
ALGORITHM 616
Fast Computation of the Hodges-Lehmann
Location Estimator

JOHN F. MONAHAN
North Carolina State University

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumencal Algorithms and Problems--sorting and searching; G.3 [Mathematics of Comput-
ing]: Probabdity and Statistics--statistwal computing
General Terms: Algorithms, Design

Additional Key Words and Phrases: Computational complexity, Hodges-Lehmann loeation estimator,
divide and conquer, quicksort, median

DESCRIPTION

H L Q E S T is a F O R T R A N funct ion subprogram for comput ing the Hodges-
L e h m a n n [5] es t imator

~ - - - m e d i a n { (X ' + X J) l < i < j < n } . l (1) ~ - ~

Th i s robust and highly efficient es t imator [2] has not been widely used by
stat is t ic ians because its appa ren t t ime computa t iona l complexi ty is O(n ~ log n).
I m p r o v e m e n t s in comput ing ~ have previously been made with an i terat ive
a lgor i thm [11] and with some fast theoret ical techniques [7, 8]. H L Q E S T is exact
and fast, with expected t ime complexi ty of O.(n log n).

T h e es t imator ~ arises f rom invert ing the one-sample Wilcoxon tes t statistic.
T h a t is, ~ is a root of

0 = W(tt) = ~ rank(I X, - g I) x s ign(X, - tt), (2)

where W(g) is the Wilcoxon tes t s tat is t ic for the hypothesis H:E(XI) ffi tt. Not ice

The me&an for an even number of values is always taken to be the average of the two middle values.

Received 10 December 1981; revised 20 May 1983; accepted 2 December 1983
Author's address; Department of Stat~stms, North Carolina State University, Raleigh, NC 27650.
Permission to copy without fee all or part of this material Js 'granted provided that the copies are not
made or d~stnbuted tbr direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
tbr Computing Machinery To copy otherwise, or to republish, requires a fee and/or specific
permission.
© 1984 ACM 0098-3500/84/0900-0265 $00.75

ACM Transactmns on Mathematical Software, Vol, 10, No. 3, September 1984, pages 265-270

266 • Algorithms

that W(#) is a monotone step function and can yield multiple roots; taking the
midrange of the roots yields a unique estimator and the definition (1).

McKean and Ryan [11] used the representation of/~ as a root of (2) as the
basis for their algorithm, recommending the Illinois algorithm, (see [3], pp. 231-
232), a variant of regula falsi, for finding the root iteratively. When there is an
interval of roots, the two endpoints, roots of W(/~) -- +~, must be found; otherwise
the root of (2) can differ substantially from definition (1). Note that computing

as a single root of (2) using regula falsi is the reported method in the so-called
"Princeton study" [1]. Finally while McKean and Ryan deal with the two-sample
Hodges-Lehmann estimator, the one-sample problem is very similar.

Johnson and Kashdan [7] and Johnson and Mizoguchi [8] produced "fast"
algorithms for selection from multisets, for which /~ is a special case. The
corresponding two-sample problem is analyzed by Johnson and Ryan [9]. How-
ever, no implementation of a fast exact algorithm is extant.

The exact algorithms of [7] and [8] and those that follow are based on the
"divide and conquer" theme. The unique feature of the problem is that the
structure allows the partitioning to be done in O(n) time, while there are O(n 2)
elements. First of all, the values are to be sorted so that values of X, appear in
nondecreasing order. By placing the sum X, + Xj in the (i, j) th element of an
upper triangular matrix, the number of elements less than some number a can
be found by starting at the upper right corner and moving to the diagonal. To
keep track of what elements are between two numbers a and b, only pointers to
the first and last elements in each row are needed. Of course, this matrix is never
formed. All of these algorithms for finding the kth smallest what follow the
structure

So = {(X, + Xj), l <_ i <_ j <_ n}; m---0;
while it's a good idea do

Find a partition element am;
Let Lm be the elements of So that are less than am;
if]Lm]> k thenSm÷l=SmNLm

else Sm+l = S,~ A L~;
end while;

For the exact algorithms of [7] and [8], "it's a good idea" means that
]Sm f > n, otherwise the job is completed directly by sorting Sm. Also, the
partition element am is chosen to be the weighted median of row medians of
elements Sm where the weight is the number in the row in Sm. Under this scheme,
am cuts off at least one fourth of the elements at every step,

] Sm+l [- 3/4 [Sm i, (3)

so that the number of steps is O(n log n). Since the initial sorting takes
O(n log n) and the weighted medians can be found using a fast O(n) median
routine, the total time complexity is O(n log n).

As implemented by the author in algorithm HLFEST, some changes are
necessary. First, Sm must be split into three pieces: <am, --am, and >am, as
recommended [8], in order to handle troublesome ties. Second, the fast median
algorithm is impractical for most sample sizes encountered in practice; sorting
was used to handle this subproblem, increasing the complexity to O(n log 2 n).

ACM Transacttons on Mathematmal Software, Vol. 10, No 3, September 1984.

Algorithms • 267

HLFEST proved to be fast enough for some recent Monte Carlo work by the
author [12], but improvements were sought. It was believed that too much time
was spent in finding the partition element am.

-The QUICKSORT and FIND algorithms of Hoare [4] suggest an alternative:
choose am at random from Sin. The second improvement is to stop the process
when the largest or smallest element of Sm÷~ is sought. That is, "it's a good idea"
is changed to

k ~ JL~[or k ~ IL~J + 1. (4)

Also, "Find a partition element a~;" is translated to

Randomly choose an element in S~ (all equally likely). (5)

Ties again present a problem: if S~ = Sm-~ then ties are suspected and a~ is
replaced by the midrange of Sin, unless max S~ - min S~ where the process is
stopped.

These changes were implemented in a subroutine called HLQIST. To analyze
its complexity, we need only consider the random value of m when it leaves the
while loop. Let Mk,~ be the expected number of steps in the while loop for finding
the kth smallest of l elements. Since the max or min of S~ can be found in one
step (M~,~ = M~,~ -ffi 1) costing O(n), then for 1 < k < 1

Mk,l --- 1 + 1-1 Mh-,+l,l-,+l + ~, Mk,~-i
, ~ = k + l (6)

()/ = 2 + l + 2 Mk-,.t-,+ 2 M h , , (l - - l) .
I=l z=k+l

The recurrence relationship (6) can be analyzed to show that

Mk.t -< a[log k + log(l - k + 1)] + b, (7)

where a is unity and b ~ 1.2. It can be easily shown that Me,l ffi Mt-~,l ffi H~-~
+ 1, where /4, is the ith harmonic number. Since the initial sorting requires
O(n log n) it is only necessary that Mk,, = O(log n) so that the total complexity
of HLQIST is O(n log n).

Again, improvements were sought and two are implemented in the final
algorithm HLQEST. First, ao is chosen to be 2 times the median {Xij. Second,
am is subsequently chosen as a random row median, where the probabilities are
proportional to the number in that row that are in S~, analogous to the original
scheme. Both adjustments prove useful. The complexity of HLQEST is impos-
sible to analyze, but should not change from O(n log n).

Notice that when n rood 4 is 0 or 3 then the number of values in So is even
and so the middle values must be found and averaged. As a consequence, all of
these algorithms are designed to find one or two consecutive order statistics from
So. They can easily be adjusted to find any consecutive pair of order statistics,
as for constructing confidence intervals.

To compare the performance of these algorithms in practice, their FORTRAN
implementations were timed using the IBM 3081 at the Triangle Universities
Computation Center. For each of seven sample sizes, the average of 5 sets of 100

ACM Transactions on Mathematical Software, Vol. 10, No. 3, September 1984.

268 Algorithms

Table I. Time in Milliseconds/Sample

Method

HLFEST HLQIST HLQEST Sort HDGSL1 HDGSL2

Normal n = 5 0.34 0.26 0.20 0.20 0.42 0 . 4 ~
10 0.80 0.64 0.50 0.86 0.64 0.68
20 1.98 1.48 1.30 3.80 0.72 0.72
50 6.46 4.24 3.62 29.00 2.38 2.78

100 15.42 9.74 8.64 - - 3.90 3.94
200 36.66 21.96 19.24 - - 8.20 8.28

1000 257.04 140.54 122.54 - - 44.84 49.92
Uniform n = 100 14.96 8.74 7.56 - - 2.90 2.98

1000 257.48 130.10 111.08 - - 34.68 40.48
Discrete n ffi 100 9.96 6.34 5.30 - - 5.70 5.70

1000 130.32 68.82 57.32 - - 62.74 63.82
Length of 1544 1620 1688 - - 696 696

Compiled Code +(622)" +(378) b +(378) b - - +(472) c +(472) ~

NOTE: The length of code is measured in bytes and does not
Aumhary function subprograms
° Finds weighted median.
b Pseudorandom number generator [13].
c Evaluates W(#) [1].

include a sorting subroutine.

replications each are given in Tab le I. These values give the average comput ing
t ime for each a lgor i thm and sample size pa i r in t e rms of mill iseconds per sample.
Each sample was composed of iid uni form or s t andard normal pseudorandom
variables obta ined f rom the I M S L [6] rout ines G G U B S , an implementa t ion of
the Lewis, Goodman and Miller a lgor i thm [10], and G G N P M . Samples labelled
"Discrete" in the table are integer par t s of five t imes the normal samples. Wi th in
H L Q I S T and H L Q E S T , Schrage 's [13] por table F O R T R A N implemen ta t ion of
the same algori thm [10] was the source of r andom variables. The label "Sor t"
refers to the s t ra ight forward me thod of creat ing the n(n + 1)/2 pairs (X, + X 1)
and sorting. Algor i thms H D G S L 1 and H D G S L 2 are s t reaml ined versions of the
i terative methods described earlier, using regula falsi and the Illinois method,
respectively, to find only a single root of W(#) = 0. W h e n n rood 4 is 0 or 3, the
addit ional effort for finding two roots (as in [11]) ins tead of one (as in [1]) would
depend greatly on the sophis t icat ion of the algori thm.

From Table I, notice t ha t H L Q E S T is superior to any o ther exact me thod and
be t te r than the two i terat ive methods in small sample sizes. In large samples, the
error tolerance and sophis t icat ion of i terat ive methods, as well as the type of
data, will de termine the best method.

APPENDIX. COMPLEXITY OF HLQIST

We will follow an induction a rgument , using (6)

k -2 1-1

(l-1)Mh,l=l+2+ ~ Mk-,,l-,+ ~ Mk,,.
z=l z=k+l

For 1 < k < l _< t (for some t > 2), it can be shown tha t

Mk,~ < b + a log k + a l o g (/ - k + 1).

ACM Transactions on Matbematwal Software, Voi. 10, No. 3, September 1984.

(A1)

(A2)

Algorithms • 269

Therefore, using (A1) we can show that

(l - 1)Mk,~ -< (l + 2) + (l - 3)b + a(l - 3/2)[1og k + l o g (/ - k + 1)] - a (l - 1).

(A3)

Therefore, if a = 1, then (A2) is true for t + 1 and thus all 1 < k < l, as long es b
is chosen so that (A2) is true for some t _ l, for which b = 1.2 is sufficient for
t -- 6. Note that the logarithms used here are natural logarithms, arising from an
inequality from Stirling's approximation:

log(k - 1)! <_ (k - 1/2) log k -. k + 1. (A4)

ACKNOWLEDGMENTS

The author wishes to thank Dennis D. Boos and Carla D. Savage for their helpful
suggestions, advice and encouragement. Useful comments from the editor and
referees are appreciated.

REFERENCES

1 ANDREWS, D.F., BICKEL, P.J., HAMPEL, F.R., HUBER, P.J., ROOERS, W.J., AND TUKEY,
J.W. Robu~t E~ttmators o/Location Survey and Advances Princeton Univ. Press, Princeton,
N.J , 1972.

2. BICKEL, P J. On some robust estimates of location. Ann Math. Statist. 36 (1965), 847-858.
3. DAHLQUIST, G AND BJORK, A. Numerical Methods. Prentice-Hall, Englewood Cliffs, N.J., 1974.
4. HOARE, C A R. Algorithm 63 (PARTITION) and Algorithm 65 (FIND). Commun. ACM 4, 7

(July 1961), 321-322.
5. HOD(:ES, J .L , AND LEHMANN, E L Estimates of locatmn based on rank tests. Ann. Math.

Stat~.st 34 (1963), 598-611.
6. INTERNATIONAl, MATHEMATICS AND STATISTICAL LIBRARIES, INCORPORATED. The IMSL Li-

brary, VoL 2, 8th ed., IMSL, Houston, Tex., 1980.
7. JOHNSON, D.B., AND KASHDAN, S.D. Lower bounds for selection in X + Y and other multisets.

J ACM, 2,5, 4 (Oct. 1978), 556-570.
8 JOHNSON, D.B., AND MIZOGUCHI, T. Selecting the kth element in X + Y and)(1 + X2 + • .. +

X,,. ,SIAM J. Comput 7 (1978), 147-153
9 JOHNSON, D.B , AND RYAN, T.A. Fast computatmn of the Hodges-Lehmann estimator--theory

and practme. In Proc StatLst Comp. Sec ASA (1978), 1-2.
10. LEWIS, P A.W., GOODMAN, A.S. AND MILLER, J.M. A pseudorandom number generator for the

System/360. IBM Syst J 8 (1969), 136-146.
11. MCKEAN, J.W., AND RYAN, T.A. Algorithm 516. An algorithm for obtaining confidence intervals

and point esttmates based on ranks in a two-sample locatmn problem. ACM Trans. Math. So#w.
3, 2 {June 1977), 183-185.

12. MONAHAN, J.F. The samphng densities of some robust estimators. Presented at the Pacific
Area Statistical Conference (Tokyo, Dec. 15-17, 1982), Pacific Statistical Institute. Proceedings
to be published.

13. SCHRA(~E, L. A more portable Fortran random number generator. ACM Trans Math. Softw 5,
2 (June 1979), 132-138.

ALGORITHM

[A part of the listing is printed here. The complete listing is available from the
ACM Algorithms Distribution Service (see page 355 for order form).]

REAL FUNCTION HLQEST(X, N, LB, RB, Q) HI~Q 10
HLQ 2B

ACM Transactions on Mathematical Software, Vol. 10, No. 3, September 1984.

270 • Algorithms

C REAL FUNCTION HLQEST HLQ 30
C HLQ 40
C PURPOSE COMPUTES THE HODGES-LEHMANN LOCATION ESTIMATOR= HLQ 50
C MEDIAN OF (X(I) + X(J)) / 2 FOR I LE I LE J LE N HLQ 60
C HLQ 70
C USAGE RESULT = HLQEST(X,N,LB,RB,Q) HLQ 80
C HLQ 90
C ARGUMENTS X REAL ARRAY OF OBSERVATIONS (INPUT) HLQ 100
C * VALUES OF X MUST BE IN NONDECREASING ORDER * HLQ I10
C HLQ 120
C N INTEGER NUMBER OF OBSERVATIONS (INPUT) HLQ 130
C * N MUST NOT BE LESS THAN I * HLQ 140
C BLO 150
C LB INTEGER ARRAY OF LENGTH N FOR WORKSPACE HLQ 160
C HLQ 170
C RB INTEGER ARRAY OF LENGTH N FOR WORKSPACE HLQ 180
C HLQ 190
C Q INTEGER ARRAY OF LENGTH N FOR WORKSPACE HLQ 200
C HLQ 210
C NOTE --- ONLY LB,RB, AND Q ARE CHANGED IN COMPUTATION HLQ 220
C HLQ 230
C EXTERNAL ROUTINE HLQ 240
C RAN FUNCTION PROVIDING UNIFOPR RANDOM VARIABLES HLQ 250
C IN THE INTERVAL (0,1) HLQ 260
C RAN REQUIRES A DUMMY INTEGER ARGUMENT HLQ 270
C HLQ 280
C NOTES HLQEST HAS AN EXPECTED TIME COMPLEXITY ON HLQ 290
C THE ORDER OF N * LG(N) HLQ 300
C HLQ 310

ACM Transactions on Mathematical Software, Vol. 10, No. 3, September 1984.

