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DESCRIPTION 

H L Q E S T  is a F O R T R A N  funct ion subprogram for comput ing  the  Hodges-  
L e h m a n n  [5] es t imator  

~ - - - m e d i a n { ( X ' + X J )  l < i < j < n } . l  (1) ~ - ~ 

Th i s  robust  and  highly efficient es t imator  [2] has  not  been widely used by  
stat is t ic ians because its appa ren t  t ime computa t iona l  complexi ty  is O(n ~ log n). 
I m p r o v e m e n t s  in comput ing  ~ have previously been  made  with  an  i terat ive 
a lgor i thm [11] and  with some fast  theoret ical  techniques  [7, 8]. H L Q E S T  is exact  
and  fast, with expected t ime complexi ty  of  O.(n log n). 

T h e  es t imator  ~ arises f rom invert ing the one-sample  Wilcoxon tes t  statistic.  
T h a t  is, ~ is a root  of  

0 = W(tt) = ~ rank(I  X,  - g I) x s ign(X,  - tt), (2) 

where W(g) is the Wilcoxon tes t  s tat is t ic  for the  hypothesis  H:E(XI) ffi tt. Not ice  

The me&an for an even number of values is always taken to be the average of the two middle values. 
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that W(#) is a monotone step function and can yield multiple roots; taking the 
midrange of the roots yields a unique estimator and the definition (1). 

McKean and Ryan [11] used the representation of/~ as a root of (2) as the 
basis for their algorithm, recommending the Illinois algorithm, (see [3], pp. 231- 
232), a variant of regula falsi, for finding the root iteratively. When there is an 
interval of roots, the two endpoints, roots of W(/~) -- +~, must be found; otherwise 
the root of (2) can differ substantially from definition (1). Note that computing 

as a single root of (2) using regula falsi is the reported method in the so-called 
"Princeton study" [1]. Finally while McKean and Ryan deal with the two-sample 
Hodges-Lehmann estimator, the one-sample problem is very similar. 

Johnson and Kashdan [7] and Johnson and Mizoguchi [8] produced "fast" 
algorithms for selection from multisets, for which /~ is a special case. The 
corresponding two-sample problem is analyzed by Johnson and Ryan [9]. How- 
ever, no implementation of a fast exact algorithm is extant. 

The exact algorithms of [7] and [8] and those that  follow are based on the 
"divide and conquer" theme. The unique feature of the problem is that the 
structure allows the partitioning to be done in O(n) time, while there are O(n 2) 
elements. First of all, the values are to be sorted so that  values of X, appear in 
nondecreasing order. By placing the sum X, + Xj in the (i, j ) th  element of an 
upper triangular matrix, the number of elements less than some number a can 
be found by starting at the upper right corner and moving to the diagonal. To 
keep track of what elements are between two numbers a and b, only pointers to 
the first and last elements in each row are needed. Of course, this matrix is never 
formed. All of these algorithms for finding the kth smallest what follow the 
structure 

So = {(X, + Xj), l <_ i <_ j <_ n}; m---0; 
while it's a good idea do 

Find a partition element am; 
Let Lm be the elements of So that are less than am; 
if]Lm]> k thenSm÷l=SmNLm 

else Sm+l = S,~ A L~; 
end while; 

For the exact algorithms of [7] and [8], "it's a good idea" means that 
]Sm f > n, otherwise the job is completed directly by sorting Sm. Also, the 
partition element am is chosen to be the weighted median of row medians of 
elements Sm where the weight is the number in the row in Sm. Under this scheme, 
am cuts off at least one fourth of the elements at every step, 

] Sm+l [ - 3/4 [ Sm i, (3) 

so that the number of steps is O(n log n). Since the initial sorting takes 
O(n log n) and the weighted medians can be found using a fast O(n) median 
routine, the total time complexity is O(n log n). 

As implemented by the author in algorithm HLFEST, some changes are 
necessary. First, Sm must be split into three pieces: <am, --am, and >am, as 
recommended [8], in order to handle troublesome ties. Second, the fast median 
algorithm is impractical for most sample sizes encountered in practice; sorting 
was used to handle this subproblem, increasing the complexity to O(n log 2 n). 
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HLFEST proved to be fast enough for some recent Monte Carlo work by the 
author [12], but improvements were sought. It was believed that too much time 
was spent in finding the partition element am. 

-The QUICKSORT and FIND algorithms of Hoare [4] suggest an alternative: 
choose am at random from Sin. The second improvement is to stop the process 
when the largest or smallest element of Sm÷~ is sought. That  is, "it's a good idea" 
is changed to 

k ~  JL~[ or k ~  IL~J + 1. (4) 

Also, "Find a partition element a~;" is translated to 

Randomly choose an element in S~ (all equally likely). (5) 

Ties again present a problem: if S~ = Sm-~ then ties are suspected and a~ is 
replaced by the midrange of Sin, unless max S~ - min S~ where the process is 
stopped. 

These changes were implemented in a subroutine called HLQIST. To analyze 
its complexity, we need only consider the random value of m when it leaves the 
while loop. Let Mk,~ be the expected number of steps in the while loop for finding 
the kth smallest of l elements. Since the max or min of S~ can be found in one 
step (M~,~ = M~,~ -ffi 1) costing O(n), then for 1 < k < 1 

Mk,l --- 1 + 1-1 Mh-,+l,l-,+l + ~, Mk,~-i 
, ~ = k + l  ( 6 )  

( )/ = 2 + l +  2 Mk-,.t-,+ 2 M h , ,  ( l - - l ) .  
I=l z=k+l  

The recurrence relationship (6) can be analyzed to show that 

Mk.t -< a[log k + log(l - k + 1)] + b, (7) 

where a is unity and b ~ 1.2. It can be easily shown that Me,l ffi Mt-~,l ffi H~-~ 
+ 1, where /4, is the ith harmonic number. Since the initial sorting requires 
O(n log n) it is only necessary that Mk,, = O(log n) so that the total complexity 
of HLQIST is O(n log n). 

Again, improvements were sought and two are implemented in the final 
algorithm HLQEST. First, ao is chosen to be 2 times the median {Xij. Second, 
am is subsequently chosen as a random row median, where the probabilities are 
proportional to the number in that row that are in S~, analogous to the original 
scheme. Both adjustments prove useful. The complexity of HLQEST is impos- 
sible to analyze, but should not change from O(n log n). 

Notice that when n rood 4 is 0 or 3 then the number of values in So is even 
and so the middle values must be found and averaged. As a consequence, all of 
these algorithms are designed to find one or two consecutive order statistics from 
So. They can easily be adjusted to find any consecutive pair of order statistics, 
as for constructing confidence intervals. 

To compare the performance of these algorithms in practice, their FORTRAN 
implementations were timed using the IBM 3081 at the Triangle Universities 
Computation Center. For each of seven sample sizes, the average of 5 sets of 100 
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Table I. Time in Milliseconds/Sample 

Method 

HLFEST HLQIST HLQEST Sort HDGSL1 HDGSL2 

Normal n = 5 0.34 0.26 0.20 0.20 0.42 0 . 4 ~  
10 0.80 0.64 0.50 0.86 0.64 0.68 
20 1.98 1.48 1.30 3.80 0.72 0.72 
50 6.46 4.24 3.62 29.00 2.38 2.78 

100 15.42 9.74 8.64 - -  3.90 3.94 
200 36.66 21.96 19.24 - -  8.20 8.28 

1000 257.04 140.54 122.54 - -  44.84 49.92 
Uniform n = 100 14.96 8.74 7.56 - -  2.90 2.98 

1000 257.48 130.10 111.08 - -  34.68 40.48 
Discrete n ffi 100 9.96 6.34 5.30 - -  5.70 5.70 

1000 130.32 68.82 57.32 - -  62.74 63.82 
Length of 1544 1620 1688 - -  696 696 

Compiled Code  +(622)" +(378) b +(378) b - -  +(472) c +(472) ~ 

NOTE: The length of code is measured in bytes and does not 
Aumhary function subprograms 
° Finds weighted median. 
b Pseudorandom number generator [13]. 
c Evaluates W(#) [1]. 

include a sorting subroutine. 

replications each are given in Tab le  I. These  values give the  average comput ing  
t ime for each a lgor i thm and sample  size pa i r  in t e rms  of  mill iseconds per  sample.  
Each  sample  was composed of iid uni form or s t andard  normal  pseudorandom 
variables obta ined f rom the I M S L  [6] rout ines  G G U B S ,  an implementa t ion  of  
the Lewis, Goodman  and Miller a lgor i thm [10], and  G G N P M .  Samples  labelled 
"Discrete"  in the table  are integer par t s  of  five t imes the  normal  samples.  Wi th in  
H L Q I S T  and H L Q E S T ,  Schrage 's  [13] por table  F O R T R A N  implemen ta t ion  of 
the same algori thm [10] was the source of r andom variables.  The  label "Sor t"  
refers to the s t ra ight forward  me thod  of  creat ing the  n(n + 1)/2 pairs  (X, + X 1) 
and  sorting. Algor i thms H D G S L 1  and H D G S L 2  are s t reaml ined  versions of  the 
i terative methods  described earlier, using regula falsi and  the  Illinois method,  
respectively, to find only a single root  of  W(#) = 0. W h e n  n rood 4 is 0 or 3, the 
addit ional  effort  for finding two roots (as in [11]) ins tead of  one (as in [1]) would 
depend greatly on the  sophis t icat ion of the algori thm. 

From Table  I, notice t ha t  H L Q E S T  is superior  to any  o ther  exact  me thod  and  
be t te r  than  the two i terat ive methods  in small  sample  sizes. In  large samples,  the  
error tolerance and  sophis t icat ion of  i terat ive methods,  as well as the  type of 
data,  will de termine  the best  method.  

APPENDIX. COMPLEXITY OF HLQIST 

We will follow an induction a rgument ,  using (6) 

k -2  1-1 

( l-1)Mh,l=l+2+ ~ Mk-,,l-,+ ~ Mk,,. 
z=l z=k+l  

For 1 < k < l _< t (for some t > 2), it can be shown tha t  

Mk,~ < b + a log k + a l o g ( / -  k + 1). 
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Therefore, using (A1) we can show that 

(l - 1)Mk,~ -< (l + 2) + (l - 3)b + a(l - 3/2)[1og k + l o g ( / -  k + 1)] - a ( l -  1). 

(A3) 

Therefore, if a = 1, then (A2) is true for t + 1 and thus all 1 < k < l, as long es b 
is chosen so that (A2) is true for some t _ l, for which b = 1.2 is sufficient for 
t -- 6. Note that the logarithms used here are natural logarithms, arising from an 
inequality from Stirling's approximation: 

log(k - 1)! <_ (k - 1/2) log k -. k + 1. (A4) 
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ALGORITHM 

[A part of the listing is printed here. The complete listing is available from the 
ACM Algorithms Distribution Service (see page 355 for order form).] 

REAL FUNCTION HLQEST(X, N, LB, RB, Q) HI~Q 10 
HLQ 2B 
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C REAL FUNCTION HLQEST HLQ 30 
C HLQ 40 
C PURPOSE COMPUTES THE HODGES-LEHMANN LOCATION ESTIMATOR= HLQ 50 
C MEDIAN OF (X(I) + X(J) ) / 2 FOR I LE I LE J LE N HLQ 60 
C HLQ 70 
C USAGE RESULT = HLQEST(X,N,LB,RB,Q) HLQ 80 
C HLQ 90 
C ARGUMENTS X REAL ARRAY OF OBSERVATIONS (INPUT) HLQ 100 
C * VALUES OF X MUST BE IN NONDECREASING ORDER * HLQ I10 
C HLQ 120 
C N INTEGER NUMBER OF OBSERVATIONS (INPUT) HLQ 130 
C * N MUST NOT BE LESS THAN I * HLQ 140 
C BLO 150 
C LB INTEGER ARRAY OF LENGTH N FOR WORKSPACE HLQ 160 
C HLQ 170 
C RB INTEGER ARRAY OF LENGTH N FOR WORKSPACE HLQ 180 
C HLQ 190 
C Q INTEGER ARRAY OF LENGTH N FOR WORKSPACE HLQ 200 
C HLQ 210 
C NOTE --- ONLY LB,RB, AND Q ARE CHANGED IN COMPUTATION HLQ 220 
C HLQ 230 
C EXTERNAL ROUTINE HLQ 240 
C RAN FUNCTION PROVIDING UNIFOPR RANDOM VARIABLES HLQ 250 
C IN THE INTERVAL (0,1) HLQ 260 
C RAN REQUIRES A DUMMY INTEGER ARGUMENT HLQ 270 
C HLQ 280 
C NOTES HLQEST HAS AN EXPECTED TIME COMPLEXITY ON HLQ 290 
C THE ORDER OF N * LG( N ) HLQ 300 
C HLQ 310 
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