Skip to content

AnilOsmanTur/conditioned_video_anomaly_diffusion

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

[ICIAP 2023] Unsupervised Video Anomaly Detection with Diffusion Models Conditioned on Compact Motion Representations

brief

Unsupervised Video Anomaly Detection with Diffusion Models Conditioned on Compact Motion Representations
Anil Osman Tur, Nicola Dall'Asen, Cigdem Beyan, Elisa Ricci
University of Trento, Fondazione Bruno Kessler, Trento, Italy,

Installation

Please follow the instructions in INSTALL.md.

Dataset and Data Preparation

Please follow the instructions in DATASET.md for data preparation.

Diffusion Model

Implemented diffusion models are in the k_diffusion/models folder. The models are trained with train_ano*.py scripts.

Autoencoder Model

The autoencoder model is re-implemented from the descriptions of the paper Generative Cooperative Learning for Unsupervised Video Anomaly Detection. Used for generating the baselines for the paper. Our implementation of it can be in here.

Citation:

Please use the following BibTeX entry for citation.

@InProceedings{tur2023unsupervised,
author="Tur, Anil Osman and Dall'Asen, Nicola and Beyan, Cigdem and Ricci, Elisa",
editor="Foresti, Gian Luca and Fusiello, Andrea and Hancock, Edwin",
title="Unsupervised Video Anomaly Detection with Diffusion Models Conditioned on Compact Motion Representations",
booktitle="Image Analysis and Processing -- ICIAP 2023",
year="2023",
publisher="Springer Nature Switzerland",
address="Cham",
pages="49--62",
isbn="978-3-031-43153-1"
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages