X+ X)

i = medi
L = me 1an{ 5

,1sisj5n}.1 (1)
This robust and highly efficient estimator [2] has not been widely used by
statisticians because its apparent time computational complexity is O(n? log n).
Improvements in computing g have previously been made with an iterative
algorithm [11] and with some fast theoretical techniques [7, 8]. HLQEST is exact
and fast, with expected time complexity of O(n log n).

The estimator 4 arises from inverting the one-sample Wilcoxon test statistic.
That is, @ is a root of

0= W) = 2 rank(| X, — u) X sign(X, — u), @)

where W(u) is the Wilcoxon test statistic for the hypothesis H:E (X;) = u. Notice

! The median tor an even number of values is always taken to be the average of the two middle values.

Received 10 December 1981; revised 20 May 1983; accepted 2 December 1983

Author’s address; Department of Statistics, North Carolina State University, Raleigh, NC 27650.
Permission to copy without fee all or part of this material 1s granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice dnd the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery To copy otherwise, or to republish, requires a fee and/or specific
permission.

© 1984 ACM 0098-3500/84,/0900-0265 $00.75

ACM Transactions on Mathematical Software, Vol. 10, No. 3, September 1984, pages 265-270

266 - Algorithms

that W(u) is a monotone step function and can yield multiple roots; taking the
midrange of the roots yields a unique estimator and the definition (1).

McKean and Ryan [11] used the representation of u as a root of (2) as the
basis for their algorithm, recommending the Illinois algorithm, (see [3], pp. 231~
232), a variant of regula falsi, for finding the root iteratively. When there is an
interval of roots, the two endpoints, roots of W(u) = +¢, must be found; otherwise
the root of (2) can differ substantially from definition (1). Note that computing
i as a single root of (2) using regula falsi is the reported method in the so-called
“Princeton study” [1]. Finally while McKean and Ryan deal with the two-sample
Hodges-Lehmann estimator, the one-sample problem is very similar.

Johnson and Kashdan [7] and Johnson and Mizoguchi [8] produced “fast”
algorithms for selection from multisets, for which g is a special case. The
corresponding two-sample problem is analyzed by Johnson and Ryan [9]. How-
ever, no implementation of a fast exact algorithm is extant.

The exact algorithms of [7] and [8] and those that follow are based on the
“divide and conquer” theme. The unique feature of the problem is that the
structure allows the partitioning to be done in O(n) time, while there are O(n?)
elements. First of all, the values are to be sorted so that values of X, appear in
nondecreasing order. By placing the sum X, + X; in the (i, j)th element of an
upper triangular matrix, the number of elements less than some number a can
be found by starting at the upper right corner and moving to the diagonal. To
keep track of what elements are between two numbers a and b, only pointers to
the first and last elements in each row are needed. Of course, this matrix is never
formed. All of these algorithms for finding the kth smallest what follow the
structure

o = {(X. + X)), l=si<j=n}; m=0;
while it’s a good idea do
Find a partition element a,;
Let L,, be the elements of S, that are less than a,,;
if1Ln|> k then Sma = Sp N L

else Spe1 = S N LY,
end while;

For the exact algorithms of [7] and [8], “it’s a good idea” means that
| Si.| > n, otherwise the job is completed directly by sorting S,,. Also, the
partition element a,, is chosen to be the weighted median of row medians of
elements S,, where the weight is the number in the row in S,,. Under this scheme,
a,, cuts off at least one fourth of the elements at every step,

| Smei| = 3/4 | Sml, (3

so that the number of steps is O(n log n). Since the initial sorting takes
O(n log n) and the weighted medians can be found using a fast O(n) median
routine, the total time complexity is O(n log n).

As implemented by the author in algorithm HLFEST, some changes are
necessary. First, S,, must be split into three pieces: <a,,, =a,, and >a,, as
recommended [8], in order to handle troublesome ties. Second, the fast median
algorithm is impractical for most sample sizes encountered in practice; sorting
was used to handle this subproblem, increasing the complexity to O(n log® n).

ACM Transactions on Mathematical Software, Vol. 10, No 3, September 1984.

Algorithms » 267

HLFEST proved to be fast enough for some recent Monte Carlo work by the
author [12], but improvements were sought. It was believed that too much time
was spent in finding the partition element a,,.

-The QUICKSORT and FIND algorithms of Hoare [4] suggest an alternative:
choose a,, at random from S,,. The second improvement is to stop the process
when the largest or smallest element of S,,., is sought. That is, “it’s a good idea”
is changed to

k# |Ln| or k# |Ln| + 1. 4)
Also, “Find a partition element a,,;” is translated to
Randomly choose an element in S,, (all equally likely). (5)

Ties again present a problem: if S,, = S,.-; then ties are suspected and a,, is
replaced by the midrange of S,,, unless max S,, = min S,, where the process is
stopped.

These changes were implemented in a subroutine called HLQIST. To analyze
its complexity, we need only consider the random value of m when it leaves the
while loop. Let M, be the expected number of steps in the while loop for finding
the kth smallest of [elements. Since the max or min of S,, can be found in one
step (M., = M, = 1) costing O(n), then for 1 <k <

k i
My,=1+1 <2 Mk—1+l,l—l+1 + 2 Mk,t—l)

=1 1=k+1 (6)
<2+l+ 2 Mk—tl—l+ Z Mkt)/(l—]-)
=1 1=k+1
The recurrence relationship (6) can be analyzed to show that
My <allogk+log(l—k+1)]+b, 7

where a is unity and b =~ 1.2. It can be easily shown that My; = M;,, = H,_,
+ 1, where H, is the ith harmonic number. Since the initial sorting requires
O(n log n) it is only necessary that M, , = O(log n) so that the total complexity
of HLQIST is O(n log n).

Again, improvements were sought and two are implemented in the final
algorithm HLQEST. First, ao is chosen to be 2 times the median {X;}. Second,
a., is subsequently chosen as a random row median, where the probabilities are
proportional to the number in that row that are in S,,, analogous to the original
scheme. Both adjustments prove useful. The complexity of HLQEST is impos-
sible to analyze, but should not change from O(n log n).

Notice that when n mod 4 is 0 or 3 then the number of values in S, is even
and so the middle values must be found and averaged. As a consequence, all of
these algorithms are designed to find one or two consecutive order statistics from
So. They can easily be adjusted to find any consecutive pair of order statistics,
as for constructing confidence intervals.

To compare the performance of these algorithms in practice, their FORTRAN
implementations were timed using the IBM 3081 at the Triangle Universities
Computation Center. For each of seven sample sizes, the average of 5 sets of 100

ACM Transactions on Mathematical Software, Vol. 10, No. 3, September 1984.

268 .« Algorithms

Table I. Time in Milliseconds/Sample

Method
HLFEST HLQIST HLQEST Sort HDGSL1 HDGSL2
Normal n = 5 0.34 0.26 0.20 0.20 0.42 041
10 0.80 0.64 0.50 0.86 0.64 0.68
20 1.98 1.48 1.30 3.80 0.72 0.72
50 6.46 4.24 3.62 29.00 2.38 2.78
100 15.42 9.74 8.64 — 3.90 3.94
200 36.66 21.96 19.24 —_ 8.20 8.28
1000 257.04 140.54 122.54 — 44.84 49.92
Uniformn= 100 14.96 8.74 7.56 — 2.90 2.98
1000 257.48 130.10 111.08 — 34.68 40.48
Discreten= 100 9.96 6.34 5.30 — 5.70 5.70
1000 130.32 68.82 57.32 — 62.74 63.82
Length of 1544 1620 1688 — 696 696
Compiled Code +(622)* +(378)° +(378)° — +(472)° +(472)°

NOTE: The length of code is measured in bytes and does not include a sorting subroutine.
Auxihary function subprograms

* Finds weighted median.

® Pseudorandom number generator [13].

¢ Evaluates W(y) [1].

replications each are given in Table I. These values give the average computing
time for each algorithm and sample size pair in terms of milliseconds per sample.
Each sample was composed of iid uniform or standard normal pseudorandom
variables obtained from the IMSL [6] routines GGUBS, an implementation of
the Lewis, Goodman and Miller algorithm [10], and GGNPM. Samples labelled
“Discrete” in the table are integer parts of five times the normal samples. Within
HLQIST and HLQEST, Schrage’s [13] portable FORTRAN implementation of
the same algorithm [10] was the source of random variables. The label “Sort”
refers to the straightforward method of creating the n(n + 1)/2 pairs (X, + X))
and sorting. Algorithms HDGSL1 and HDGSL2 are streamlined versions of the
iterative methods described earlier, using regula falsi and the Illinois method,
respectively, to find only a single root of W(x) = 0. When n mod 4 is 0 or 3, the
additional effort for finding two roots (as in [11]) instead of one (as in [1]) would
depend greatly on the sophistication of the algorithm.

From Table I, notice that HLQEST is superior to any other exact method and
better than the two iterative methods in small sample sizes. In large samples, the
error tolerance and sophistication of iterative methods, as well as the type of
data, will determine the best method.

APPENDIX. COMPLEXITY OF HLQIST
We will follow an induction argument, using (6)

k=2 -1
(l - l)Mk,l = l + 2 + 2 Mk—t,l—t + E Mk,l' (AI)
=1 1=k+1
For1 <k <l =<t (for some t > 2), it can be shown that
M, sb+alogk+alog(l—k+1). (A2)

ACM Transactions on Mathematical Software, Vol. 10, No. 3, September 1984.

Aigorithms - 269

Therefore, using (A1) we can show that
(=DM =(+2)+(1—3)b+a(l—3/2)logk+log(l—k+1)]~a(l—1).

(A3)

Therefore, if a = 1, then (A2) istrue fort + 1 and thusall 1 <k <[, aslong as &
is chosen so that (A2) is true for some ¢t = [, for which b = 1.2 is sufficient for
t = 6. Note that the logarithms used here are natural logarithms, arising from an
inequality from Stirling’s approximation:

loglk —1)!'<(k—=1/2)logk =k + 1. (A4)

ACKNOWLEDGMENTS

The author wishes to thank Dennis D. Boos and Carla D. Savage for their helpful
suggestions, advice and encouragement. Useful comments from the editor and
referees are appreciated.

REFERENCES

1 ANDREWS, D.F., BicKEL, P.J., HAMPEL, F.R., HUBER, P.J., ROGERS, W.J., AND TUKEY,
J.W. Robust Estimators of Location Survey and Advances Princeton Univ. Press, Princeton,
N.J, 1972,

2. BICKEL, P J. On some robust estimates of location. Ann Math. Statist. 36 (1965), 847-858.

3. DaHLQUIST, G AND BJORK,A. Numerical Methods. Prentice-Hall, Englewood Cliffs, N.J., 1974.

4, HoARE, C AR. Algorithm 63 (PARTITION) and Algorithm 65 (FIND). Commun. ACM 4,7
(July 1961), 321-322.

5. HobGEs, J.L, AND LEHMANN, EL Estimates of location based on rank tests. Ann. Math.
Statist 34 (1963), 598-611.

6. INTERNATIONAL MATHEMATICS AND STATISTICAL LIBRARIES, INCORPORATED. The IMSL Li-
brary, Vol 2, 8th ed., IMSL, Houston, Tex., 1980.

7. JOHNSON, D.B., AND KAsSHDAN, S.D. Lower bounds for selection in X + Y and other multisets.
J ACM, 25, 4 (Oct. 1978), 556-570.

8 JOHNSON, D.B., AND MIZoGUCHI, T. Selecting the kth elementin X + Yand X; + Xo + - .- +
Xm. SIAM J. Comput 7 (1978), 147-153 .

9 JounsoN, D.B, AND RYaN, T.A. Fast computation of the Hodges-Lehmann estimator—theory
and practice. In Proc Statist Comp. Sec ASA (1978), 1-2.

10. LEwWIs, P A W., GOODMAN, A.S. AND MILLER, J. M. A pseudorandom number generator for the
System/360. IBM Syst J 8 (1969), 136-146.

11. McKEAN, J.W., AND RYaN, T.A. Algorithm 516. An algorithm for obtaining confidence intervals
and point estimates based on ranks in a two-sample location problem. ACM Trans. Math. Softw.
3, 2 (June 1977), 183-185.

12. MONAHAN, J.F. The sampling densities of some robust estimators. Presented at the Pacific
Area Statistical Conference (Tokyo, Dec. 15-17, 1982), Pacific Statistical Institute. Proceedings
to be published.

13. SCHRAGE, L. A more portable Fortran random number generator. ACM Trans Math. Softw 5,
2 (June 1979), 132-138.

ALGORITHM
[A part of the listing is printed here. The complete listing is available from the
ACM Algorithms Distribution Service (see page 355 for order form).]

REAL FUNCTION HLQEST(X, N, LB, RB, Q) HLQ 10
HLQ 2P

ACM Transactions on Mathematical Software, Vol. 10, No. 3, September 1984,

e XeXeXeXeXeXeXe X2 KeKeXeXeXeXeXeie e XeXo Ko X oK elelr Ko Xe Ko Ke!

270 - Algorithms

REAL FUNCTION HLQEST

PURPOSE COMPUTES THE HODGES-LEHMANN LOCATION ESTIMATOR:
MEDIAN OF (X(I) + X(J)) /2 FOR1 LEI LEJ LEN
USAGE RESULT = HLQEST(X,N,LB,RB,Q)

ARGUMENTS X REAL ARRAY OF OBSERVATIONS (INPUT)
* VALUES OF X MUST BE IN NONDECREASING ORDER *

N INTEGER NUMBER OF OBSERVATIONS (INPUT)
* N MUST NOT BE LESS THAN 1 *

LB INTEGER ARRAY OF LENGTH N FOR WORKSPACE
RB INTEGER ARRAY OF LENGTH N FOR WORKSPACE
Q INTEGER ARRAY OF LENGTH N FOR WORKSPACE
NOTE --~ ONLY LB,RB, AND Q ARE CHANGED IN COMPUTATION
EXTERNAL ROUTINE
RAN FUNCTION PROVIDING UNIFORM RANDOM VARIABLES
IN THE INTERVAL (8,1)
RAN REQUIRES A DUMMY INTEGER ARGUMENT

NOTES HLQEST HAS AN EXPECTED TIME COMPLEXITY ON
THE ORDER OF N * LG(N)

ACM Transactions on Mathematical Software, Vol. 10, No. 3, September 1984.

HLQ
HLQ
HLQ
HLQ
HLQ

BLQ
HLQ
HLQ
HLQ
BLQ
HLQ
HLQ
HLQ
BLQ
HLQ
HLQ
HLQ
HLQ
HLQ
HLQ
HLQ
HLQ
HLQ
HLO
HLO
HLO
HLQ
HLQ

310

