Description
This is the source code of PANE proposed in the conference paper titled "Scaling Attributed Network Embedding to Massive Graphs". The source code of its extended version to graphs with large attribute sets can be donwloaded from here
Env Requirements
- Linux
- Python 2.7
Datasets
Download from here
Data preprocessing
$ cd data/
$ python split_train_test.py cora/edgelist.txt 0.3 # split edges into training set (70%) and positive test set (30%)
$ python gen_neg_egdes.py cora/edgelist.txt 0.3 # generate negative test set (30%)
Generate embeddings
$ mkdir emb
$ mkdir emb/mask/
$ python main.py --data cora --d 128 --t 5 --full 1 # generate embeddings for node classification
$ python main.py --data cora --d 128 --t 5 --full 0 # generate embeddings for link prediction
Evaluation
$ python node_class.py --algo pane --data cora --d 128 # node classification
$ python link_pred.py --algo pane --data cora --d 128 # link prediction
Citation
@article{yang2020scaling,
title={Scaling Attributed Network Embedding to Massive Graphs},
author={Yang, Renchi and Shi, Jieming and Xiao, Xiaokui and Yang, Yin and Liu, Juncheng and Bhowmick, Sourav S},
journal={Proceedings of the VLDB Endowment},
volume={14},
number={1},
pages={37--49},
year={2021},
publisher={VLDB Endowment}
}