KZG

1/ Polynomial commitments via Merkle trees
1.1 Recap on polynomials

The polynomial p(X) can be anything. For example: p(X) can be: 6z° 4+ 0z* + 0z® 4 022 + 0z! — 55z°, which can be also
expressed as:

62° — 55
notice that, even in 6z° — 55, there are actually 6 coefficients(%%{) — 6, 0, 0, 0, 0, -55
(0's are omitted for brevity, RE2ELEHN, BT 0)

There is exactly one and only one polynomial for a specific coefficient set. (W F4EEMNREE, BW—XNN—PZIHR) , hiEH,
EMNOZMUIERENR :

p(X):Zcixi = (6-2°4+0-2*+0-23+--- 4+ (=55)-2%)

this basically means:

multiply the coefficients ¢; with z?
then add them all together ...

in the end, we will have a polynomial with a degree of n (means, the highest power of z will be n)
1.2 What are polynomial commitments?

To commit to some polynomial p(X), and we will claim that at the point z, this very polynomial will give the result y (£ z X—=
L, B ZEHMRAGLEHER v)

p(2) =y

The verifier will request a proof that we did not change the polynomial in order to make p(z) = y. In other words, the verifier
wants to be sure about the equation p(z) = y will hold only for the very polynomial that is selected in the beginning. (Verifier &
ER Prover REUEEERZMAIER, WERER p(2) = y AR Cat(dog) = y. AIER, WIEERERE Prover AZERTZ
IRA R F0 Verifier KIXAIHEERME 2. (p(2) = y (NEATFARNEFNZHR.))

To provide a proof to the verifier, we can commit to the polynomial selected in the beginning. How? By calculating the merkle
root of the coefficients. (J97 @ Verifier 12X Proof, HATRILARRRBEAINZI, How? BT IHERBRHB T RMR,)

1.3 using Merkle Trees
Say our p(X) = 5z® + (1)z% + 0z! + 6(2°) = 523 + 22 + 6 , The coefficients are: 5, 1, 0, 6

Now, we will build a merkle tree out of these coefficients :

Merkle Tree

Merkle Root

=H(H(X)+H(Y))

H(Y) = H(H(C)+

H(C) H(D)

Sfeceb66ffc86f || e7f6c011776e8
38d952786c6d db7cd330b541
696c79c2dbc2
39dd4e91b467
29d73a27fb57

L)

[
Data C

As the first thing, we will send our commitment (the merkle root) to the verifier. Then the verifier will give us a value (say, it will
be 2), and ask for the evaluation for this value for our polynomial. (@ HEANTEREE Merkle root @ Verifier Zi=#%1E 2)

Now, say we are the prover, and our claim is p(2) = 50 , But there can be multiple polynomial that can hold the above equation,
for example: p'(X) = 25z . ((RZZIMAEBBEHE XD EM. LU p'(X) = 252 . Cat(dog) == 50 ...)

We should prove that the equation p(2) = 50 holds for the original polynomial, which is p(X) = 523 + 22 + 6.

To prove this, we can send all the coefficients to the verifier 5, 1, 0, 6 and the merkle root:
c297747c8df365fd5618743f2a9fbd78fecl42e66e572a054el4elb731e27a58

RERET 2 FA : (D) AZHRBEFTMIR) (@ R Merkle root
The Verifier will check for 2 things :

given the polynomial coefficients, she will construct the polynomial, and compute the result p(2) herself, and check if
Prover's claimed value is matching with what she computed . - p(2) z 50.

if the first check holds, then she will construct the merkle tree for these coefficients herself, and compare our merkle root
provided in the proof, with her merkle root (which she computed herself). If they are matching, that means we did not
change the polynomial! (MIRF—NMEEMIL, IBAMIEECHXLEREME merkle , FIFIEAIREAIFIIN merkle RS
WA merkle 1R (B SITEMN) #HITHHR. MRENILER, BRERER(ITVIARTZmA!)

1.4 Summary of it.
Summary of the protocol:

prover has a polynomial, he commits to it, and sends to the commitment to the verifier
verifier has a Challenge value z, sends this to the prover, and asks for an evaluation for this value (p(z))
prover evaluates the value, sends the result, and sends the coefficients of the polynomial (IEREFIZIEH)
Verifier constructs the polynomial herself:

computes the result for the value, checks if the prover's evaluation is the same

constructs the merkle tree for the coefficients, checks if the prover’s merkle root is the same

Let’s overview the properties of this scheme:

the commitment was a single element, which is the merkle root (typically 32 bytes FIIG % &)
the prover had to send all the coefficients (IEZ Izt AECEEZE L)
the whole polynomial is shared with the verifier, nothing is secret in this scheme (F 2 Z40iR)

the data need to be sent to the verifier is linear: if our polynomial had 1.000.000 coefficients, then we will send
1.000.000 coefficients... In other words, the proof grows as the polynomial grows, this is not very scalable
the verifier had to reconstruct the polynomial, re-calculate the whole computation (2R R Z A, ERENEHIBEEM
HWA)

verifier had to reconstruct the whole merkle tree

It is silly and inefficient. But it will help us understand what polynomial commitments are, and then we will significantly improve
it using Kate Proofs. (X2 REMEME, EXEEBHRITEBRT ARSI EE, AEHRITISER Kate Proofs EFSHE .,)

What we will achieve with Kate scheme :

commitment size will be 48 bytes (little larger than 32 bytes)
The proof size, independent from the size of the polynomial , is always only one group element. Verification, independent
from the size of the polynomial, requires two group multiplications and two pairings, no matter what the degree of the
polynomial is. This means, the proof size is constant! UNBELIEVABLE!

(Proof MVerification ANERMIIFZ WG, BIMZIMINANERR ZHIRABX, EHEEE)
The scheme hides the polynomial (practically: yes; theoretically: not 100%, if the polynomial is very simple, it can be
guessed. But it shouldn’t be simple in the first place hehe)

FEEEPIUIARZE 100% , FEIS ERE 100%: MRZMARER, DJURBLHE, EESERTUILEE, IEIF)
The promises are amazing! Let’s try to learn how it works.
What is Commitment
I EEEERNGF.

Lottery (M) : EEREBBEIFENPRERZH, BUOFTERMECERNSE, X—FAEBEEESIIREEER ZAEHST
BT XEHF, XMFEEERRATEER,

Registration and Login : A lot of social applications require you to prove your digital identity to use them. There are two stages;

Registration: This is where you put in your details such as your email address, name, password and phone number. You can
think of this as a commitment to a particular identity.

Login: This is where you use the email address and password from registration to prove that you are the same person.
Ideally (FE4815)%), only you know these login details.

As you can see, commitment schemes are crucial where one needs to prove something after an event has happened. This
analogy also carries over to the cryptographic settings we will consider. (YAMEELEEGHREFTARLRALETRET MY,
EAEARREXREEN, XM EEIELEER T EEF)

2/ Combining Elliptic Curves and Secure MPC
ABMHRN WEMLITE M MPC 2HR2IHE 1R ;
2.1 MPC (trusted setup)

In cryptography, we have access to a powerful tool, called secure multi party computation (MPC). It basically allows us to
collectively generate a secret (let’s denote this with s, and derive some other things from this secret, and in the end (here is
the good part), no-one will know the secret!

In order to reveal s, all the participants would have to collude (they cannot reveal the secret even if all of them are
compromised, except one 1BiEEE s FEFABEADE, EMERE— 1T TS5HFT) .

MPC BHEZHITEMNIK (Multi-Party Computation) , ER—MEBFNN, AFSTSE5EETHENERIENER FHITIT
L

EMPC H, BMSE5ERHFF—LELFLE, HAFEETITERIIRLELR, EEMIFMESECHLARERELAEMSS
=P

MPC MEXRBRBERHEESOBRZ T FES, FEREFESIRETEANSSEHITHE. 813558 REEIACHENY
BEHEMSSERHNQARKER, MAREIEMSSENLERE. BIERMERAMNNCRRIFRILNREME, MPCRIMRRFR
S5 EMEBRTERNER, MASHETALERES.

2.2 Elliptic Curve intro.

Let G be the points on our elliptic curve (Z{#ERLZ_EAIS), and G be the generator of G .

A generator is a point on elliptic curve, a base point, which, when added to itself generates all other points on the curve. A
simple analogy would be 1 for integers: 1+1=2, 1+1+1 =23, and so on, you can get any integer by adding 1 to itself enough
times.

Then, [z] is defined a s » [z] = G = G+...+G. In other words, [z] converts z to a point in the elliptic curve (it will correspond to
N——

X times

one of the points in G).

A good property of elliptic curves is you cannot derive the value of = from [z]. After multiplying x with G, the value of x is now
hidden. You cannot simply divide [z] with G

So, the first thing we will do in our scheme, is to generate a secret number s (from Setup MPC), and then compute
[s°], [s'], [s%],---.[s"], (Where n is the order(degree) of our polynomial), in an MPC setting.

The values [s°], [s'], [s],...,[s"] will be public knowledge , everyone will have access to these. But remember, it is impossible
to deduce s from these , you will never know the real s .

What we can do with [s°], [s'], [s%],...,[s"] = is:

we can multiply those with a coefficient - ¢ [s'] = ¢s'G = [cs]. Multiplying s with G will allow us to hide s (thanks to elliptic
curves) (EMNAABERFE L ZHMANARNT! MEFTBEH (s MITEREIRRERER)
that means, we can actually compute [p(s)].

by basically multiplying every coefficient ¢; with [s7]

going back to the example, our coefficients were: 6,0,0,0,0, —55

so we should compute 6 [s°] + 0 [s*] +0 [s*] + 0 [s?] 4+ 0 [s'] — 55 [s°]

the whole thing can be shown with: [p(s)] = [Y1 cis’] =37 o ci [s7]

LOOK:

1=0

s)] = [Z] =Y e s

This means, we just computed the elliptic curve point equivalent of p(s), (which is [p(s)]), without knowing the secret value s ~

~

supplement (1) : we can often see like g, g2, g(**), ...,
just like alg], .., a*[g] == [a],..,[a?] == [&] == [s']...

o),

some other entries use: 7 (tau ceremony trusted setup), 2% from Zcash's powers of tau ceremony

supplement @ :
EFRAEEREX BRI LR -

Commit (p) = p(a)
gp(a) _
gEhoater _

ga”‘c"+...+a202+acl+c0 _

1 CK
=0
2.3 secrets have been revealed

An important vulnerability to be aware of is that if we know «a, we can easily break binding by finding two polynomials that
evaluate to the same point (EIFMMTEERERNZ NI break binding) :

if we know: a=3
py(z)=2°+1022+8z2+6
py(z) =Tz +192 +27
gh(@) = gpe(@)

ga3+10 a*+8 a+6 — g7 a?+19 a+27

147 _ 147
g =9

Luckily we can rely on the t-polyDH assumption (an extension of q-SDH) to help us establish hiding and binding and prevent
this vulnerability.

3/ Kate Commitment

Pronounced /kah-tey/
In KZG polynomial commitment scheme, the prover

first needs to commit to the polynomial p(X)
(this polynomial will be generated from our data points, for example, our data points can be the coefficients of this
polynomial),

and then submit a proof =, along with his claim p(z) = y.
The point z will be selected by the verifier, and sent to the prover after the prover sends his commitment C = [p(s)],
which is a commitment to the polynomial p(X).

Now, the things that prover needs to know/compute:

C = [p(s)] = The prover knows the polynomial p(X), and we showed above how [p(s)] can be computed via an MPC setting.
p(2) =y = zis provided to the prover from the verifier. The prover knows the polynomial itself, this is trivial
m, the proof - we haven't talked about it yet. Let’s begin!

3.1 polynomial math (not too much !)
If a polynomial p(X) has a zero at point m (p(X) £ m SEVEX 0) , that means the polynomial p(X) is divisible by the term
X — m. Being divisible by the term X — m means we can write the following:
p(X) = (X —m) - q(X)
for some other polynomial ¢(X). And this equation clearly evaluates to zero at the point X =m

An example:

p(X) = 3z? — 5z — 2 (let this be our polynomial)

p(2) = 3(22) — 5(2) — 2 = 0 (and we find a number "2" that makes our polynomial evaluate to 0)
p(X) =322 -5z — 2= (X —2).¢(X)

BB — g(X)

g(X)=3z+1

If you are confused about steps 4 and 5, we can divide polynomials using 2 different methods, one of them is by simple division
(1), and the other one is by factorization (B9 f#/3z XAE5E) (2).

1) 3xr-5y-2 [x-2 2) i:z‘;;;%
,(3 7(2 - 6)() m x & 3—2[_‘
(x :Qi) . “bx+x ='5x (5x+1) (X—Z)

@)

= 352

Coming to the crucial part (EXEE!) :

we want to prove p(z) =y
we know p(X) —y (X 1 XFBIN) will be zero at the point X = 2
in other words, we know (X — z) divides (p(X) — y)
what we have is: 25-¥ — ¢(X)
we can compute the polynomial ¢(X) now (as shown above).
X can be anything, so let it be s
we now have the following relationship: % =q(s)
or another way to display this relationship: p(s) —y = ¢(s) - (s — 2)

We cannot work directly with this relationship, because neither the prover nor the verifier does know the value s. What
they know is, [s] .

3.2 Why convinced?

https://www.cs.purdue.edu/homes/akate/howtopronounce.html

This relationship itself can be the thing that will convince the verifier.
AL g(s) T BEZTBAIL Verifier {SAR Prover JRAMENERIAH p(X) . BADE Why #IE, AT E—LERERENE :

we already committed to p(X) via C = [p(s)], this commitment is ensuring we cannot change p(X). Reason (RIE&) AT :

Let’s assume otherwise. Say for another polynomial p’(X) # p(X), we arrive at the same commitment, which means

[p'(s)] = [p(s)]- And that means p'(s) — p(s) = 0. Then, we will be able to cheat by changing p(X) with p'(X). Now, we should
prove that finding p'(X) should be practically impossible. JXE&iRAIZ : RATAEIKEIS— [p'(s)] = [p(s)]

For two different polynomials, we can write the following: r(X) = p(X) — p'(X).

We know r(X) is not a constant polynomial in this case (a.k.a. it's order is not 0) (aka: Also Known As).

FERIEEH n RZBMAZZAUE 0 MER, XEENNR r(2) =0, r(X) MAMELEERTF X — - B}, AAS—TEAHE
IREFTUAM— TSR FEIR, BNSEE—RRNEREE—M, FAUEETNEZEE » TER2,

[EJ Prover RANE s AWESE{E (RANE s EHERZ EANEELER) , IREHE p'(s) —p(s) = 0. REBIERTREZ AL
p'(s) —p(s) =0 . W EFTIE, MIIREEEZS n DNRLEME p/(s) —p(s) =0, IBARINAIRTEEHRMER/), EA n LR %R
degree p (REH) BEIVRZ, s IBIFHIERA p'(s) = p(s) B REIRR 2T EMN,

KRS —TXMERAN, BRIRHAIFRAIA largest trusted setups , Bl n =22, and compare it to the curve order

p~ 2% 3Pt BEEBIGIMNSZTR p/(X) K5 p(X) RSEE n =228 MR, BEERRENEERE 2 =25 %0 ~2.10%,
Thatis an incredibly low probability and in practice means the attacker cannot pull this off.

For reference, finding a collision in SHA256 is: 4.3 + 1075
Means, finding p’(X) is around 10°/2 = 500000000 times harder than finding a collision in SHA256... Wow!

OK !l now that we proved p(X) cannot be changed after being committed on, let’s inspect the other parts of this relationship
> M0 — o(X) (LA, BNBRIDETIBT JH24 p(X) FERBHRIER)

TERER 20Y — o(X) Yy other parts.

z cannot be changed, since the verifier herself send it, she would know...
y cannot be changed. Why?
RERIEE, BRI v AT AR EMAY: The prover wants to cheat with another value ' # y.
recall p(z) —y =0,
then, p(z) —y' # 0 (recall fRi%: v # y)
the prover needs to divide p(X) — 3’ with X — z in order to find ¢(X).
But the prover cannot divide p(X) — ¢’ with X — 2z, since p(z) — y' # 0.
if the prover can find a fake ¢'(X), such that ¢'(X) = w, then he can have the following relationship:

q'(s)(s —2) =p(s) — ¥/,
which is equivalent to (22) (s —) = p(s) — ¢/,

which is equivalent to p(s) — ¥ = p(s) — ', which will hold :)
but this cannot be done, since the attacker has to know about s to compute ¢'(X) = ﬂj):Ty) As long as s is kept secret,
we don’t need to worry about this.

3.3 Finalizing our proof format for Kate Commitment

Let’s recall our relationship:
p(s) —y=4q(s) (s —2)

And remember, we cannot work directly with 1 relationship, because neither the prover nor the verifier knows s. What they
know is, [s'] . And seems like that is enough!

The proof evaluation will work as the following:
[g(s)] - [s =2l =m-[s — 2] = C - [y]
[a(s)] is our proof = : i& [g(s)] & Proof =, ic{¥, EEER

What we've done is, we used [sl} values to turn our equation into points in the elliptic curve.

(FAVRER [s°] values J§ LRI BEIILFEI R,

m = CreateWitness (p, z, y)

C-ly

=g

So if we multiply = with [s — 2], and check if that is equal to C — [y], we should be good to go for this scheme! And remember, all
these are points on the elliptic curve.

However... there is one issue... we cannot multiply elliptic curve points :)

https://dankradfeist.de/ethereum/2021/10/13/kate-polynomial-commitments-mandarin.html#fn:2

In KZG commitment scheme, we cannot directly multiply elliptic curve points because the group operation on elliptic curves
is not commutative. (RAEJ3ZR)

This means that the result of multiplying two points on an elliptic curve depends on the order in which the multiplication is

performed. (AE3Z#REY, BHTRIRALERIRTEEINF)

However, pairings provide a way to compute a bilinear map between two different groups, one of which is typically an
elliptic curve group. This bilinear map allows us to perform certain operations that are not possible with elliptic curve point
multiplication alone.

BRI T — MU ER N TREAZBRE RSN E, ER—TMEHEEEHEMZEA, X TRE MRS R BT R L S I0ER
hE th 4k R R TTIE LI AR AE .

Specifically, in KZG commitment scheme, we use pairings to compute a bilinear map between two different groups: the
group of points on an elliptic curve and a multiplicative group of finite field elements. This allows us to perform
polynomial evaluations at specific points by computing pairings between certain elliptic curve points and finite field
elements.

BRI, £ KZC AEARP, BAMERRNRITEM M NEAZERIIRE MRS : HEZ AR BNERETRNFEL, X(E
stz T E R LR f 26 S A1 B BRIZITT R 2 BB XY SRTESS E | AT polynomial evaluations,

Chatgpt : B MIXMAREREN, BITIUEAMBIBERZ CNEZERENER TIMESRNRENFE. N BIERAEXR
BYEGEIGIERIBS IE L LR T (HIANRIEZRARE S EIZE R & rogue public key attacks or subversion attacks.) >RIZEEIIMY
BRI,

4/ Pairing! (math warning! skip this if you want to treat it as a blackbox)
Pairing is a bilinear mapping.
4.1 What is a bilinear?

Linearity (the property of preserving linear combinations) exists for 1d functions such as f(r), if that function obeys: (Linearity

(RBLMHASHIFN) FETRELE—TTRE, NMFRIZREBRM:)
flary +bry) = af(ry) + bf(rs)
For 2d functions such as f(r, s), the linearity attribute can exist for one dimension, or the other, or both. (&M AFETF—
B—4a both) If both, then the function is said to be "bilinear"

flary +bry, 5) = af(ry, s) + bf(ra, s)
f(ra as; + bs2) = af(r, 51) + bf(r1 52)

4.2 What is bilinear mapping?

Elliptic curve pairings, or "pairings" for short (defined by the operator e), are a beautiful yet extremely complicated
construction. They enable us to take two points on an elliptic curve (usually in two different groups) and produce a new point in
a third and different group

(MM E—TEMEREELRNEN, EIMERNEBEEHEMZ LMD point @BEERTTRENEF) HES=THP~%E—

™ new point)

In plain english, we define a function e, that is taking two elements from different space, and producing an element in another
third space.
(B8R, EX—TEE, EMTENZEFIRRATTE, HES—TE=SEFLER—TTE.)
WMEEHEFTAAENATHR(EERZ) :
€ (PazR) = e(PyR)a
e(P,R") = ¢(P,R)’
e(P*, R") =e(P,R)"
e(P+Q,R)=e(P,R)e(Q,R)
e(P,Q+R) =e(P,Q)e(P,R)

Understanding how pairings work is a topic for another day, but here are some resources if you're curious:

Exploring_Elliptic Curve Pairings
BLS12-381 For The Rest Of Us
An Introduction to Pairing-Based Cryptography.

Pairings In Cryptography.

Bilinear Pairings
Pairings for beginners

https://vitalik.ca/general/2017/01/14/exploring_ecp.html
https://hackmd.io/@benjaminion/bls12-381
https://www.math.uwaterloo.ca/~ajmeneze/publications/pairings.pdf
https://www.youtube.com/watch?v=8WDOpzxpnTE
https://crypto.stanford.edu/pbc/notes/ep/pairing.html
https://static1.squarespace.com/static/5fdbb09f31d71c1227082339/t/5ff394720493bd28278889c6/1609798774687/PairingsForBeginners.pdf

4.3 About Pairing
This is a pairing: e(Q, P)

Pairing is an abstract operation. Abstract, because the definition can vary. There is Tate pairing, Weil pairing, Ate pairing, and
so on... Each of them defining the pairing via different operations.
(BN E2—THMSRIRIE. HEXATAESBRAE. B Tate B3, Weil B33, Ate BN ES..... HE— MBS FRMNRIEREXE.)

However, the format of the input and output, and the properties of the pairing is fixed.
({BZ, input 1 output ARBXUR EX"HNEEEEEN,)

Input: 2 points (P and Q) on 2 subgroups of the same curve (G; and G,). (Input: El—#i% 2 MR FE LR 2 D = : Pand
Q)

G, is a subgroup of points for the elliptic curve, which in the form y? = z3 + b, and both z and y are simple integers (
z,yc F,)
G, is another subgroup of points (points satisfy the same equation as G; , =21 G, ;&% /EHEAIFFE), but both = and y are

PN

elements of supercharged complex numbers (z,y € F,::). z and y are in the format of w'? — 18 x w% + 82 = 0 (FJEEH R
field extension HBXMAS, FERWMLANBRERE TI/INZE M, BHIBMTITESSM.,)
Output: an integer (or a complex number) in the multiplicative group Gr of order n. (#itt: n MSRERE Gr PHEE (TE
))

In a crypto setting pairing should embody the following properties:

e(P,Q+ R) =e(P,Q) xe(P,R)

e(P+5,Q) =e(P,Q) *e(S,Q) (this is actually the same as above, | wanted to include it for verbosity 37 TTR)

e(aP,bR) = e(P,R)® = e(P,bR)* = e(aP, R)" = e(bP,aR)
(simply, coefficients are interchangeable, because it is bilinear). ({8, RIEBUMUERYN, BATR WNEMEN") .
Notice that the coefficients are turning into exponents(¥§%%) here if they move out of the parenthesis (iEIE, WREH
BB HIES (parenthesis), MEAISRTELTERIEE (exponents)
G and G, are also can be defined as multiplicative groups.(3i&2%). So the property turned into this:
e(P% R’) = e(P,R)® = ¢(P,R")® = ¢(P", R)* = e(P",R%). A= 2, XE—EREER, TXxEE,

e(P,Q) # 1 (non-degeneracy property , IEE{L 1)

4.4 Coming back to Kate proofs

Recall: Let G be the points on our elliptic curve, and G be the generator of G.
Then, [z] is defined as - [z] = zG.
In other words, [z] converts z to a point in the elliptic curve (corresponding to one of the points in G).

Now we change it as the following:

Let G; and G2 be two different subgroups of the same elliptic curve
G be the generator of G4, and H be the generator of G,
G BT G W4ERTT, H R T8 G, AT
These generators are typically chosen randomly during a Trusted Setup phase.
XELRITBERTE Trusted Setup FHERIZIERY ;
Then, [z], is defined, as - [z]; = zG
And, [z], is defined, as = [z], = zH
Lastly, let's define our pairing e : G; x Gy — G, where G is the multiplicative target group
Of course, from the secret value s (we dont know), now two different sets will be distributed, one for [s?],, and one for [si],

The verifier should now check the equality of:
e(m, [s—z],) =e(C—[y]y, H) ps: [q(s)] is our proof .
which is equivalent to (I L EIMNEXFINER D BIRETEI T =[8):
la(s) - (s = 27 = [P(s) — ¥lp
The verifier is able to do the computations :

[q(s)] is provided to the Verifier from the Prover
z is selected by the verifier

the verifier can compute [s — 2], since she has access to [s], , [s — 2], = [s], — [2],
C &R P(s) is provided to Verifier by the Prover

she also knows the value y (sent by the prover)

H is public (the generator of G,)

pairing function is public

4.5 Full workflow
The full workflow:

using an MPC setup, the secret s is generated, and using this secret value, two sets will be distributed publicly, one for
[s'],, and one for [s'], . The secret s is then discarded forever. (s #FARER [s'], F [s'], [5, RWKAEFR, BHRRAFRA)
the prover selects a polynomial, and commits to it: C = [p(s)],, using [s’] , and sends this to the verifier.
verifier asks for the evaluation of the committed polynomial at point 2.
prover sends the following to the verifier:

m (mis [q(s)])

Yy
the verifier checks the equation: e(m, [s — z],) = e(C — [y], H)

if the equation holds, the verifier accepts the proof

if the equation does not hold, the verifier rejects the proof

We just showed how to prove an evaluation of a polynomial at a single point, using only one element as the proof!

VerifyEval(C, 7, z,y) =
e(m,g") = e(g?*) 0, g

e(g T g) = (v, g
e(g, g)p([S])*p(Z) = e(g, g)—y+p([s]
e(g,9) VD) = e(g, g) vl

Simply put, verification boils down (J)345) to checking that two target group EC points are equal. By doing this, we can confirm
that both sides of this equality are computing the same thing. (&}, verification YA R ER B4R group HIHERIL S 2
HHEE. BEXEM, BITTUEAITEXNRBBETERENSIE.)

5/ Batch-proofs (multi proofs)

We can go even further! Let's show how to evaluate a polynomial at ANY number of points and prove it, using still ONLY ONE
element.

FEmMNLE, BEMNEENETUEARII-TERER ERENSTN., XESGMBATRIN, EURFE(VEEHF—ITSHA LS TR
RO, BRI —RX — Rt EE RN (back and forth), REARRBRERN, A THRRZMEDE, BAVERRNAE
KzGlo HANY R, FIWE "HtE "WIISHN LR,

Say we want to prove the evaluation of k points: (zo,¥0), (21,¥1), - - -, (2k-1, Yk—1)-

Using an interpolation polynomial (ZIRz &), we can find a polynomial of degree less than k, that goes through all these
points. (fERBEZIN, HNFTAKIIRENT £ —P 2N, BB TEAEM k points: (20,v0), (z1,41), - -+, (ze-1,¥x-1) « Using
Lagrange interpolation ({#fHI#&EA HiE{E), we can compute this interpolation polynomial. | know this may sound advanced, and
it is. Google and YouTube will be your friends for understanding how Lagrange interpolation works.

XITERRER, TEMH, RIBAM%E
The formula(A=t) for computing the interpolation polynomial is as follows:

k-l okl oy
i

I(X)=>"y

1=0

Zi — Zj

S|
=

(S

ERAXMARN, UGS —TEFELLL £ points: (20,y0), (21,41), - -, (zk-1,y61) FIAKKI—T SR, ZTRENATUBES THET, LR
B

Since our original polynomial p(X) is passing through all these points, the polynomial p(X) — I(X) will be zero at each
20y 21y vy Rk—1-
In other words, this polynomial will be divisible by: (X — 2¢), (X — 21),...,(X — zx-1). So we define our zero polynomial as:

Z(X) = (X — 20)(X — 21)... (X — 2g.1)

Using the zero polynomial, we can again establish a similar relationship that we did before:

X)—-I(X
o) = 20100
(X)
We now define the Kate multiproof for the evaluations of the points:
(307y0)1 (zl1y1)7 ey (zkflzykfl) PT= [q(s)h

Notice that our proof is still a single element!

Some differences in this scheme:

the verifier needs to compute Z(X) and I(X)

for computing these, she is going to need the & points : (z0,y0), (21,¥1),- - - » (Zk—1,Yk—1)
she also will compute [Z(s)], and [I(s)],

for computing these, she needs the sets [s’], and [s],

The equation the Verifier needs to check is as the following:
e(m, [Z(s)],) = e(C — [I(s)], H)
which evaluates into:
la(s) - Z(s)lr = [p(s) — I(s)]r

And via this, we just proved the evaluation of ANY number of points on our polynomial, again providing a single element as a
proof!

6/ Kate as a vector commitment
easy to convert Kate polynomial commitment into a vector commitment . And via doing this, we will achieve the following :

instead of sending logn hashes to prove a single element, we will send only one element!
our proof will consist of only one element, regardless of the vector size! (IR REE—1P TR, MASEEAN!)

Here is how:

Previously, we were creating a polynomial using our data points as the coefficients.
Now, we will do something different:

say we have the elements: ag, a1, ...,ar—1. And say p(X) is the polynomial that will evaluate to these elements as the
following: p(i) = a;.

So, for example, to reach a2, we will plug in the value 2 to our p(X). We know there always is a polynomial that is passing
through the points we like. Again, Lagrange interpolation will help us:

[a(9) s =m[s— 2= p(s)—y=C— [
mls—2=C-[y
e(m,[s — 2)y) = e(C ~ [y];, H)
la(s) (s = =)z = [p(s) ~ 8l
KZG10
FFT ...

Reference:

https://blog.subspace.network/kzg-polynomial-commitments-cd64af8ec868

https://taoca.io/posts/Understanding-KZG10-Polynomial-Commitments

https://dankradfeist.de/ethereum/2020/06/16/kate-polynomial-commitments.html

PLONK : https://vitalik.ca/general/2019/09/22/plonk.html

https://blog.subspace.network/kzg-polynomial-commitments-cd64af8ec868
https://taoa.io/posts/Understanding-KZG10-Polynomial-Commitments
https://dankradfeist.de/ethereum/2020/06/16/kate-polynomial-commitments.html
https://vitalik.ca/general/2019/09/22/plonk.html

