https://www.nature.com/articles/s41562-023-01662-1
Giron, A. P., Ciranka, S., Schulz, E., van den Bos, W., Ruggeri, A., Meder, B., & Wu, C. M. (2023). Developmental changes in exploration resemble stochastic optimization. Nature Human Behaviour. https://doi.org/10.1038/s41562-023-01662-1
https://charleywu.github.io/downloads/giron2023developmental.pdf
data/behavioralData.csv
: behavioral data of all 281 participantsdata/modelFit.csv
: parameter estimates of all models for all participantsdata/modelFit_OriginalID
: parameter estimates of all models for all participants with original IDs from the Schulz et al and Meder et al (needed for recovery analyses)data/paramsYoungestAgegroup.csv
: cross-validated parameter estimates of the youngest age group (used as starting points for the optimization algorithms)data/smoothKernel.json
: all 40 environments, from which a new environment was chosen in each round without replacement. Also used for model and parameter recovery
dataProcessing.R
: import and pre-process behavioral data and parameter estimates (added for reference, since we already include the generated outputs instead of the inputs)statisticalTests.R
contains wrapper functions for all statistical tests used for the analysesbehavior_tests.R
andbehavior_plots.R
: analyze and plot participant's behavior in the multi-armed bandit task
(generates Figure 2)crossvalidation.R
: optimize parameters of the GP-UCB model and the lesioned models. All models being fit here are defined inmodels.R
.learningCurves.R
: simulate learning curvesPXP.ipynb
compute and save the protected exceedance probability (pxp) for all models and age groups. Functions to compute the pxp are defined inbms.py
and files containing the negative log likelihoods that are imported in the notebook are created inmodelResults_tests.R
.modelResults_tests.R
andmodelResults_plots.R
: analyze and plot model results. Therefore, simulated learning curves fromlearningCurves.R
and pxps fromPXP.ipynb
are imported.
(generates Figure 3 and S2)reliabilityChecks_tests.R
andreliabilityChecks_plots.R
: compare participant's performance in the multi-armed bandit task and model results across experiments
(generates Figure S1)simulateModels.R
andsimulateModels_plots.R
: simulate the GP-UCB model with different parameter combinations and plot expected rewards
(Generates Figure S5)hillClimbingAlgorithm.R
,hillClimbingAlgorithm_tests.R
andhillClimbingAlgorithm_plots.R
: run optimization algorithms in the parameter space calculated insimulateModels.R
(generates Figure 4 and S6)Algo-Human-Permute.R
: compute the changepoint analysis of human and SHC-fast trajectory
Recovery/Model_Recovery.Rmd
import, analyze and plot model recovery results generated withRecovery/Model_Recovery_Cluster.R
,Recovery/Model_Recovery_Cluster_Meder.R
andRecovery/Model_Recovery_Cluster_Schulz.R
and saved inRecovery/modelRecovery/
. Models used for recovery are defined infit_parallel_cluster.R
.
(generates Figure S3 )Recovery/Parameter_Recovery_check.R
import, analyze and plot parameter recovery results generated withRecovery/Parameter_Recovery_Cluster.R
and saved inRecovery/parameterRecovery/
. Models used for recovery are defined inRecovery/fit_parallel_cluster.R
.
(generates Figure S4)