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ABSTRACT With the development of satellite technology, up to date imaging mode of synthetic aperture
radar (SAR) satellite can provide higher resolution SAR imageries, which benefits ship detection and
instance segmentation. Meanwhile, object detectors based on convolutional neural network (CNN) show
high performance on SAR ship detection even without land-ocean segmentation; but with respective short-
comings, such as the relatively small size of SAR images for ship detection, limited SAR training samples,
and inappropriate annotations, in existing SAR ship datasets, related research is hampered. To promote
the development of CNN based ship detection and instance segmentation, we have constructed a High-
Resolution SAR Images Dataset (HRSID). In addition to object detection, instance segmentation can also be
implemented on HRSID. As for dataset construction, under the overlapped ratio of 25%, 136 panoramic
SAR imageries with ranging resolution from 1m to 5m are cropped to 800 x 800 pixels SAR images.
To reduce wrong annotation and missing annotation, optical remote sensing imageries are applied to reduce
the interferes from harbor constructions. There are 5604 cropped SAR images and 16951 ships in HRSID,
and we have divided HRSID into a training set (65% SAR images) and test set (35% SAR images) with the
format of Microsoft Common Objects in Context (MS COCO). 8 state-of-the-art detectors are experimented
on HRSID to build the baseline; MS COCO evaluation metrics are applicated for comprehensive evaluation.
Experimental results reveal that ship detection and instance segmentation can be well implemented on
HRSID.

INDEX TERMS High-resolution SAR images dataset, ship detection, instance segmentation, deep learning,
convolutional neural network.

I. INTRODUCTION
Satellite-mounted synthetic aperture radar (SAR) can elimi-
nate the effects of complex weather, working time limit and
flight altitude in earth observation. As the high-resolution
and vast extent characteristics of SAR imagery, ship detec-
tion with SAR imagery has a unique advantage on marine
traffic safety monitoring and marine resources development
compared to other remote sensing methods [1]–[4]. In recent
years, with the launch of SAR satellites, such as Sentinel-1
[5], TerraSAR-X [6] and Chinese Gaofen-3, increasing
amounts of high-resolution SAR imageries are available for
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scientific research, which tremendously promotes the devel-
opment of automatic SAR ship detection [4], [7]–[10].

Traditional ship detection algorithms for SAR imageries
are mainly composed of Spectral Residual (SR) [11],
constant false alarm rates (CFAR) [12] and the improved
algorithms derived from them. For specific needs, CFAR
detection has been incorporated with diverse modules to
improve detection precision [13]–[17]. But the flaws, such as
manually defined feature of SAR imagery and strong depen-
dence on the statistical distribution of sea clutters, reduce
the robustness of CFAR when detecting the ships [2], [3].
Besides, without land-ocean segmentation, CFAR has the
even worse performance to the panoramic SAR imagery
which contains inland canal or port [18].
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With the capability to automatically extract the deep repre-
sentations of the image, convolutional neural network (CNN)
based algorithms show high robustness and efficiency.
Researchers attempt to promote SR and CFARwith the excel-
lent trait of CNN. Kang et al. creatively take the region pro-
posals generated by Faster R-CNN [19] as guard windows of
CFAR, which combines Faster R-CNN with CFAR to detect
small-sized ships [20]. Liu et al. combine the Land-Ocean
Segmentation-based CNN (SLS-CNN) detector with corn
features and the heat map of SR saliency for accurate ship
detection [21]. These experiments confirm the feasibility of
CNN in SAR ship detection. In computer vision, the emerging
object detectors based on CNN are roughly divided into
two-stage detection algorithms, multiple-stage algorithms,
and one-stage detection algorithms. Two-stage detection
algorithms are classification-based and combined with the
network to generate region proposals. Representative two-
stage algorithms are R-CNN [22], Fast R-CNN [23], Faster
R-CNN, etc. They send the feature maps generated by back-
bone networks, such as Residual Network (ResNet) [24], [25]
and Visual Geometry Group Network (VGG) [26],
to the additional network (e.g. region proposed network
(RPN) [19]) for preliminarily predicting the location of the
object. Multiple-stage detection algorithms use the cascaded
network and stepwise Intersection over Union (IoU) to
improve the detection precision. Representative algorithm
is Cascade R-CNN [27]. Combined with the additional net-
work, the detection speed of two-stage detection algorithms
and multiple-stage algorithms are slightly reduced compared
to one-stage detection algorithms, but they perform well
in precision. So, researchers have improved them for high
precision SAR ship detection. To adequately utilize spatial
information of SAR images, Zhao et al. have proposed the
cascade coupled CNN-guided (3C2N-guided) visual atten-
tion method [28]; ship proposals generated by the cas-
caded structure combine the spatial information to improve
SAR ship detection precision. Fan et al. have modified the
Faster R-CNN to adapt PolSAR ship detection [29]; ship
proposals are generated by multi-level features to detect
multi-scale ships. Wei et al. have modified the Cascade
R-CNN to realize precise and robust ship detection in
high-resolution SAR imageries [30]; the proposed HRFPN
structure connects high-to-low resolution subnetworks in par-
allel to realize high-resolution SAR ship detection. Different
from two-stage and multiple-stage detection algorithms, one-
stage detection algorithms squint towards regression-based
detectionmethods and omit the network for generating region
proposals. Class probability and position coordinate value of
the object are generated directly to improve the detection
speed, but the precision is reduced in general. Representa-
tive one-stage algorithms are You Only Look Once (YOLO
v1-v3) [31]–[33], RetinaNet [34] and Single Shot Multi-
Box Detector (SSD) [35], etc. As the detection speed extraor-
dinarily significant in real-time maritime disaster relief and
emergency military decisions, researchers have modified
the one-stage detection algorithms to SAR ship detection.

Zhang et al. have referenced the idea of YOLO series algo-
rithm and proposed the grid convolutional neural network
(G-CNN) for real-time SAR ship detection [36]. Wang et al.
have adjusted the hyperparameters of RetinaNet for SAR ship
detection [37]. Zhang et al. have combined the multi-scale
detection mechanism, concatenation mechanism, and anchor
box mechanism into the depthwise separable convolution
neural network (DS-CNN) to realize high-speed SAR ship
detection [38].

Semantic segmentation divides each pixel of the input
image into a semantically interpretable category, and the
segmented results are highlighted by the same color for the
instances within the same category. Instance segmentation
combines semantic segmentation with object detection, and
the predicted mask can depict the contour of the object.
The bounding boxes in instance segmentation are generated
by pixel-to-pixel masks; so, they are capable to locate the
edge of the instances. Each instance within the same cate-
gory is highlighted by a different color for determining the
semantical attributes of objects. The first attempt of instance
segmentation applied on CNN is Mask R-CNN [39] pro-
posed by He, K. Based on the structure of Faster R-CNN,
Mask R-CNN supplements a segmentation branch to generate
the pixel-to-pixel mask. Region of interest (RoI) pooling in
Faster R-CNN is replaced by RoI Align in Mask R-CNN;
RoI Align can determine the value of each sampling point
from the adjacent grid point through bilinear interpolation,
which enables pixel-to-pixel level mapping on the feature
map. Some instance segmentation detectors proposed after
Mask R-CNN, such as Cascade Mask R-CNN [40] follow
the idea to extend object detectors for instance segmentation.
The length and contour of ships can’t be measured by SAR
ship detection, but these parameters can provide information
about the type of ships. For example, the particular shape
of the aircraft carrier can be segmented for military strikes.
While there is no existing dataset that can support instance
segmentation in SAR imageries, and related research is
hampered.

As for existing SAR ship datasets, they have their limita-
tions when applied to CNN-based ship detectors. OpenSAR-
ship [41] has 10 categories. But the samples are extremely
imbalanced between the categories, and it’s hard to train the
high-performance classification model with this dataset [42].
Ship chips are designed as small size image for ship
classification. Similar to OpenSARship, ship chips in the
SAR-Ship-Dataset [43] have a size of 256 × 256 pixels.
The small size ship chips are beneficial to ship classifi-
cation [44], but they contain fewer scatterings from the
land. The model trained by the ship chips may have trouble
locating the ships near the highly reflective objects [37].
In the SAR ship detection dataset (SSDD) [45], the SAR
images have larger size but they need to be augmented
before training and testing due to the limited data, and
ship detection precision tested by the test set of SSDD
are generally too high [30], [37]. Besides, inappropriate
annotations and less challenging detection scenes exist in
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these datasets [43], [45]. Compared to OpenSARship and
SAR-Ship-Dataset which fit ship classification, researchers
tend to use SSDD when developing CNN-based ship
detectors [28]–[30], [36], [38].

To promote the development of CNN based detectors
for ship detection and instance segmentation and exclude
the deficiencies in applicable SAR ship datasets for CNN,
we have constructed a High-Resolution SAR Images Dataset
(HRSID). Compared to the low-resolution SAR images, high-
resolution SAR images have detailed and accurately repre-
sented feature of ships, and ships are more than just the bright
spot. Instance segmentation in high-resolution SAR images
can authentically and effectively depict the shape of ships
pixel-by-pixel than low-resolution SAR images. Besides,
high-resolution SAR images are beneficial to delicate tasks
such as maritime transport safety and fishery enforcement.
So, 136 panoramic high-resolution SAR imageries with rang-
ing resolution from 1m to 5m are cropped to 5604 SAR
images with 800 × 800 pixels. The SAR imageries have
various polarization, imaging mode, imaging condition, etc.,
and there are 16951 ships in HRSID. To reduce wrong
annotation and missing annotation of ships, optical remote
sensing imagery on Google Earth [46] which has similar
imaging data to SAR imagery is selected to exclude the
potentially disturbing surroundings of ships. 8 state-of-the-
art detectors and Microsoft Common Objects in Context (MS
COCO) [47] evaluation metrics are applied for comprehen-
sive evaluation on HRSID. HRSID is available on our website
now [48]; annotations for inshore and offshore images are
supplemented at the moment. We hope it can benefit the
development of ship detection and instance segmentation for
the community. A concise summary of our contributions are
as follows:

1) A complete process of constructing the high-resolution
SAR dataset for ship detection and instance seg-
mentation is applied. HRSID is designed for CNN
based detectors, which has excluded the defi-
ciencies in the existing SAR ship dataset when
constructing.

2) As the first SAR ship dataset which supports instance
segmentation, the effects of instance segmentation are
examined on SAR images. For ship detection, large size
SAR imagery is used to examine the migration ability
of the model trained on our dataset.

3) MS COCO evaluation metrics are applied for
comprehensive evaluation on ship detection and
instance segmentation, which include average pre-
cision (AP) for IoU threshold and small, medium,
large objects. Statistical results of 8 state-of-the-
art detectors are regarded as the baseline of
HRSID.

This paper is organized as follows. Section II presents the
process to construct the dataset. Section III describes the
detectors to experiment on the dataset. Section IV presents
the experimental results. Section V and VI is the conclusions
and discussions, respectively.

II. DATASET CONSTRUCTION AND COMPONENT
ANALYSIS
A. SAR IMAGERIES FOR DATASET CONSTRUCTION
The original SAR imageries for constructing HRSID are
99 Sentinel-1B imageries, 36 TerraSAR-X and 1 TanDEM-
X [49] imageries; the resolution of SAR imageries is under
3m to keep detailed and accurately represented feature of
ships. Under different imaging modes of radar sensors, ships
appear in different forms. For example, TerraSAR-X has sev-
eral imagingmodes: Staring SpotLight (ST), High Resolution
SpotLight (HS), SpotLight, StripMap (SM), ScanSAR (SC),
Wide ScanSAR (WSC); under the Wide ScanSAR imaging
mode, the scan scope can up to 270km in azimuth and 800km
in range, which can meet the broad demand of large area cov-
erage monitoring such as marine traffic, sea ice monitoring
and regular detection of oil films, but the detailed feature of
ships is unclear compared to high-resolution SAR imageries.

To ensure high imaging quality, we have chosen the high-
resolution imaging mode of the satellite when constructing
the dataset. As for Sentinel-1B satellite, the imaging mode
of S3 StripMap is selected, which has the resolution from
1.7m × 4.3m to 3.6m × 4.9m in range and azimuth;
corresponding swath width is 80km. As for TerraSAR-X,
the selected imaging mode are ST, HS, and SM, corre-
sponding resolution of imaging mode is up to 25cm, up
to 1m, up to 3m, respectively; corresponding swath size is
4 × 3.7km2, up to 10 × 5km2, 30 × 50 km2, respectively.
Several imaging areas of SAR imageries in constructing
HRSID are highlighted by the rectangular box in Figure 1.
The imageries are provided by Google Earth.

The imaging region is selected at the port with tremen-
dous cargo handling capacity or the crisscrossed busy canals
throughout the trading cities. These areas can simultaneously
present specific scenes in need with the limited swath in
high-resolution SAR imageries. For instance, the offshore
areas which are covered with a wide variety of ships and
the anchorage areas where ships are difficult to distinguish
from the clutter interfered background can coexist in the
same SAR imagery. Consequently, the limited amount of
SAR imageries can be fully utilized to generate more cropped
SAR images when constructing the dataset. In addition to
the imaging region, the backscatter coefficients value influ-
enced by polarization and incident angle of radar sensors
will affect the imaging condition of SAR imageries. In terms
of SAR imageries pre-processed by the supplier, the inter-
feres such as foreshortening, layover, and shadowing of
ships are influenced by the incident angle of radar sensors.
We have chosen the incident angle which has minimized
interferes. Sentinel-1B SM has 6 elevation beams and the
incident angle varies from 18.3◦ ∼ 46.8◦. S3 beam corre-
sponds to the incident angles of 27.6◦ ∼ 34.8◦, and ships
under this elevation beam have less interferes compared to
other elevation beams. Existing interferences are disposed
of in subsequent annotation procedure. As for polariza-
tion, the radar remote sensing system has four fundamental
polarization methods: HH, VV, HV, VH [50]. In general,
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FIGURE 1. Several SAR imagery acquisition areas of our dataset. (a) and (c) are generated by the imaging mode of Sentinel-1B S3 SM; (b) is
generated by TerraSAR-X SM. The rectangular coverage area is the imaging range.

TABLE 1. Detailed information of the SAR imageries for constructing HRSID.

co-polarization has higher backscatter coefficients value of
ships and sea clutters than cross-polarization [51], [52]. Ships
and sea clutters in cross-polarized SAR imageries are brighter
to the background than co-polarized SAR imageries [52].
While the calm sea in co-polarized SAR imageries is rel-
atively darker to the background than cross-polarized SAR
imageries due to specular reflection of the sea. So, when
constructing HRSID, we have selected 116 co-polarized SAR
imageries with a clear distinction between ships and back-
ground, and 20 cross-polarized SAR imageries are added for
the supplement. Detailed descriptions of these SAR imageries
are shown in Table 1. Due to the inconsistent scattering
caused by the angular difference in the wide area, we mainly
perform the correction and compensation according to the
distance.

To make the model trained by our dataset can distin-
guish and segment the ships from complex backgrounds,
we have analyzed the reasonable ratio of each type of detec-
tion scene in HRSID beforehand. When training the detec-
tors, large amounts of ships with detailed and accurately
represented features should be prepared for training. So, the
offshore scenes with ships distributed in the sea are the main

component of HRSID. Ship detection in inshore scenes is
influenced by man-made facilities or buildings. The inshore
scenes are regarded as the interferential scene to maintain a
certain amount in HRSID.While the challenging scenes, such
as the adjacent ships, cluster-distributed small ships in the
canal and large size ships defined by MS COCO evaluation
metrics [47], are added to HRSID as supplementary. Adja-
cent ships challenge the non-maximum suppression (NMS)
algorithm used in CNN based ship detectors to generate
precise bounding box for location; cluster-distributed small
ships in the canal are dense in the space, and they challenge
the location and instance segmentation; large size ships are
scarce in the training samples and detectors tend to detect the
component of their features as small ships.

The downloaded SAR imageries are pre-processed by the
supplier beforehand. It still needs to be processed to display
as a grayscale imagery, and we use the clipping function
with linear transformation for implementation. The clipping
function is defined in formula 1 as follows:

y =

{
kx, 0 < x ≤ β × max(x)
β × max(x), x > β × max(x)

(1)
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FIGURE 2. Some representative high-resolution SAR images in our dataset with 800 × 800 pixels.

x represents the pixel of the downloaded SAR image. When
the value of the pixel is less than β×max(x), use the penalty
factor k for linear transformation; we set k =1 here. When
the value of the pixel is higher than β × max(x), reduce it to
β×max(x). y represents the output grayscale image. Based on
the default setting in the reference [50], we tune the threshold
β for different imaging scenes to present distinguishable
feature of ships.

Through the side-scan mechanism of SAR sensors contra-
posing specific regions, panoramic SAR imagery has a large
image size. It is supposed to be cropped to the matched input
size of CNN. The process is divided into four steps in our
research. First of all, in order to avoid reduplicative cropping
when constructing dataset, the port and offshore areas with
relatively dense distribution of ships are separated from the
panoramic SAR imagery for the subsequent sliding window
procedure; besides, the sporadically distributed ships on the
sea are individually separated from the SAR imagery with
800× 800 pixels window, and threshold β is individually set
for the image. Secondly, a sliding window with 800 × 800
pixels is adopted to satisfy the demand of scaling transfor-
mation in CNN based ship detectors and reserve the scene
which contains ships and man-made facilities to measure
the ship detection competence of detectors. Thirdly, the slid-
ing window is shifting over the SAR imagery with a stride
of 600 pixels in length and width, and the overlapped ratio of
successively cropped images is set at 20% to ensure all the
ships appeared in panoramic SAR imageries have complete
features when cropped by sliding window. Fourthly, we have
filtered out 400 cropped images with pure background.When
testing the robustness of the trained model, the full negative
sample can provide information of land or sea clutter.

Cropped SAR images with 800 × 800 pixels are the main
components of our dataset. Ships in the high- resolution SAR
images have detailed and accurately represented features.
Some SAR image samples are shown in Figure 2. (a) and (b)
represent offshore single and multiple ships; (c) and (d) are
the adjacent ships; (e) and (f) show ships berthing at the
port and large size ships, respectively. (g) and (h) display the
cluster-distributed small ships in the canal.

B. ANNOTATION STRATEGIES FOR DATASET
CONSTRUCTION
The bounding box is well performed in locating the
objects [53]. In ship detection, the location of the ships is
determined by four vertex coordinate values of the bounding
box. But with the sharp shape, the annotated bounding box
areas coexist ships and background features; the predicted
bounding boxes only provide the four vertex coordinate
values but not the shape of ships. For instance segmenta-
tion, polygons are applicable in annotation and they fit the
contour of the ships well. Polygon annotated mask is also
applied to generate the bounding box for object detection,
and the bounding boxes are precise enough to locate the
edge of ships. So, we use the polygons to annotate the ships
when constructing the dataset. As for optical remote sens-
ing images, the annotation strategy for object detection and
instance segmentation can refer to this work [54]. But as SAR
imagery is grayscale imagery, the corresponding annotation
strategy should add additional procedure. In the inshore areas,
the man-made facilities and buildings have similar features
to ship, which interferes with annotation. We have designed
some auxiliary means to deal with it as is shown in Figure 3.
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FIGURE 3. The auxiliary means to distinguish ships in offshore areas.

(a) confirms the bright pixels as a ship with partially enlarged
details in optical remote sensing images; (b) shows the same
imaging region in the gray image and optical image to deter-
mine the possible interference from the facilities, buildings
or cranes in the port. The red oval marked objects are ships,
and the orange rectangle framed objects are cranes that may
interfere with annotating ships.

Ports generally have huge cargo volumes so that ships
will not call at a certain berthage for long, but the facilities
and buildings in the port are almost the same for a long
time, and the easy moving objects in the port such as cranes
have a distinct feature which is distinguishable to the ships.
In optical remote sensing imageries, the location of the facil-
ities, buildings, and cranes is easy to determine; the possible
berthage of ships is consequently confirmed. So, the optical
remote sensing imagery which has adjacent imaging date to
the SAR imageries are taken from Google Earth to help the
SAR experts with auxiliary judgment.

In the SAR images with 800 × 800 pixels, the feature of
ships still has mixed interference caused by incident angle,
polarization, etc. These situations, such as moving targets,
ships surrounded by high-reflective objects and large antenna
elevation, can twist the shape of ships. Tominimize the devia-
tion of ship detectors without causing controversy, we classify
the adjacent interference emanated from ships as a compo-
sition of ships. While the highlighted pixels, for example,
spindly sidelobe caused by the offset of swift navigation, are
reserved according to the similarity to the principle structure
of ships.

Apart from the annotating methods mentioned above,
we tactfully adjust the order of ship annotating and SAR
imagery cropping to avoid reduplicative annotation. If the

SAR imageries are cropped before annotation, ships in the
overlapped areas may lead to reduplicative and inconsistent
annotations. So, a more reasonable annotation scheme is
formulated as is shown in Figure 4. Firstly, we annotate the
ships on panoramic SAR imagery all at once. Secondly, the
annotated SAR imageries are processed to generate the cor-
responding imageries for semantic segmentation and instance
segmentation. Thirdly, a sliding window with 800× 800 pix-
els acts on the imageries to generate the SAR images with
instance segmentation and semantic segmentation images.
Fourthly, the annotations are regenerated from the instance
segmentation and semantic segmentation images to the for-
mat MS COCO dataset [47]. The strategy can still generate
annotations for the ships when boundaries of sliding window
fall on it, and it has reduced the workload of annotation.

To examine the consequence of annotation, we have visu-
alized the annotated ships in Figure 5. In the format of
the MS COCO dataset, the polygons annotated by experts
are transformed to mask for segmentation, and the bound-
ing boxes for object detection are generated by the mask.
The transformed mask can locate the ships with its contour
and the bounding box generated by the mask is capable to
locate the edge of ships. When annotating, the polygons are
generated by the software named Labelme [55], which can
support the annotation formats of the polygon, rectangle,
circle, etc. As for dataset constructing, the annotations of each
SAR image constitute a JavaScript Object Notation (JSON)
file in MS COCO dataset format, facilitating the reading
and transmission of information. MS COCO dataset format
enables each ship instance annotation contains the category
id, bounding box, and segmentation mask. Thus, guarantee-
ing HRSID can satisfy the demand for ship detection and
instance segmentation.

C. STATISTICS ANALYSIS ON HRSID
Existing large optical datasets (e.g., MS COCO, Ima-
geNet [56], PASCAL VOC [57]) have a large variety of
categories for large-scale visual identity; correspondingly,
they contain large amounts of images. Distinguished from the
multiple colors in optical images, SAR imagery appears as
grayscale images; but the imaging effect of SAR imageries
is influenced by various factors such as clutters and incident
angle of the satellite. Object detection in SAR imageries
is still complicated. However, CNN based ship detectors
which are trained by existing SAR datasets tend to reach
the bottleneck of precision [30], [37]. So, some challenging
detection scenes are supplemented in HRSID to add complex-
ity. Besides, these high-resolution scenes can provide similar
SAR detection scenes to optical scenes to add the complexity
of ship detection.

As the limited operational capability in consumer-oriented
graphic cards, the small datasets, for example, NWPU VHR-
10 [58] constructed by optical remote sensing images and
SSDD for SAR ship detection, are extensively applicated in
object detection [30], [37], [59], [60]. So, HRSID is designed
to have 5604 high-resolution SAR images for wide usage.

VOLUME 8, 2020 120239



S. Wei et al.: HRSID: A HRSID for Ship Detection and Instance Segmentation

FIGURE 4. The strategy of annotation.

FIGURE 5. The annotated ships with category id, bounding box and mask in HRSID.

As it’s designed for CNN based ship detection and instance
segmentation, it contains one category and provides anno-
tations for the ships, and other categories appeared in SAR
images aren’t annotated.

We refer to the MS COCO evaluation metrics [47] to ana-
lyze our dataset. HRSID is divided into the training set with
the amount of 65% images, and the test set with 35% images.
Statistics of HRSID, the training set, and the test set are shown
as a histogram in Figure 6, the area of the bounding box and
aspect ratio of the bounding box are taken into consideration.
The aspect ratio of the bounding box corresponds to the
shape of the bounding box, and it’s essential for the CNN
based detectors which adopt anchor to generate bounding
box [19], [27]. The area of the bounding box is the criterion to
measure the scale of ships in the MS COCO dataset. Accord-
ing to the scale division for object detection in MS COCO,

area of the bounding box below 32× 32 pixels corresponds to
the small object, area of the bounding box from 32× 32 pixels
to 96 × 96 pixels correspond to the medium object and area
of the bounding box above 96 × 96 pixels correspond to the
large object. Statistically, the number of annotated ships is
16951, and each SAR image is distributed with 3 ships on
average. The number of small ships, medium ships, and large
ships takes up 54.5%, 43.5% and 2% of all ships, respectively.
The area of the bounding box for small ships, medium ships,
and large ships takes up 0∼0.16%, 0.16%∼1.5% and above
1.5% of the SAR image, respectively. So, HRSID has the
characteristics of small objects but large detection scenes;
ships are sparsely distributed in SAR images. As the very
high-resolution (VHR) SAR imageries with specific contexts
are scarce, which is the source of large ships, HRSID has a
relatively low ratio of large ships. In the training set and test
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FIGURE 6. Statistics of HRSID, training set and test set, including the aspect ratio of the bounding box and area of the bounding
box.

TABLE 2. Different groups of SAR images with the same imaging parameter.

set, the properties are similar to HRSID. To sum up, HRSID
emphases on examining the ability of detectors in detecting
small and medium ships.

Considering the imaging parameters such as incident
angle, polarization, resolution, etc., are different, we divide
the dataset into different groups according to the serial num-
ber. Each group has the same imaging parameters and the
number of ships is counted as is shown in Table 2. Mean-
while, statistics of the SSDD and the SAR-Ship-Dataset are
summarized in Table 3. Parameters, including the size of
ships, size of images, number of images, annotations and
resolution are used for analysis. Quantitatively, all the dataset
emphasis on detecting small and medium ships. As for the
SAR-Ship-Dataset, the small size ship chips are beneficial to
ship classification; but they are incompetent to delicate ship
detection tasks. As for the SSDD, it has wide range usage
for CNN based ship detection relative balanced size of ships
and multiple sizes of SAR images; but with the fewer number
of SAR images, SSDD needs to be augmented before training
and testing. In terms of HRSID, the resolution of SAR images
varies from 0.5m∼3m. Ships are annotated by polygons, and
the annotations contain masks and bounding boxes for ship

detection and instance segmentation, respectively. The model
trained by high-resolution SAR images fit the delicate tasks
such as maritime transport safety and fishery enforcement.
Besides, taking the difference in the stride while cropping and
size of cropped images into account, the capacity of HRSID
is equivalent to the SAR-Ship-Dataset.

III. STATE-OF-THE-ART ALGORITHMS FOR BUILDING
THE BASELINE
A. BACKBONE NETWORK
In order to compare the performance of the detectors
on our dataset under the same conditions, we use the
ResNet-FPN [61] architecture as the backbone network of
the detectors. With the residual module, ResNet is deeper
but stable [25], [26]. Feature Pyramid Networks (FPN) [62]
construct the top-down feature pyramid structure, which is
based on fusing the inherent multi-scale feature map. As
for ResNet, conv2, conv3, conv4, and conv5 are recorded as
{C2, C3, C4, C5} with corresponding strides of {4, 8, 16,
32} relative to the pixel of the input image. By upsampling
the C5 layer with a top-down pathway to match the size of
convolutional layers, reducing the dimension of the channels
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TABLE 3. Statistics of SSDD, SAR-Ship-Dataset and HRSID.

FIGURE 7. The architecture of ResNet-FPN.

with a 1 × 1 convolutional layer and merging the maps
with a 3 × 3 convolutional network to eliminate the effects
of upsampling. The output feature maps are {P2, P3, P4,
P5} which corresponds to {C2, C3, C4, C5}. The composite
structure of ResNet and FPNmakes the detectors adaptable to
detect small objects. It’s beneficial to ship detection because
ships often appear as small objects in SAR images [61]. The
architecture of ResNet-FPN is shown in Figure 7.

B. STATE-OF-THE-ART DETECTORS
Improved backbone networks, optimized loss functions (e.g.,
Focal Loss [34] applied in RetinaNet) and functional subnet
are beneficial to develop object detectors. So, building a
baseline with state-of-the-art detectors that contain common
structure for reference is essential for HRSID to be imple-
mented in further study. We have selected 8 state-of-the-art
detectors to build the baseline of HRSID.

1) FASTER R-CNN
Faster R-CNN consists of three modules: ResNet, Region
Proposed Network (RPN) and Fast R-CNN. ResNet-FPN
extracts the feature map of the SAR image. RPN can generate
the ship proposals for preliminarily predicting the location of
ships. The RoI Pooling layer can transform the scale of the
region proposed feature map to fit the input size of fully con-
nected layers. Fast R-CNN finishes the binary classification
and bounding box regression.

2) CASCADE R-CNN
As for detectors using the anchor mechanism, the IoU thresh-
old value of the bounding box is used to distinguish the
positive and negative samples. The precision of the predicted
bounding box under the IoU threshold value will be classified
into negative samples and filtered. Cascade R-CNN replaces

Fast R-CNN in Faster R-CNN with cascaded Fast R-CNN.
The cascaded Fast R-CNN assigns increasing IoU threshold
value in sequence for each Fast R-CNN. Besides, the IoU
threshold value is assigned at an incremental interval to avoid
mismatching.

3) RETINANET
RetinaNet consists of two components: ResNet-FPN, Fully
Convolutional Networks (FCN). Two independent FCN
branches perform the classification and location tasks sepa-
rately. FCN can adapt to the flexible size of feature maps, and
it’s more robust than full connected layers. Focal Loss lowers
the weight of negative samples and strengthens the effects of
positive samples. It has solved the category imbalance in one-
stage detection algorithms.

4) MASK R-CNN
Based on the structure of Faster R-CNN, Mask R-CNN adds
a mask branch to predict the segmentation mask for each
Region of Interest (RoI), paralleling to the classification and
bounding box regression branch in Fast R-CNN. The mask
branch utilizes FCN to predict the segmentation mask in a
pixel-to-pixel manner. Besides, RoI Pooling in Faster R-CNN
is replaced by RoI Align in Mask R-CNN. RoI Align deter-
mines the value of each sampling point from the adjacent grid
point on the feature map through bilinear interpolation so that
it can finish one-to-one correspondence between input pixels
and output pixels. Without quantization in the coordinates,
Mask R-CNN can generate a pixel-to-pixel mask for instance
segmentation. The loss function of the mask is calculated
separately to ship detection.

5) MASK SCORING R-CNN
Among the instance segmentation tasks in Mask R-CNN,
the quality of the segmentedmask is determined by the classi-
fication confidence of object detection branches. But there are
no strong correlations between the two.When segmenting the
instances, the mask quality of overlapped congeneric objects
tends to be poor. Mask Scoring R-CNN [63] adds MaskIoU
Head to improve the mask quality, and the mask score is
defined by the product of classification score and MaskIoU
score. MaskIoUHead transforms the output scale of the mask
branch with the MaxPooling layer and concatenates it with
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the RoI feature map as its input, through 4 convolution layers
and 3 fully connected layers to get the output.

6) CASCADE MASK R-CNN
As the name implies, Cascade Mask R-CNN is the hybrid of
Mask R-CNN and Cascade R-CNN. It combines the excel-
lent characteristics of the two detectors, so that the Cascade
R-CNN, which performs well in object detection, can finish
the instance segmentation tasks. Each cascade structure adds
a mask branch to finish the instance segmentation task and
generate the pixel level mask.

7) HYBRID TASK CASCADE
In the structure of CascadeMask R-CNN, each stage contains
the bounding box branch and mask branch. But there are no
association between the parallel structure. To improve the
detection precision, Hybrid Task Cascade [40] interweaves
bounding box and mask branches for joint multi-stage pro-
cessing, and uses semantic segmentation branches to provide
spatial context.

8) HRSDNET
Apart from the above standard ship detection methods,
we have added the dedicated ship detection method for SAR
images. HRSDNet adopts the high-resolution feature pyra-
mid network (HRFPN) as the backbone network. HRFPN
connects the high-to-low resolution subnetworks in paral-
lel for obtaining accurate spatial precision. The Soft Non-
Maximum Suppression (Soft-NMS) is used to detect the
cluster distributed ships.

IV. SHIP DETECTION AND INSTANCE SEGMENTATION
PERFORMANCE ON HRSID
In this section, we will evaluate the experimental results on
HRSID generated by state-of-the-art detectors mentioned.
Not only the measured AP be regarded as the baseline of our
dataset, but we also visualize the detection and segmentation
results of the detectors.

A. EVALUATION METRICS
For quantitatively and comprehensively evaluation of the per-
formance of object detectors, the evaluation metrics such as
IoU, precision, recall, andmAP are the normativemeans [57].
In supervised learning, the coordinates of the object’s location
are annotated by the experts, which is called ground truth in
object detection and instance segmentation. The overlap rate
of predicted result and ground truth is the measurement of
the correlation between the two; a higher degree of overlap
indicates a better correlation and more precise prediction.
As is shown in formula 2, bounding box IoU is defined by
the overlap rate of the predicted bounding box and ground
truth bounding box:

IoUbbox =
Bboxpd ∩ Bboxgt
Bboxpd ∪ Bboxgt

(2)

Analogously, mask IoU for instance segmentation is defined
by the overlap rate of predicted mask and ground mask to
measure the segmentation precision, as is shown in formula 3:

IoUmask =
Maskpd ∩Maskgt
Maskpd ∪Maskgt

(3)

During classification, algorithms may misjudge the back-
ground and objects. There are four classification results: True
Positives (TP), True Negatives (TN), False Negatives (FN)
and False Positives (FP). TP denotes the amount of cor-
rectly classified positive samples; TN shows the amount
of correctly classified negative samples; FN represents the
amount of missed positive samples; FP indicates the number
of false alarms in the background. The precision and recall
are defined by these criteria, as is shown in formula 4 and
formula 5.

Precision =
TP

TP+ FP
(4)

Recall =
TP

TP+ FN
(5)

Based on the quantities of precision and recall, AP is
defined. In the Cartesian coordinate system, if the horizontal
coordinate is recall value and the vertical coordinate is pre-
cision value, the area under the recall-precision curve is AP
value, as is shown in formula 6:

AP =
∫ 1

0
P(r)dr (6)

where P represents precision and r represents recall. If there
are multiple categories in the dataset, the numerical average
of all categories is defined as mean AP (mAP).

Common dataset evaluation formats are Pascal Visual
Object Classes (Pascal VOC) and Microsoft Common
Objects in Context (MS COCO). The calculation criterion of
mAP for the Pascal VOC dataset is based on an IoU thresh-
old of 0.5, while the evaluation metrics in MS COCO are
abundant and comprehensive. In the evaluationmetrics ofMS
COCO, objects with multiple sizes in an identical category
are assessed individually due to their wide disparity in AP;
except for the same AP50 in evaluation metrics of Pascal
VOC, MS COCO has the strict metric of IoU thresholds such
as AP75 and AP. AP75 represents the calculation under the
IoU threshold of 0.75, and AP is the primary challenge metric
with the calculation of average IoU, which has ten IoU thresh-
olds distributed from 0.5 to 0.95with the step of 0.05. In terms
of the capabilities in multi-scale object detection, there are
APS, APM, and APL for evaluation. Specifically, the three
indicators denote the objects with small (area < 322 pixels),
medium (322 < area < 642 pixels) and large (area > 642

pixels) size. We have taken AP, AP50, AP75, APS, APM, and
APL to characterize the performance of the detectors on our
test set. Except for the IoU computation which is respectively
performed on bounding boxes and masks, the evaluation
metrics above are in all respects for object detection with
bounding boxes and instance segmentation with masks.
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TABLE 4. Ship detection statistics generated by bounding box AP on test set of HRSID.

B. EXPERIMENTAL DETAILS
All the experiments on our dataset are supported by the per-
sonal computer (PC) with the 64-bits Ubuntu 18.04 operating
system. The software configuration consists of python pro-
gramming language, PyTorch 1.3.0, CUDA 10.1 and cuDNN
7.6.1. The hardware capabilities include NVIDIA RTX-
2080 GPU (8GB memory), Intel R©i7-8700 CPU @3.20GHz
and 32 GB RAM. To maintain the same hyperparame-
ters of the detectors, we choose mmdetection (a flexible
toolkit for reimplementing existing methods) [64] for train-
ing and testing. To make more accurate location and seg-
mentation, the SAR images are proportionally resized to
1000 × 1000 pixels in the process of training and test-
ing [65]–[68]. All the detectors are trained with GPU and
finished in 12th epochs; the momentum and weight decay
are set to 0.9 and 0.0001, respectively. IoU threshold is set
to 0.7 when training and testing for rigorous filtering to
the bounding boxes with low precision. The IoU thresholds
in Cascade R-CNN are set to {0.5, 0.6, 0.7}. We choose
SGD with the initial learning rate of 0.0025 as the optimizer,
the other hyperparameters are set to the default values in
mmdetection.

C. SHIP DETECTION RESULTS ON STATE-OF-THE-ART
DETECTORS
In Table 4, we have shown the ship detection statistics gen-
erated by bounding box AP on the test set of HRSID. Each
detector adopts ResNet50-FPN and ResNet101-FPN as the
backbone network for contrast. Considering the feasibility
in practical application, we have added the model size after
training and the test speed per SAR image for each detector.
Generally, with more functional structure and deeper net-
work, the model size and AP will increase, but the detection

FIGURE 8. The detection PR curve with the backbone of ResNet-50.

speed is reduced in return. To build the baseline of our
dataset, the settings of hyperparameters are consistent. The
precision-recall curve (PR curve) of each detector is shown
in Figure 8 and Figure 9.

Through the comparison of the statistics, detectors with
ResNet101-FPN perform better in bounding box AP than
detectors with ResNet50-FPN as a backbone in general, but
the deeper network adds the size of the model after training
and lower the detection speed on SAR images. With the same
backbone network, RetinaNet has the minimum model size
of 290.0Mb and outperforms other two-stage and multiple-
stage detection algorithms in detection speed, but it’s inferior
in bounding boxAP;HRSDNet receives the highest bounding
box AP of 69.4% and the model size of 728.2Mb with the
cascaded networks, while it takes 0.154s to detect the ships.
Compared to CascadeMask R-CNN, the bounding box AP of
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FIGURE 9. The detection PR curve with the backbone of ResNet-101.

Hybrid Task Cascade (HTC) is improved by 0.7% and 0.8%
with the backbone of ResNet50-FPN and ResNet101-FPN,
respectively. Mask R-CNN performs better in bounding box
AP than Faster R-CNN with its mask branch and RoI Align.
Using the stepwise increasing IoU threshold in each cas-
caded detection structure, Cascade R-CNN receives a promi-
nent improvement of 3.1% and 2.9% than Faster R-CNN in
bounding box AP with the backbone of ResNet50-FPN and
ResNet101-FPN, respectively.

Under the bounding box IoU threshold of 0.5, the bounding
box AP of state-of-the-art detectors is above 84.7%. While
under the relatively strict bounding box IoU threshold of 0.75,
bounding box AP is above 67.2%. As for multi-scale ship
detection, when detecting the small and medium ships in our
dataset, the bounding box AP of detectors is above 60.4% and
60.9%, respectively. Benefit from the ResNet-FPN backbone,
detectors are applicable to detect small ships. But they have
abrupt decreasing in bounding box AP when detecting large
ships on account of the relatively strict definition for large
SAR ships in MS COCO evaluation metrics and the fewer
training samples.

To examine the ship detection ability of detectors to com-
plex detection scenes, we have selected 4 representative
scenes in the test set of HRSID for ship detection. Visible
results are shown in Figure 10. Green bounding boxes denote
ground truth and red bounding boxes denote predicted results.
The bounding box IoU threshold for testing is set to 0.7 to
avoid excessive amounts of the false alarms; the predicted
bounding box under the confidence coefficient of 0.7 is fil-
tered. Column 1 shows ships which have a similar feature
to the objects in the port, Column 2 denotes the cluster-
distributed small ships in the canal, Column 3 exhibits the
adjacent ships, Column 4 is the large size ships mooring in the
port. Row 1 to Row 8 represents the ship detection results of
Faster R-CNN, Cascade R-CNN, RetinaNet, Mask R-CNN,
Mask Scoring R-CNN, Cascade Mask R-CNN, Hybrid Task
Cascade, and HRSDNet, respectively.

As is shown in Column 1 and Column 2, all the two-
stage and multiple-stage detection algorithms have high

TABLE 5. Ship detection in the inshore and offshore scenes of HRSID.

performance in detecting ships near man-made facilities in
the port but missed detection and false alarm appear when
the scene switches to the canal with cluster-distributed small
ships; RetinaNet has difficulty in detecting ships in the above
scenes. In Column 3, it appears as if the performance of
detectors with the NMS algorithm has reached the bottleneck
in detecting adjacent ships. In Column 4, large size ships are
hard to detect due to insufficient amounts of corresponding
samples in the training set, which accords with statistical APL
in Table 4.

D. SHIP DETECTION IN INSHORE AND
OFFSHORE SCENES
Ship detection in the pure sea background is less challenging
to the CNN-based detectors as there are no interferential
objects in these scenes. So, we have divided HRSID into
inshore and offshore scenes to measure the capability of state-
of-the-art detectors in detecting ships with interferences. Sta-
tistically, inshore scenes occuy the proportion of 18.4%, and
offshore scenes occupy the proportion of 81.6%. In Table 5,
we have shown the ship detection results in inshore and
offshore scenes. As for detecting the offshore scenes, AP,
AP50, and AP75 of state-of-the-art detectors is above 79.6%,
98%, 93.2%, respectively.When detecting the small, medium
and large ships, the highest bounding box AP among the
detectors is still maintained at 88.5%, 86.9%, 68.2%, respec-
tively. While detecting the inshore scenes, the detection pre-
cision has dropped significantly; the bounding box AP of
all detectors ranges from 41.3% to 61.8%. Compared with
the offshore scenes, AP50 and AP75 for inshore scenes has
reduced by 20% and 22% respectively. As for detecting small,
medium and large ships, the highest bounding box AP is
59.9%, 77.4% and 48.8% respectively. In summary, detectors
can precisely detect the ships in offshore scenes but the
inshore scenes in HRSID are still challenging to the state-
of-the-art detectors.
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FIGURE 10. Visible ship detection results of state-of-the-art detectors with ResNet50-FPN backbone on complex detection scenes from the test set of
HRSID. Green bounding box denotes ground truth and red bounding box denotes predicted results.
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FIGURE 10. (Continued.) Visible ship detection results of state-of-the-art detectors with ResNet50-FPN backbone on complex detection scenes from the
test set of HRSID. Green bounding box denotes ground truth and red bounding box denotes predicted results.

E. COMPARISON WITH THE BASELINE OF SSDD
Compared to the ship chips in OpenSARship and SAR-Ship-
Dataset which are dedicated to the ship classification [42],
SAR images in SSDD can be better implemented in ship
detection [28]–[30], [36], [38]; researchers tend to aug-
ment the images in SSDD to fix its flaws when developing
algorithms. To verify that HRSID is more applicable to
CNN-based detectors, we have experimented on SSDD for
further comparison in detection precision. All the detectors
and corresponding hyperparameters are consistent with the
experiments on HRSID when measuring the baseline of
SSDD. The baseline of SSDD is shown in Table 6.

SSDD is randomly divided into the training set (65% SAR
images) and test set (35% SAR images). The model size of
the state-of-the-art detectors is the same as HRSID. Since the
training set of SSDD has 4.8 times fewer SAR images than
the training set of HRSID, the detection speed of the model
trained by SSDD has decreased for about 0.02s. Under the
bounding box IoU threshold of 0.5, the bounding box AP
of the models trained by the training set of SSDD is above
90%. But with a relatively strict bounding box IoU threshold

of 0.75, bounding boxAP has a sharp decrease for about 25%.
So that ships are easy to detect but hard to locate precisely
in the SSDD. While in HRSID, AP50 is decreased by about
7% than SSDD; but AP75 has increased by about 8% than
SSDD. There is no sharp decrease between AP50 and AP75
in HRSID. Compared to the APS in HRSID, APS in SSDD
is reduced for about 10% under the ResNet-FPN backbone.
As for the APL in SSDD, it receives the abnormal results.
There are 76 large size ships in SSDD and 50 large ships for
training, but APL of detectors vary from 45.4% to 61.2%. The
few training samples but relatively high precision shows that
the feature of large ships hasn’t been clearly distinguished
from small and medium ships. In HRSID, the feature of the
large ship in high-resolution SAR image is more detailed
and distinguishable to small and medium ships as is shown
in Figure 5. With the lack of large ships, statistics of APL
in HRSID are lower but real than SSDD. To sum up, ship
detection in HRSID is more challenging and detectors can
locate the ships precisely than SSDD. Ship detection statistics
in high-resolution SAR images aremore authentical than low-
resolution SAR images.
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TABLE 6. The baseline of SSDD.

TABLE 7. Descriptions of Alos-2 SAR imagery.

TABLE 8. Instance segmentation statistics generated by mask AP on test set of HRSID.

F. SHIP DETECTION RESULT ON ALOS-2
To examine the migration ability of the model trained on our
dataset, we have obtained a panoramic Alos-2 SAR imagery
with multiple inshore and offshore ships for the experiment.
Detailed descriptions are shown in Table 7.

The size of large-scale SAR imagery doesn’t fit the input
of CNN based detectors. So, the detection process is divided
into several steps. Firstly, the SAR imagery is vertically and
parallelly cropped by 800× 800 pixels sliding window; each
successively cropped image has an overlapped ratio of 20%
to ensure the stitching process can be implemented. Secondly,
187 cropped SAR images are inputted into the detectors to get
the detection results. Thirdly, detection results are stitched to
form the detected panoramic SAR imagery. The visible ship
detection result of Cascade R-CNN with ResNet50-FPN is

shown in Figure 11. Green bounding boxes denote ground
truth and red bounding boxes denote predicted results.

The model trained by HRSID performs well in detecting
the offshore ships, and there are few false alarms on the
land. But as the man-made facilities or buildings in the port
have a similar feature to the ships, false alarms and missing
detections increase when the model detects inshore ships.
To sum up, the model trained by HRSID has the migration
ability to detect large size SAR imagery and is of value in
practical application.

G. INSTANCE SEGMENTATION RESULTS ON
STATE-OF-THE-ART DETECTORS
In Table 8, we have shown the instance segmentation statistics
generated by mask AP on the test set of HRSID, which
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FIGURE 11. Visible ship detection result on Alos-2 SAR imagery of Cascade R-CNN with ResNet50-FPN. Green bounding boxes denote ground truth
and red bounding boxes denote predicted results.

are the results of Mask R-CNN, Mask Scoring R-CNN,
Cascade Mask R-CNN, and Hybrid Task Cascade. Similar
to the bounding box AP in object detection, mask AP is
generated by the IoU of the predicted mask and ground truth
mask. Mask prediction is more complicated than bounding
box prediction due to the alterable shape of the mask. So,

the mask AP is slightly reduced compared to bounding box
AP. In three-dimensional space, objects may lose some par-
tial features due to occlusion from the same category; but
ships are generally distributed on the surface of the water,
occlusion of ships is rare. Mask IoU head has limited effects
to improve the mask quality when segmenting the ships,
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FIGURE 12. The segmentation PR curve with the backbone of ResNet-50.

and mask AP in Mask Scoring R-CNN is almost the same
compared to Mask R-CNN.With the stepwise increasing IoU
threshold in each cascade of instance segmentation structure,
Cascade Mask R-CNN performs better in mask AP than
Mask R-CNN. Benefit from the interactive bounding box
and mask branch, the mask AP of HTC has improved by
0.6% and 0.7%, with the backbone of ResNet50-FPN and
ResNet101-FPN respectively. Specifically, the mask AP has
increased by 3% when detecting the medium ships.

On account of sharing the same model, model size and test
speed per image of instance segmentation are the same as
ship detection statistics. All the detectors have the mask AP
for about 54%. Under the mask IoU threshold of 0.5, mask
AP of Mask R-CNN, Cascade Mask R-CNN, and Hybrid
Task Cascade is above 86%, 86.6%, and 86.4%, respectively.
While with the relatively strict mask IoU threshold of 0.75,
mask AP is above 64.3% for the detectors. As for multi-scale
instance segmentation, when segmenting the small and
medium ships in HRSID, mask AP of detectors is above
53.3% and 61.2%, respectively. When segmenting the large
ships, mask AP is still low with a limited amount of large
size ships. The statistics indicate that detectors can generate
a more precise mask for medium ships than small ships. The
precision-recall curve (PR curve) of each detector is shown
in Figure 12 and Figure 13.

We have selected 4 representative scenes in the test set of
HRSID for instance segmentation. Visible results are shown
in Figure 14. Row 1 is the ground truth of bounding boxes and
masks; the bounding boxes appear as green for distinguishing
from the predicted red bounding boxes below. Row 2 and
Row 3 show the instance segmentation results of Mask R-
CNN with ResNet50-FPN backbone and ResNet101-FPN
backbone, respectively. Row 4 and Row 5 represent Cascade
Mask R-CNN with ResNet50-FPN and ResNet101-FPN,
respectively.

Different from visible results in ship detection, the pre-
dicted mask in instance segmentation can depict the ships
with concrete shape, which is beneficial to determine the

FIGURE 13. The segmentation PR curve with the backbone of ResNet-101.

type of ships. In the visible results of instance segmentation,
detectors can segment offshore ships, berthed ships in the
canal and berthed ship near man-made facilities well; but
it appears overlapped masks in segmenting adjacent ships.
Compared with the ResNet50-FPN backbone, detectors with
ResNet101-FPN backbone can generate the more accurate
mask.

V. DISCUSSION
With a different incident angle of the radar signal, environ-
mental factor, polarization methods, etc., the pre-processed
SAR imageries exist clutter noise which interferes with the
feature of ships then the ship detection and instance seg-
mentation with CNN. So, distinguished from constructing
an optical remote sensing dataset for object detection and
instance segmentation [54], ships should be accurately and
completely annotated when constructing the SAR dataset
for ship detection and instance segmentation. Existing SAR
ship datasets prepared for CNN have respective defects, and
detectors tend to reach too high AP50 when testing on these
datasets [30], [37]. For example, the HR-SDNet, which is
dedicated to CNN based ship detection, has reached 98.8%
of AP50 when experimenting on SSDD [30].

In this paper, we have designed a complete and efficient
process to construct a high-resolution SAR dataset for CNN
based ship detection and instance segmentation. To avoid
wrong annotation and missing annotation caused by man-
made facilities which are similar to ships [37], we have
developed the auxiliarymethod for annotation in Section II.B.
As for ships in low-resolution SAR images are presented
as highlighted spots, the effects of instance segmentation
on low-resolution SAR images may be limited. So, high-
resolution SAR imageries are applied to construct the dataset,
and they are cropped to 800 × 800 pixels SAR images for
better implementation on the functions such as multi-scale
training. To comprehensively evaluate the performance of
detectors, we have employed MS COCO dataset evaluation
metrics for comprehensive evaluation on HRSID with
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FIGURE 14. Visible instance segmentation results of Mask R-CNN and Cascade Mask R-CNN with ResNet50-FPN and ResNet101-FPN backbone
on test set of HRSID. Row 1 is the ground truth. Row 2 to Row 5 are the predicted results.

8 state-of-the-art detectors. Quantitatively, detectors with
improved structure have received proper improvement on
bounding box AP when detecting ships; the maximum

bounding box AP50 of the results is 89.3%. The APL of the
detectors varies from 16.4% to 38.1% on account of insuffi-
cient amounts of large ships in HRSID, and this phenomenon
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also appears in the existing SAR ship dataset prepared for
CNN as is discussed in Section II.C. We are looking forward
to the subsequent supplement from the community to perfect
HRSID. The statistics of model size, test speed, and COCO
evaluation metrics reasonably vary from detectors. To chal-
lenge the detectors and examine the ability of detectors to
detect the ship in complex scenes, some complex scenes
are added in HRSID and the correspondingly visible results
of detectors are tested. The results show that the complex
scenes such as cluster-distributed small ships and adjacent
ships are still challenging to the detectors. As for the visi-
ble detection results in instance segmentation, the generated
mask can authentically depict the distribution of ships with
its concrete shape pixel-by-pixel, establishing a preliminary
basis for further research on instance segmentation.

The statistical detection results are regarded as the base-
line of state-of-the-art detectors, including ship detection
and instance segmentation statistics. With reasonable AP to
state-of-the-art detectors and challenging detection scenes,
HRSID is worth further research to promote the development
of ship detection and instance segmentation. The novel struc-
ture and algorithms can also be tested on HRSID. We hope
HRSID can promote the development of ship detection and
instance segmentation in SAR images just like MS COCO in
optical images.

Future work will be conducted on ship detection and
instance segmentation with HRSID. Existing problems in
our experiments, such as poor instance segmentation perfor-
mance in cluster-distributed small ships and adjacent ships
are the major indicator of our further research.

VI. CONCLUSION
In this research, we have constructed a high-resolution SAR
dataset for CNN based ship detection and instance segmen-
tation. 136 SAR imageries with resolution under 5m are
cropped to 5604 SAR images with 800 x 800 pixels. When
building the baseline of our dataset, we have applicated
8 state-of-the-art detectors to our dataset for ship detection
and instance segmentation. The large size SAR imagery is
used for examining the migration ability of the model trained
on our dataset. Besides, we have measured the baseline of
SSDD to verify the novelty of HRSID. The experimental
results reveal (1) the process we have designed for construct-
ing HRSID is effective as the statistical results of detectors
are reasonable; (2) ship detection and instance segmentation
can be implemented on HRSID, and the predicted pixel-by-
pixel mask can depict the shape of ships which is beneficial to
determine the type of ships; (3) the baseline of HRSID shows
its superiority compared to SSDD; (4) The model trained by
HRSID can detect ships in large size SAR imagery and is of
value in practical application. We hope HRSID can promote
the development of ship detection and instance segmentation.
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