
Antenna House DITA Open Toolkit Testcase

DITA to XSL-FO Transformation

Unit test cases

toshi
Antenna House, Inc. Japan 06 12 2013

UD2013-001 1
2006 2013 Antenna House, Inc.

Test data title
The test data begins from here!

Preface
This test data contains the excerpts and the samples from DITA 1.1 specifications (http://docs.oasis-
open.org/dita/v1.1/OS/langspec/ditaref-type.html). Also contains the excerpts from Wikipedia
(http://en.wikipedia.org/) The Wikipedia text content is available under the Creative Commons At‐
tribution-ShareAlike License.

● Safety Precaution
• In order to protect the system controlled by the product and the product itself and ensure safe

operation, observe the safety precautions described in this user’s manual. We assume no liabili‐
ty for safety if users fail to observe these instructions when operating the product.

• The following symbols are used in the product and user’s manual to indicate that there are pre‐
cautions for safety:

Symbol Description

Indicates that caution is required for operation. This symbol is placed on the product to
refer the user to the user’s manual in order to protect the operator and the equipment. In
the user’s manuals you will find precautions to avoid physical injury or death of the opera‐
tor, including electrical shocks.

Identifies a protective grounding terminal. Before using the product, ground the terminal.

Identifies a functional grounding terminal. Before using the product, ground the termi‐
nal.*1

Indicates an AC supply.*2

Indicates a DC supply.

Indicates that the main switch is ON.

Indicates that the main switch is OFF.

*1 A terminal is a the point at which a conductor from an electrical component, device or network comes to an
end and provides a point of connection to external circuits.

*2 Power is defined as the rate of flow of energy past a given point. In alternating current circuits, energy stor‐
age elements such as inductance and capacitance may result in periodic reversals of the direction of energy
flow. The portion of power flow that, averaged over a complete cycle of the AC waveform, results in net
transfer of energy in one direction is known as real power. The portion of power flow due to stored energy,
which returns to the source in each cycle, is known as reactive power.

*3 Direct current (DC) is the unidirectional flow of electric charge. Direct current is produced by such sources
as batteries, thermocouples, solar cells, and commutator-type electric machines of the dynamo type. Direct
current may flow in a conductor such as a wire, but can also be through semiconductors, insulators, or even
through a vacuum as in electron or ion beams. The electric charge flows in a constant direction, distinguish‐
ing it from alternating current (AC).

i

http://docs.oasis-open.org/dita/v1.1/OS/langspec/ditaref-type.html
http://docs.oasis-open.org/dita/v1.1/OS/langspec/ditaref-type.html
http://en.wikipedia.org/
http://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
http://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License

■ Addendum

Warning
Indicates a potentially hazardous situation which, if instructions are not followed, could result
in death or serious injury.*@

Caution
Indicates a potentially hazardous situation which, if instructions are not followed, may result in
minor or moderate injury or damage to property. *1

Important
Indicates points to pay attention to when using the machine, and explanations of likely causes
of paper misfeeds, damage to originals, or loss of data. Be sure to read these warnings.*2

Note
Indicates supplementary explanations of the machine’s functions, and instructions on resolving
user errors. *3

*@ In the People's Republic of China, warning signs appear with a black border and a yellow background. In
Sweden, Serbia, Bosnia and Herzegovina, Croatia, Greece, Finland, Iceland, the Republic of Macedonia and
Poland, they have a red border with an amber background. This is due to the weather, as it is easier to see a
red/amber sign in the snowy weather than a red/white sign. The polar bear warning sign in Svalbard recently
changed from displaying a black bear on white background to a white bear on black background (both signs
are triangular with a red border). Some countries that normally use a white background have adopted an or‐
ange or amber background for road work or construction signs.

*1 The solid yellow flag, or caution flag, universally requires drivers to slow down due to a hazard on the track.
However, the procedures for displaying the yellow flag vary for different racing styles and sanctioning bod‐
ies.

*2 The quality or condition of being important or worthy of note
*3 The term "note" can be used in both generic and specific senses: one might say either "the piece Happy

Birthday to You begins with two notes having the same pitch," or "the piece begins with two repetitions of
the same note." In the former case, one uses "note" to refer to a specific musical event; in the latter, one uses
the term to refer to a class of events sharing the same pitch.

ii

Contents
Chapter 1 Title testing ... 1

1.1 Weird title testing ® (1).. 1

1.2 Weird title testing ™ (2).. 1

Chapter 2 Testing examples ... 3
2.1 Abstract testing .. 3

2.2 Xref testing .. 3

2.3 Note testing.. 4

2.4 Bodyelements testing... 6

2.5 Miscellaneous elements testing ... 9

2.6 Specialization elements testing.. 11

2.7 Typographic elements testing .. 12

2.8 Programming elements testing .. 13

2.9 Software elements testing .. 18

2.10 Utility elements testing .. 20

2.11 Fig and table testing... 21
2.11.1 Fig testing .. 21
2.11.2 Table testing... 25
2.11.3 Properties ... 34

Chapter 3 Logging in to DB3 Client... 36

Chapter 4 DITA 1.2 element test .. 39
4.1 Longdescref testing.. 39

4.2 Sectiondiv testing... 40

Chapter 5 Test: Link to removed topic .. 41
5.1 Topic title ... 41

Chapter 6 Complecated index example ... 42
6.1 Complecated indexterm example .. 42

Appendix A XSL Transformations... 43

Appendix B Dir attribute example (level 1)... 48
B.1 Dir attribute example (level 2) .. 48

B.1.1 @dir attribute .. 48

Backmatter testing .. 50

Contents iii

Glossary map... 51

Index... 53

Contents iv

Figures
Figure 2-1 CopyFile . 15
Figure 2-2 SAA CPI Database Reference 16
Figure 2-3 CopyFile . 16
Figure 2-4 URL syntax. 16
Figure 2-5 uname can take the -a option 16
Figure 2-6 uname assumes the -s option by default 16
Figure 2-7 uname synopsis . 16
Figure 2-8 Hexadecimal literal 17
Figure 2-9 Comma-separated list of numbers 17
Figure 2-10 Repeating a group A exactly 1 to 3 times 17
Figure 2-11 Positive decimal integer 17
Figure 2-12 Applying adjectives to a noun 17
Figure 2-13 How repsep in combination with importance is disambiguated 17
Figure 2-14 Refactoring repsep 17
Figure 2-15 IPV4 address in dot form 18
Figure 2-16 Decimal integer . 18
Figure 2-17 Decimal integer . 18
Figure 2-18 Flower . 22
Figure 2-19 Flower frame='all' . 22
Figure 2-20 Flower frame='topbot' 22
Figure 2-21 Flower width="3cm" 22
Figure 2-22 Flower height="5cm". 22
Figure 2-23 Flower width="3cm", height="5cm" 23
Figure 2-24 Flower scale="200" 23
Figure 2-25 Flower placement="break"&align="center" 23
Figure 2-26 Flower placement="break"&align="rifht" 23
Figure 2-27 Flower placement="break"&align="left" 23
Figure 2-28 Flower placement="break"&align="current" 23
Figure 2-29 Dragon . 24
Figure 2-30 Sample complex figure 24
Figure 2-31 Sample complex figure (2) 24
Figure 2-32 Sample complex figure (3): no frame 24
Figure 2-33 Flower . 25
Figure 2-34 Link to Wikipedia . 25
Figure 2-35 Book & bird . 31
Figure B-1 dir attribute in DITA 48
Figure B-2 dir attribute and HTML element 49

Figures v

Tables
Table 2-1 parml in table sample 15
Table 2-2 Normal Table Sample. 26
Table 2-3 Normal Table Sample with scale="140" frame="none" 26
Table 2-4 Normal Table without theader 26
Table 2-5 Normal Table Sample with rowheader='firstcol'. 27
Table 2-6 Normal Table with rowsep="0" colsep="0" 27
Table 2-7 Normal Table with pgwide="1". 27
Table 2-8 dl in table sample . 27
Table 2-9 sl in table sample . 29
Table 2-10 ol in table sample . 29
Table 2-11 ul in table sample . 30
Table 2-12 fig in table sample. 31
Table 2-13 Valign sample . 31
Table 2-14 Cell span sample . 31
Table 2-15 Table align sample (No cell rule) 32
Table 2-16 Table align sample 32
Table 2-17 Normal Table Sample (Again) 34
Table B-1 dir attribute in DITA 48
Table B-2 dir attribute and HTML element 48

Tables vi

Chapter 1 Title testing

1.1 Weird title testing ® (1)
The <title> element contains a heading or label for the main parts of a topic, including the topic as a
whole, its sections and examples, and its labelled content, such as figures and tables.

The title content model is as follows.

(text data or ph or codeph or synph or filepath or msgph or userinput or
 systemoutput or b or u or
i or tt or sup or sub or uicontrol or menucascade or term or q or boolean
 or state or keyword or
option or parmname or apiname or cmdname or msgnum or varname or wintitle
 or tm or image or
data or data-about or foreign or unknown) (any number)

This topic also contains related-link test.

 RELATED LINKS
1.2 Weird title testing ™ (2) on page 1

Extensible Stylesheet Language (XSL) Version 1.1 (PDF)
Extensible Stylesheet Language (XSL) Version 1.1 (HTML)
Extensible Stylesheet Language (XSL) Version 1.1 (BOOK)
Sample PDF
Japanese Constitution Preamble

1.2 Weird title testing ™ (2)
The <title> element contains a heading or label for the main parts of a topic, including the topic as a
whole, its sections and examples, and its labelled content, such as figures and tables.

The title content model is as follows.

(text data or ph or codeph or synph or filepath or msgph or userinput or
 systemoutput or b or u or
 i or tt or sup or sub or uicontrol or menucascade or term or q or
 boolean or state or keyword or
 option or parmname or apiname or cmdname or msgnum or varname or
wintitle or tm or image or
 data or data-about or foreign or unknown) (any number)

This topic also contains related-link test.

 RELATED LINKS
1.1 Weird title testing ® (1) on page 1
Extensible Stylesheet Language (XSL) Version 1.1 (PDF)

Chapter 1 Title testing 1

1

Title testing

http://www.w3.org/TR/2006/REC-xsl11-20061205/xsl11.pdf
http://www.w3.org/TR/xsl/
http://www.w3.org/TR/2006/REC-xsl11-20061205/xsl11.pdf

Extensible Stylesheet Language (XSL) Version 1.1 (HTML)
Extensible Stylesheet Language (XSL) Version 1.1 (BOOK)
Sample PDF
Japanese Constitution Preamble

1.2 Weird title testing ™ (2) 2

1

Title testing

http://www.w3.org/TR/xsl/

Chapter 2 Testing examples
[Short desc] This part contains DITA element testing examples.

First paragraph.

Second paragraph.

2.1 Abstract testing
The abstract is being used to provide more complex content. The shortdesc must be directly con‐
tained by the abstract.

The abstract can put text around the shortdesc.
There can be more than one shortdesc.

First paragraph of the introduction.

Second paragraph of the introduction.

2.2 Xref testing
Xref is cross-reference element to link a diffrent location within the current topc, or a diffrent topic
within the same help system, or to external source such as Web pages, or to a location in another
topic.

Fn definition
This is fn test.

*1 This is <fn> body

● Xref to topic
Abstract testing is found in the topic titled 2.1 Abstract testing on page 3.

● Xref to section
Xref to section is found in the section titled ● Xref to section on page 3.

● Xref to example
Xref to example is found in the example titled ● Xref to example on page 3.

● Xref to refsyn
Second Property sample is found in the topic titled ● No @relcolwidth on page 34.

● Xref to external PDF file
Refer to Sample.pdf for details.

Chapter 2 Testing examples 3

2

Testing exam
ples

● Xref to table sample
Refer to Table 2-15 Table align sample (No cell rule) on page 32 for details.

● Xref to li sample
Then you should back to step b to complete logging into system.

● Xref to fig sample
Then you should refer to Figure 2-18 Flower on page 22 for details.

● Xref to fn sample

Xref to fn *3 .

Xref to fn *1 .

2.3 Note testing
A <note> element contains information, differentiated from the main text, which expands on or
calls attention to a particular point.

● Note

Note
Defines the type of a note. For example, if the note is a tip, the word Tip is used to draw the reader’s atten‐
tion to it. Note that this differs from the type attribute on many other DITA elements. See “The type attrib‐
ute” on page 480 for detailed information on supported values and processing implications.

● Tip

Tip
Defines the type of a note. For example, if the note is a tip, the word Tip is used to draw the reader’s atten‐
tion to it. Note that this differs from the type attribute on many other DITA elements. See “The type attrib‐
ute” on page 480 for detailed information on supported values and processing implications.

● fastpath

Fast Path
Defines the type of a note. For example, if the note is a tip, the word Tip is used to draw the reader’s atten‐
tion to it. Note that this differs from the type attribute on many other DITA elements. See “The type attrib‐
ute” on page 480 for detailed information on supported values and processing implications.

2.3 Note testing 4

2

Testing exam
ples

● restriction

Restriction
Defines the type of a note. For example, if the note is a tip, the word Tip is used to draw the reader’s atten‐
tion to it. Note that this differs from the type attribute on many other DITA elements. See “The type attrib‐
ute” on page 480 for detailed information on supported values and processing implications.

● important

Important
Defines the type of a note. For example, if the note is a tip, the word Tip is used to draw the reader’s atten‐
tion to it. Note that this differs from the type attribute on many other DITA elements. See “The type attrib‐
ute” on page 480 for detailed information on supported values and processing implications.

● remember

Remember
Defines the type of a note. For example, if the note is a tip, the word Tip is used to draw the reader’s atten‐
tion to it. Note that this differs from the type attribute on many other DITA elements. See “The type attrib‐
ute” on page 480 for detailed information on supported values and processing implications.

● attention

Attention
Defines the type of a note. For example, if the note is a tip, the word Tip is used to draw the reader’s atten‐
tion to it. Note that this differs from the type attribute on many other DITA elements. See “The type attrib‐
ute” on page 480 for detailed information on supported values and processing implications.

● caution

Caution
Defines the type of a note. For example, if the note is a tip, the word Tip is used to draw the reader’s atten‐
tion to it. Note that this differs from the type attribute on many other DITA elements. See “The type attrib‐
ute” on page 480 for detailed information on supported values and processing implications.

● notice

Notice
Defines the type of a note. For example, if the note is a tip, the word Tip is used to draw the reader’s atten‐
tion to it. Note that this differs from the type attribute on many other DITA elements. See “The type attrib‐
ute” on page 480 for detailed information on supported values and processing implications.

2.3 Note testing 5

2

Testing exam
ples

● danger

Danger
Defines the type of a note. For example, if the note is a tip, the word Tip is used to draw the reader’s atten‐
tion to it. Note that this differs from the type attribute on many other DITA elements. See “The type
attribute” on page 480 for detailed information on supported values and processing implications.

● warning

Warning
Defines the type of a note. For example, if the note is a tip, the word Tip is used to draw the reader’s atten‐
tion to it. Note that this differs from the type attribute on many other DITA elements. See “The type attrib‐
ute” on page 480 for detailed information on supported values and processing implications.

● other

Other
Defines the type of a note. For example, if the note is a tip, the word Tip is used to draw the reader’s atten‐
tion to it. Note that this differs from the type attribute on many other DITA elements. See “The type attrib‐
ute” on page 480 for detailed information on supported values and processing implications.

● other='Warning'

Warning
Defines the type of a note. For example, if the note is a tip, the word Tip is used to draw the reader’s atten‐
tion to it. Note that this differs from the type attribute on many other DITA elements. See “The type attrib‐
ute” on page 480 for detailed information on supported values and processing implications.

2.4 Bodyelements testing
The body elements support the most common types of content authoring for topics: paragraphs,
lists, phrases, figures, and other common types of exhibits in a document.

● ph element
The phrase (<ph>) element is used to organize content for reuse or conditional processing (for ex‐
ample, when part of a paragraph applies to a particular audience). It can be used by specializations
of DITA to create semantic markup for content at the phrase level, which then allows (but does not
require) specific processing or formatting.

This was not changed. This was updated. This was not.

● keyword element
The <keyword> element identifies a keyword or token, such as a single value from an enumerated
list, the name of a command or parameter, product name, or a lookup key for a message.

2.4 Bodyelements testing 6

2

Testing exam
ples

The assert pragma statement allows messages to be passed to the emulator, pre-compiler, etc..

● sl element
The simple list (<sl>) element contains a simple list of items of short, phrase-like content, such as in
documenting the materials in a kit or package. On output, the list should have no bullets, on the
assumption that each item is short enough to fit on one line, and needs no additional differentiation
from its neighbors.

Messages from the ags_open module are identical with messages from:

ags_read

ags_write

ags_close

sl/@compact='yes'

Messages from the ags_open module are identical with messages from:

ags_read
ags_write
ags_close

● dl element
A definition list (<dl>) is a list of terms and corresponding definitions. The term (<dt>) is usually
flush left. The description or definition (<dd>) is usually either indented and on the next line, or on
the same line to the right of the term. You can also provide an optional heading for the terms and
definitions, using the <dlhead> element, which contains header elements for those columns. The de‐
fault formatting for the <dlhead> looks like a table with a heading row.

Simple:

Bytes returned
The number of bytes of data returned.

Bytes available
The number of bytes of data available to be returned.

Handle
The returned handle value

Simple & @compact="yes":
Bytes returned

The number of bytes of data returned.
Bytes available

The number of bytes of data available to be returned.
Handle

The returned handle value

2.4 Bodyelements testing 7

2

Testing exam
ples

● foreign element
The <foreign> element is an open extension that allows information architects to incorporate exist‐
ing standard vocabularies for non-textual content. like MathML and SVG, as inline objects. If <for‐
eign> contains more than one alternative content element, they will all be processed. Specialization
of <foreign> should be implemented as a domain, but for those looking for more control over the
content can implement foreign vocabulary as an element specialization.

What’s EIM? .

● pre element
The preformatted element (<pre>) preserves line breaks and spaces entered manually by the author
in the content of the element, and also presents the content in a monospaced type font (depending
on your output formatting processor). Do not use <pre> when a more semantically specific element
is appropriate, such as <codeblock>.

No parameter

MEMO: programming team fun day
Remember to bring a kite, softball glove, or other favorite
outdoor accessory to tomorrow’s fun day outing at Zilker Park.
Volunteers needed for the dunking booth.
frame="topbot" scale="90"

MEMO: programming team fun day
Remember to bring a kite, softball glove, or other favorite
outdoor accessory to tomorrow’s fun day outing at Zilker Park.
Volunteers needed for the dunking booth.

frame="all" scale="90"

MEMO: programming team fun day
Remember to bring a kite, softball glove, or other favorite
outdoor accessory to tomorrow’s fun day outing at Zilker Park.
Volunteers needed for the dunking booth.

● lines element
The <lines> element may be used to represent dialogs, lists, text fragments, and so forth. The
<lines> element is similar to <pre> in that hard line breaks are preserved, but the font style is not set
to monospace, and extra spaces inside the lines are not preserved.

On a trip to the beach, don’t forget:

suntan lotion
sunglasses
a beach towel

frame="all"
On a trip to the beach, don’t forget:

2.4 Bodyelements testing 8

2

Testing exam
ples

suntan lotion
sunglasses
a beach towel

● cite element
The <cite> element is used when you need a bibliographic citation that refers to a book or article. It
specifically identifies the title of the resource.

The online article Specialization in the Darwin Information Typing Architecture provides a detailed
explanation of how to define new topic types.

● lq element
The long quote (<lq>) element indicates content quoted from another source. Use the quote element
<q> for short, inline quotations, and long quote <lq> for quotations that are too long for inline use,
following normal guidelines for quoting other sources. You can store a URL to the source of the
quotation in the href attribute; the href value may point to a DITA topic.

This is the first line of the address that Abraham Lincoln delivered on November 19, 1863 for the
dedication of the cemetery at Gettysburg, Pennsylvania.

Four score and seven years ago our fathers brought forth on this continent a new nation,
conceived in liberty, and dedicated to the proposition that all men are created equal. Four
score and seven years ago our fathers brought forth on this continent a new nation, con‐
ceived in liberty, and dedicated to the proposition that all men are created equal.

Gettysburg, Pennsylvania November 19, 1863

Another lq

This is the test of properties table with no @relcolwidth.
no @relcolwidth

● q element
A quotation element (<q>) indicates content quoted from another source. This element is used for
short quotes which are displayed inline. Use the long quote element <lq>) for quotations that should
be set off from the surrounding text.

George said, “Disengage the power supply before servicing the unit.”

2.5 Miscellaneous elements testing
Most DITA elements represent discourse, or information that is placed exactly as entered. However,
there are also types of information that are usually authored in context with a thought or issue, but
upon output, the content might be relocated, suppressed, or used only for purposes such as inline
annotations for drafts. These elements include footnotes, index entries, draft comments, and special
cleanup containers that can hold migrated data that still needs a writer’s intervention to get into the
right place.

2.5 Miscellaneous elements testing 9

2

Testing exam
ples

http://showcase.netins.net/web/creative/lincoln/speeches/gettysburg.htm

● draft-comment
The <draft-comment> element allows simple review and discussion of topic contents within the
marked-up content. Use the <draft-comment> element to ask a question or make a comment that
you would like others to review. To indicate the source of the draft comment or the status of the
comment, use the author, time or disposition attributes.

Processing systems should provide a run-time flag or parameter
[DRAFT-COMMENT Author:toshi Time:Sep 8, 2009 Status:accepted]
This parameter is implemented as "PRM_OUT_DRAFT_COMMENT".
to cause the content of this element to be specially displayed for draft output only. By default, it is
stripped out to prevent publishing internal comments by mistake.
[DRAFT-COMMENT Author:EBP]
Where’s the usage information for this section?

● index-base
The <index-base> element allows indexing extensions to be added by specializing off this element.
It does not in itself have any meaning and should be ignored in processing.

The <index-base> element can only exist as a child of an <indexterm> element. This characteristic
makes it the appropriate element to specialize to add indexing extensions. Specifically, the index-
see , index-see-also, and index-sort-as elements only make sense as children of <indexterm> and so
are specializations of <index-base>. Those elements are all part of the indexing domain, which is
new for DITA 1.1.

● tm
The trademark (<tm>) element in DITA is used to markup and identify a term or phrase that is
trademarked. Trademarks include registered trademarks, service marks, slogans and logos.

The business rules for indicating and displaying trademarks may differ from company to company
and may be enforced by authoring policy and by specific processing.

The advantages of using DB2® Universal Database™ are well known.

Hyper Gear Corporation offers Worldwide Techinical Assistant ServiceSM for their products.

● data-about & data
The <data-about> element identifies the subject of a property when the subject isn't associated with
the context in which the property is specified. The property itself is expressed by the <data> ele‐
ment. The <data-about> element handles exception cases where a property must be expressed some‐
where other than inside the actual subject of the property. The <data-about> element is particularly
useful as a basis for specialization in combination with the <data> element.

The <data> element represents a property within a DITA topic or map. While the <data> element
can be used directly to capture properties, it is particularly useful as a basis for specialization. De‐
fault processing treats the property values as an unknown kind of metadata, but custom processing
can match the name attribute or specialized element to format properties as sidebars or other adorn‐
ments or to harvest properties for automated processing.

2.5 Miscellaneous elements testing 10

2

Testing exam
ples

2.6 Specialization elements testing
Several DITA elements exist either for architectural reasons or for support of specialized markup
yet to be designed. Although there is little need to use these elements unless you are directed to,
some of them, such as <state>, can be used if your content makes use of these semantic distinctions.
A discussion of signals on a gate of an integrated logic circuit, for example, might use the state ele‐
ment to represent either on or off conditions of that gate.

● itemgroup
The <itemgroup> element is reserved for use in specializations of DITA. As a container element, it
can be used to sub-divide or organize elements that occur inside a list item, definition, or parameter
definition.

1. First point of a list.

2. Second point of a list.

related discourse

● required-cleanup
A <reqired-cleanup> element is used as a placeholder for migrated elements that cannot be appro‐
priately tagged without manual intervention. As the element name implies, the intent for authors is
to clean up the contained material and eventually get rid of the <reqired-cleanup> element. Authors
should not insert this element into documents.

Note
Because the content of <reqired-cleanup> is not considered to be verified data, DITA processors are re‐
quired to strip this element from output by default. A runtime flag may be provided to allow a draft
view of migrated content in context.

[REQUIRED-CLEANUP Remap:center]
Some original content migrated from a <center> tag.

● state
The <state> element specifies a name/value pair whenever it is necessary to represent a named state
that has a variable value. The element is primarily intended for use in specializations to represent
specific states (like logic circuit states, chemical reaction states, airplane instrumentation states, and
so forth).

1. Verify the presence of an "on" or high condition at the input gate (ie, inflag=high)

● term
The <term> element identifies words that may have or require extended definitions or explanations.
In future development of DITA, for example, terms might provide associative linking to matching
glossary entries.

The reference implementation of DITA represents the standard, “fallback” behaviors intended for
DITA elements.

2.6 Specialization elements testing 11

2

Testing exam
ples

● boolean
The <boolean> element is used to express one of two opposite values, such as yes or no, on or off,
true or false, high or low, and so forth. The element itself is empty; the value of the element is stor‐
ed in its state attribute, and the semantic associated with the value is typically in a specialized name
derived from this element.

Note
This element is deprecated. It is functionally equivalent to <state value=″yes|no″/>, which is recommended
as its replacement in all cases.

She said "yes" when I asked her to marry me!

● glossentry & no-topic-nesting
Following is the glossentry & no-topic-nesting test data.

2.7 Typographic elements testing
The typographic elements are used to highlight text with styles (such as bold, italic, and mono‐
space). Never use these elements when a semantically specific element is available. These elements
are not intended for use by specializers, and are intended solely for use by authors when no semanti‐
cally appropriate element is available and a formatting effect is required.

● b element
The bold () element is used to apply bold highlighting to the content of the element. Use this
element only when there is not some other more proper element. For example, for specific items
such as GUI controls, use the <uicontrol> element. This element is part of the DITA highlighting
domain.

STOP! This is very important!

● i element
The italic (<i>) element is used to apply italic highlighting to the content of the element. Use this
element only when there is not some other more proper element. For example, for specific items
such as GUI controls, use the <uicontrol> element. This element is part of the DITA highlighting
domain.

Unplug the unit before placing the metal screwdriver against the terminal screw.

● u element
The underline (<u>) element is used to apply underline highlighting to the content of the element.
Use this element only when there is not some other more proper element. For example, for specific
items such as GUI controls, use the <uicontrol> element. This element is part of the DITA high‐
lighting domain.

Beware: overuse of highlighting is sometimes known as font-itis!

2.7 Typographic elements testing 12

2

Testing exam
ples

● tt element
The teletype (<tt>) element is used to apply monospaced highlighting to the content of the element.
Use this element only when there is not some other more proper element. For example, for specific
items such as GUI controls, use the <uicontrol> element. This element is part of the DITA high‐
lighting domain.

Make sure that the screen displays File successfully created before proceeding to the next
stage of the task.

● sup/sub element
The superscript (<sup>) element indicates that text should be superscripted, or vertically raised in
relationship to the surrounding text. Superscripts are usually a smaller font than the surrounding
text. Use this element only when there is not some other more proper tag. This element is part of the
DITA highlighting domain.

A subscript (<sub>) indicates that text should be subscripted, or placed lower in relationship to the
surrounding text. Subscripted text is often a smaller font than the surrounding text. Formatting may
vary depending on your output process. This element is part of the DITA highlighting domain.

The power produced by the electrohydraulic dam was 1010 more than the older electric plant. The
difference was H2O.

2.8 Programming elements testing
The programming domains elements are used to define the syntax and to give examples of program‐
ming languages.

● apiname
The <apiname> element provides the name of an application programming interface (API) such as a
Java class name or method name. This element is part of the DITA programming domain, a special
set of DITA elements designed to document programming tasks, concepts and reference informa‐
tion.

Use the document.write method to create text output in the dynamically constructed view.

● codeblock
The <codeblock> element represents lines of program code. Like the <pre> element, content of this
element has preserved line endings and is output in a monospaced font. This element is part of the
DITA programming domain, a special set of DITA elements designed to document programming
tasks, concepts and reference information.

/* a long sample program */
Do forever
Say "Hello, World"
End

Following is the codeblock template. scale="90" frame="all"

2.8 Programming elements testing 13

2

Testing exam
ples

<!--
 function: codeblock template
 param: prmTopicRef
 return: fo:block
 note:
 -->
<xsl:template match="*[contains(@class, ' pr-d/codeblock ')]" priority="2">
 <xsl:param name="prmTopicRef" required="yes" as="element()?"/>
 <xsl:param name="prmNeedId" required="yes" as="xs:boolean"/>

 <fo:block>
 <xsl:copy-of select="ahf:getAttributeSet('atsCodeBlock')"/>
 <xsl:copy-of select="ahf:getDisplayAtts(.,'atsCodeBlock')"/>
 <xsl:copy-of select="ahf:getUnivAtts(.,$prmTopicRef,$prmNeedId)"/>
 <xsl:apply-templates>
 <xsl:with-param name="prmTopicRef" select="$prmTopicRef"/>
 <xsl:with-param name="prmNeedId" select="$prmNeedId"/>
 </xsl:apply-templates>
 </fo:block>
</xsl:template>

● codeph
The code phrase (<codeph>) element represents a snippet of code within the main flow of text. The
code phrase is displayed in a monospaced font for emphasis. This element is part of the DITA pro‐
gramming domain, a special set of DITA elements designed to document programming tasks, con‐
cepts and reference information.

The second line of the sample program code, Do forever, represents the start of a loop construct.

● option
The <option> element describes an option that can be used to modify a command (or something
else, like a configuration). This element is part of the DITA programming domain, a special set of
DITA elements designed to document programming tasks, concepts and reference information.

The --valid option of xmllint command enables to validate the document in addition to stand‐
ard well-formed check.

● parmname
When referencing the name of an application programming interface parameter within the text flow
of your topic, use the parameter name (<parmname>) element to markup the parameter. This ele‐
ment is part of the DITA programming domain, a special set of DITA elements designed to docu‐
ment programming tasks, concepts and reference information.

Use the /env parameter of the config command to update the field value.

● parml
The parameter list (<parml>) element contains a list of terms and definitions that describes the pa‐
rameters in an application programming interface. This is a special kind of definition list that is de‐
signed for documenting programming parameters. This element is part of the DITA programming
domain, a special set of DITA elements designed to document programming tasks, concepts and ref‐
erence information.

2.8 Programming elements testing 14

2

Testing exam
ples

This code example is a basic method signature:

returnType methodName(pList1, pList2) {

where

pList1
is the first variable declaration passed to methodName

pList2
is the second variable declaration passed to methodName

Table 2-1 parml in table sample

parml

This code example is a basic method signature:

returnType methodName(pList1, pList2) {

where
pList1

is the first variable declaration passed to method‐
Name

pList2
is the second variable declaration passed to method‐
Name

This code example is a basic method signature:

returnType methodName(pList1, pList2) {

where
pList1

is the first variable declaration passed to method‐
Name

pList2
is the second variable declaration passed to method‐
Name

● synph
The syntax phrase (<synph>) element is a container for syntax definition elements. It is used when a
complete syntax diagram is not needed, but some of the syntax elements, such as kwd, oper, delim,
are used within the text flow of the topic content. This element is part of the DITA programming
domain, a special set of DITA elements designed to document programming tasks, concepts and ref‐
erence information.
[DRAFT-COMMENT Author:toshi]
Stylesheet does not apply special formatting for synph.

Synph sample: format volumename

● syntaxdiagram
This section contains sample data from Yahoo! dita-users group file section.

The syntax diagram (<syntaxdiagram>) element is the main container for all the syntax elements
that make up a syntax definition. The syntax diagram represents the syntax of a statement from a
computer language, or a command, function call or programming language statement. Traditionally,
the syntax diagram is formatted with “railroad tracks” that connect the units of the syntax together,
but this presentation may differ depending on the output media. The syntax diagram element is part
of the DITA programming domain, a special set of DITA elements designed to document program‐
ming tasks, concepts and reference information.

Example from syntaxdiagram

COPYF

2.8 Programming elements testing 15

2

Testing exam
ples

input-filename*INFILE
output-filename*OUTFILE
{input-filename | *INFILE}
{output-filename | *OUTFILE}

Figure 2-1 CopyFile

Example from "Table-based rendering of DITA Syntax Diagram markup"

ERASE {FORM | PROC | QUERY | TABLE} name [(CONFIRM= {YES | NO})]

Figure 2-2 SAA CPI Database Reference

Example from "fragref"

COPYF
input-filename*INFILE
output-filename*OUTFILE
<Overlay>
{input-filename | *INFILE}
{output-filename | *OUTFILE}

Overlay

{*OVERLAP | *Prompt}

Figure 2-3 CopyFile

Example from "Combining groups"

{ {http | https | ftp | file} :// [user@] host [:port] / | [/] } path

Figure 2-4 URL syntax

Example from "Optional elements"

Optional importance
uname [-a]

With empty sequence in groupchoice

uname { | -a}

Figure 2-5 uname can take the -a option

Example from "Default elements"

uname-s

Figure 2-6 uname assumes the -s option by default

Example from "importance on groupchoice"

uname [{-a | -m | -n | -p | -s | -r | -v}]

Figure 2-7 uname synopsis

Example from "Repetition using empty repsep element"

2.8 Programming elements testing 16

2

Testing exam
ples

0x {digit | letter-a-to-f | letter-A-to-F} ({digit | letter-a-to-f | letter-A-to-F}) *

Figure 2-8 Hexadecimal literal

Example from "Repetition using non-empty repsep element"

number (, number) *

Figure 2-9 Comma-separated list of numbers

Example from "repsep is stateless"

A [A [A]]

Figure 2-10 Repeating a group A exactly 1 to 3 times

{1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9}
[{0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9} ({0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9}) *]

Figure 2-11 Positive decimal integer

Example from "Importance on repsep"

adjective (, adjective) * noun

Figure 2-12 Applying adjectives to a noun

Example from "Repetition of optional groups"

Optional group, itself containing repsep
[A (, A) *]

Each repeated A is optional; commas can be adjacent
[A] (, [A]) *

Commas cannot be adjacent; entire production may be empty
[A (, A) *]

Additional sample: repetation is required.

A (, A) +

Figure 2-13 How repsep in combination with importance is disambiguated

Example from "Complex repetition separators"

Repetition with simple separator B
A (B A) *

Repetition with complex separator B
AB (AB) * A

Figure 2-14 Refactoring repsep

Example from "Fragments"

2.8 Programming elements testing 17

2

Testing exam
ples

<IPv4-range integer> . <IPv4-range integer> . <IPv4-range integer> . <IPv4-range integer>
IPv4-range integer
IPv4-range integer Group Choice

{ <decimal digit> | {1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9} <decimal digit> | 1 <decimal digit> <decimal
digit> | 2 {0 | 1 | 2 | 3 | 4} <decimal digit> | 25 {0 | 1 | 2 | 3 | 4 | 5} }

decimal digit

{0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9}

Figure 2-15 IPV4 address in dot form

Example from "Notes"

Pattern 1
[- *1] {0 *2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9} ({0 *2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9}) * *3

Pattern 2

[{+ *4 | - *4}] digit (digit) *
*1 Minus sign must not be followed by zero digit.
*2 Zero must not be chosen for the first digit, unless it is the only digit.
*3 Thousands separator of , or . may occur every three digits.
*4 Sign must not be followed by zero.

Figure 2-16 Decimal integer

Example from "Notes": using @callout

Pattern 1
[-#a] {0#b | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9} ({0#b | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9}) * #c

Pattern 2

[{+ *1 | - *1}] digit (digit) *
#a Minus sign must not be followed by zero digit.
#b Zero must not be chosen for the first digit, unless it is the only digit.
#c Thousands separator of , or . may occur every three digits.
*1 Sign must not be followed by zero.

Figure 2-17 Decimal integer

2.9 Software elements testing
The software domain elements are used to describe the operation of a software program.

● msgph
The message phrase (<msgph>) element contains the text content of a message produced by an ap‐
plication or program. It can also contain the variable name (varname) element to illustrate where
variable text content can occur in the message.

A server log entry of I:0 is equivalent to the text message, informational: successful.

2.9 Software elements testing 18

2

Testing exam
ples

● msgblock
The message block (<msgblock>) element contains a multi-line message or set of messages. The
message block can contain multiple message numbers and message descriptions, each enclosed in a
<msgnum> and <msgph> element. It can also contain the message content directly.

A sequence of failed password attempts generates the following characteristic message stream:

I:0
S:3
I:1
S:3
I:1
S:4
S:99 (lockup)
msgblock frame="all" scale="90"

check-arg:
[mkdir] Created dir: D:\DITA-OT1.5-M19\temp\temp20090917161047500
[echo] ***
[echo] * basedir = D:\DITA-OT1.5-M19
[echo] * dita.dir = D:\DITA-OT1.5-M19
[echo] * input = samples/ud/bookmap_ud.ditamap
[echo] * transtype = pdf
[echo] * tempdir = temp\temp20090917161047500
[echo] * outputdir = out
[echo] * extname = .xml
[echo] * clean.temp = no
[echo] * xslt.parser = SAXON
[echo] ***

● msgnum
The message number (<msgnum>) element contains the number of a message produced by an appli‐
cation or program.

A server log entry of I:0 is equivalent to the text message, informational: successful.

● cmdname
The command name (<cmdname>) element specifies the name of a command when it is part of a
software discussion.

After the DOS command prompt (C:\>) has displayed, change directory by entering CD command.
You should change current directory to the DITA-OT folder.

● varname
The variable name (<varname>) element defines a variable that must be supplied to a software ap‐
plication. The variable name element is very similar to the variable (var) element, but variable name
is used outside of syntax diagrams.

varname sample

install-dir\projects\working\project-dir\source\filename.java

2.9 Software elements testing 19

2

Testing exam
ples

● filepath
The <filepath> element indicates the name and optionally the location of a referenced file by speci‐
fying the directory containing the file, and other directories that may precede it in the system hierar‐
chy.

Uncompress the gbbrsh.gz file to the /usr directory. Ensure that the /usr/tools/data.cfg
path is listed in the execution path system variable.

● userinput/systemoutput
The user input (<userinput>) element represens the text a user should input in response to a program
or system prompt.

The system output (<systemoutput>) element represents computer output or responses to a com‐
mand or situation. A generalized element, it represents any kind of output from the computer, so the
author may wish to choose more specific markup, such as msgph, for messages from the applica‐
tion.

After you type mealplan dinner, the meal planning program will print a For what day? mes‐
sage. Reply by typing the day of the week for which you want a meal plan, for example, Thursday.

2.10 Utility elements testing
The utilities domain elements represent common features of a language that may not necessarily be
semantic, such as image maps.

● imgmap
The imagemap element supports the basic functionality of the HTML “client-side” image map
markup. Imagemap allows you to designate a linkable area or region over an image, allowing a link
in that region to display another topic.

2.10 Utility elements testing 20

2

Testing exam
ples

2.11 Fig and table testing
2.11.1 Fig testing
The figure (<fig>) element is a display context (sometimes called an “exhibit”) with an optional ti‐
tle for a wide variety of content. Most commonly, the figure element contains an image element (a
graphic or artwork), but it can contain several kinds of text objects as well. A title is placed inside
the figure element to provide a caption to describe the content.

● GIF sample
This is simple GIF sample

2.11 Fig and table testing 21

2

Testing exam
ples

The <desc> element contains the description of the current element. A description should provide more information
than the title. This is its behavior in fig/table/linklist, for example. In xref/link, it provides a description of the tar‐
get; processors that support it may choose to display this as hover help. In object, it contains alternate content for
use when in contexts that cannot display the object.

Figure 2-18 Flower

● %display-atts; sample

Figure 2-19 Flower frame='all'

Figure 2-20 Flower frame='topbot'

● image attribute sample

Figure 2-21 Flower width="3cm"

Figure 2-22 Flower height="5cm"

2.11 Fig and table testing 22

2

Testing exam
ples

Figure 2-23 Flower width="3cm", height="5cm"

Figure 2-24 Flower scale="200"

Figure 2-25 Flower placement="break"&align="center"

Figure 2-26 Flower placement="break"&align="rifht"

Figure 2-27 Flower placement="break"&align="left"

Figure 2-28 Flower placement="break"&align="current"

2.11 Fig and table testing 23

2

Testing exam
ples

● Jpeg sample

Figure 2-29 Dragon

● figgroup sample from dita1.2

These elementsare grouped togetherfor some purpose
First group
name="MetaItem" value="13"name="MetaThing" value="31"These elementsare grouped with
associated metadata
Second group

Figure 2-30 Sample complex figure

These elementsare grouped togetherfor some purpose
First group
name="MetaItem" value="13"name="MetaThing" value="31"These elementsare grouped with
associated metadata

Figure 2-31 Sample complex figure (2)

These elementsare grouped togetherfor some purpose
First group
name="MetaItem" value="13"name="MetaThing" value="31"These elementsare grouped with as‐
sociated metadata
Second group

Figure 2-32 Sample complex figure (3): no frame

2.11 Fig and table testing 24

2

Testing exam
ples

■ Fig testing in nested topic

● Figure in the nested topic

Figure 2-33 Flower

■ Image testing

● Image that have @longdescref

Figure 2-34 Link to Wikipedia

2.11.2 Table testing
● Table testing
The <table> element organizes arbitrarily complex relationships of tabular information. This stand‐
ard table markup allows column or row spanning and table captions or descriptions. An optional
title allowed inside the table element provides a caption to describe the table.

See simpletable for a simplified table model that can be specialized to represent more regular rela‐
tionships of data.

The DITA table is based on the OASIS Exchange Table Model, augmented with DITA attributes
which enable it for specialization, conref, and other DITA processing. In addition, the table includes
a desc element, which enables table description that is parallel with figure description.

In DITA tables, in place of the expanse attribute used by other DITA elements, the pgwide attribute
is used in order to conform with the OASIS Exchange Table Model. This attribute has a similar se‐
mantic (1=page width; 0=resize to galley or column).

Note
The scale attribute represents a stylistic markup property that is maintained for now in tables for legacy
purposes. External stylesheets should enable less dependency on this attribute. You should use the scale
attribute judiciously in your topics.

2.11 Fig and table testing 25

2

Testing exam
ples

http://www.wikipedia.org/

Table 2-2 Normal Table Sample
This table shows the relationships of table items between Microsoft Word, DocBook and XSL-FO.

Item Word DocBook XSL-FO Notes

Table Style w:tbl/w:tblPr/
w:tblStyle/@w:val

table@style - -

Table width w:tbl/w:tblPr/w:tblw table/@pgwide(?) fo:table/@width -

Column width w:tblGrid/w:gridCol/
@w:w

tgroup/colspec/@col‐
width

fo:table-column/
@column-width

-

Header row w:tr/w:trPr/
@w:tblHeader

tgroup/thead fo:table-header -

Body row - tgroup/tbody fo:table-body -

Table 2-3 Normal Table Sample with scale="140" frame="none"

Item Word DocBook XSL-FO Notes
Table Style w:tbl/w:tblPr/

w:tblStyle/
@w:val

table@style - -

Table width w:tbl/w:tblPr/
w:tblw

table/
@pgwide(?)

fo:table/
@width

-

Column width w:tblGrid/
w:gridCol/
@w:w

tgroup/colspec/
@colwidth

fo:table-col‐
umn/@col‐
umn-width

-

Header row w:tr/w:trPr/
@w:tblHeader

tgroup/thead fo:table-header -

Body row - tgroup/tbody fo:table-body -

Table 2-4 Normal Table without theader

Table Style w:tbl/w:tblPr/
w:tblStyle/@w:val

table@style - -

Table width w:tbl/w:tblPr/w:tblw table/@pgwide(?) fo:table/@width -

Column width w:tblGrid/w:gridCol/
@w:w

tgroup/colspec/@col‐
width

fo:table-column/
@column-width

-

Header row w:tr/w:trPr/
@w:tblHeader

tgroup/thead fo:table-header -

Body row - tgroup/tbody fo:table-body -

2.11 Fig and table testing 26

2

Testing exam
ples

Table 2-5 Normal Table Sample with rowheader='firstcol'

Item Word DocBook XSL-FO Notes

Table Style w:tbl/w:tblPr/
w:tblStyle/@w:val

table@style - -

Table width w:tbl/w:tblPr/w:tblw table/@pgwide(?) fo:table/@width -

Column width w:tblGrid/w:gridCol/
@w:w

tgroup/colspec/@col‐
width

fo:table-column/
@column-width

-

Header row w:tr/w:trPr/
@w:tblHeader

tgroup/thead fo:table-header -

Body row - tgroup/tbody fo:table-body -

Table 2-6 Normal Table with rowsep="0" colsep="0"

Item Word DocBook XSL-FO Notes

Table Style w:tbl/w:tblPr/
w:tblStyle/@w:val

table@style - -

Table width w:tbl/w:tblPr/w:tblw table/@pgwide(?) fo:table/@width -

Column width w:tblGrid/w:gridCol/
@w:w

tgroup/colspec/@col‐
width

fo:table-column/
@column-width

-

Header row w:tr/w:trPr/
@w:tblHeader

tgroup/thead fo:table-header -

Body row - tgroup/tbody fo:table-body -

Table 2-7 Normal Table with pgwide="1"

Item Word DocBook XSL-FO Notes

Table Style w:tbl/w:tblPr/
w:tblStyle/@w:val

table@style - -

Table width w:tbl/w:tblPr/w:tblw table/@pgwide(?) fo:table/@width -

Column width w:tblGrid/w:gridCol/
@w:w

tgroup/colspec/@col‐
width

fo:table-column/
@column-width

-

Header row w:tr/w:trPr/
@w:tblHeader

tgroup/thead fo:table-header -

Body row - tgroup/tbody fo:table-body -

Table 2-8 dl in table sample

Name Description Data Type Default Val‐
ue

Required?

frame Specifies which portion of a border
should surround the element. Allowable
values are:

top
Draw a line before the element

(top | bottom | top‐
bot | all sides | none
| -dita-use-conref-
target)

#IMPLIED No

2.11 Fig and table testing 27

2

Testing exam
ples

Name Description Data Type Default Val‐
ue

Required?

bottom
Draw a line after the element

topbot
Draw a line both before and after the
element

all
Draw a box around the element

sides
Draw a line at each side of the element

none
Don't draw any lines around this ele‐
ment

-dita-use-conref-target
See "using the -dita-use-conref-target
value" for more information.

Some DITA processors or output for‐
mats may not able to support all values.

colsep Column separator. A value of 0 indicates
no separators; 1 indicates separators.

NMTOKEN #IMPLIED No

rowsep Row separator. A value of 0 indicates no
separators; 1 indicates separators.

NMTOKEN #IMPLIED No

pgwide Determines the horizontal placement of
the element. Supported values are 1 and
0, although these are not mandated by
the DTD.
For PDF, the value ″1″ places the ele‐
ment on the left page margin; ″0″ aligns
the element with the left margin of the
current text line and takes indention into
account.
For XHTML, the table surrounds the ta‐
ble data. Either value sets the table width
to 100%.

NMTOKEN #IMPLIED No

rowheader This attribute specifies whether the con‐
tent of the first column in a table con‐
tains row headings. In the same way that
a column header introduces a table col‐
umn, the row header introduces the table
row. This attribute makes tables whose
first column contains row headings more
readable on output. Allowable values
are:

firstcol
The first column contains the row
headings.

(firstCol | norow‐
header| -dita-use-
conreftarget)

#IMPLIED No

2.11 Fig and table testing 28

2

Testing exam
ples

Name Description Data Type Default Val‐
ue

Required?

norowheader
Indicates that no column contains row
headings. This is the processing de‐
fault.

-dita-use-conref-target
See “Using the -dita-use-conref-target
value” for more information.

Table 2-9 sl in table sample

sl

Messages from the ags_open module are identical with messages from:
ags_read
ags_write
ags_close

sl/@compact='yes'
Messages from the ags_open module are identical with messages from:

ags_read
ags_write
ags_close

Table 2-10 ol in table sample

ol

Here are the colors of the rainbow in order of appearance from top to bottom:
1. Red

a. Blood red
b. Thin red

2. Orange
a. Blood orange
b. Thin orange

3. Yellow
4. Green
5. Blue
6. Indigo
7. Violet
8. Red
9. Orange
10. Yellow
11. Green
12. Blue
13. Indigo
14. Violet

2.11 Fig and table testing 29

2

Testing exam
ples

Table 2-11 ul in table sample

ul

Here are the colors of the rainbow in order of appearance from top to bottom:
• Red

• Blood red
• Thin red

• Orange
• Blood orange

1. Blood orage #1
2. Blood orage #2
3. Blood orage #3

a. Blood orage #3-1
b. Blood orage #3-2
c. Blood orage #3-3

i. Blood orage #3-3-1
ii. Blood orage #3-3-2
iii. Blood orage #3-3-3

• Thin orange
• Yellow
• Green
• Blue
• Indigo
• Violet
• Red

1. Blood red
2. Thin red

• Orange
1. Blood orange
2. Thin orange

• Yellow
• Green
• Blue
• Indigo
• Violet

Stylesheet user can customize number formats by modifying config/[langage-code]_style.xml.

2.11 Fig and table testing 30

2

Testing exam
ples

Table 2-12 fig in table sample

fig

This is the tiff image of book&bird.

Figure 2-35 Book & bird

Table 2-13 Valign sample

aligned top

aligned middle

aligned bottom

Table 2-14 Cell span sample

horizontally spanned

vertically spanned

vertically spanned

horizontally spanned

2.11 Fig and table testing 31

2

Testing exam
ples

Table 2-15 Table align sample (No cell rule)

NO.1 NO.2 NO.3

a1 b1 1.0

a2 0.0001

a3 111.01

12.34

Table 2-16 Table align sample

NO.1 NO.2 NO.3

a1 b1 1.0

a2 0.0001

a3 111.01

12.34

● Simple table testing
The <simpletable> element is used for tables that are regular in structure and do not need a caption.
Choose the simple table element when you want to show information in regular rows and columns.
For example, multi-column tabular data such as phone directory listings or parts lists are good can‐
didates for simpletable. Another good use of simpletable is for information that seems to beg for a
″three-part definition list″—just use the keycol attribute to indicate which column represents the
″key″ or term-like column of your structure.

The keycol attribute is not specified.The styleshhet will apply font-weight="bold" & background-
color="rgb(217,217,217)" to the header row.

Type style Elements used

Bold b

Italic i

Underlined u

keycol="1": The styleshhet will apply font-weight="bold" & background-color="rgb(217,217,217)"
to the column number 1. Then the first row's background-color will become white.

Type style Elements used

Bold b

Italic i

Underlined u

keycol="2": The styleshhet will apply font-weight="bold" & background-color="rgb(217,217,217)"
to the column number 2. Then the first row's background-color will become white.

Type style Elements used

Bold b

2.11 Fig and table testing 32

2

Testing exam
ples

Type style Elements used

Italic i

Underlined u

scale="150": The styleshhet will apply font-size 1.5 * 9pt for this table.

Type style Elements used
Bold b
Italic i
Underlined u

relcolwidth="90* 150*": The styleshhet will apply fixed table layout and width will be 100%. The
column width will be 37.5% and 62.5%.

Type style Elements used

Bold b

Italic i

Underlined u

frame="topbot": The styleshhet will apply top/bottom border for table

Type style Elements used FO description

Bold b font-weight="bold"

Italic i font-style="italic"

Underlined u text-decoration="underline"

frame="none": The styleshhet will remove all surrounding border from table

Type style Elements used FO description

Bold b font-weight="bold"

Italic i font-style="italic"

Underlined u text-decoration="underline"

expanse="page": The styleshhet will apply start-indent="0mm", end-indent="0mm" to surrounding
fo:block and the width of table will reach to page margin.

Type style Elements used FO description

Bold b font-weight="bold"

Italic i font-style="italic"

Underlined u text-decoration="underline"

2.11 Fig and table testing 33

2

Testing exam
ples

■ Additional table testing in nested topic
Table 2-17 Normal Table Sample (Again)

Item Word DocBook XSL-FO Notes

Table Style w:tbl/w:tblPr/
w:tblStyle/@w:val

table@style - -

Table width w:tbl/w:tblPr/w:tblw table/@pgwide(?) fo:table/@width -

Column width w:tblGrid/w:gridCol/
@w:w

tgroup/colspec/@col‐
width

fo:table-column/
@column-width

-

Header row w:tr/w:trPr/
@w:tblHeader

tgroup/thead fo:table-header -

Body row - tgroup/tbody fo:table-body -

2.11.3 Properties
● No @relcolwidth

Visual Element Value Implication

color red depicts anger

green depicts permission

● @relcolwidth="1* 2* 3*"

Visual Element Value Implication

color red depicts anger

green depicts permission

● scale="200"

Visual Element Value Implication
color red depicts anger
green depicts permission
● keycol="1"

Visual Element Value Implication

color red depicts anger

green depicts permission

2.11 Fig and table testing 34

2

Testing exam
ples

● keycol="2"

Visual Element Value Implication

color red depicts anger

green depicts permission

● frame="none"

Visual Element Value Implication

color red depicts anger

green depicts permission

● expanse="page"

Visual Element Value Implication

color red depicts anger

green depicts permission

2.11 Fig and table testing 35

2

Testing exam
ples

Chapter 3 Logging in to DB3 Client
You must log in to the DB3 Client to access any DB3 functions.

The system administrator must set up a DB3 account for you to use.

DB3 supports two types of authentication: Windows Authentication and DB3 Authentication. Use
the appropriate type, depending on the type of user account you have. Contact your DB3 system
administrator if you are not sure. If you are logging in to DB3 Client for the first time after a new
installation of DB3, use DB3 Authentication.

1. From your desktop, select [Start]>[DB3]>[DB3 Manager] from the menu.

The following DB3 - Login dialog box appears.

The next step explains how to authenticate your login.

2. Authenticate your login in one of the following ways:

• Windows authentication: Select [Windows Authentication] from the Authentication drop-
down list. Both the User name and Password text boxes become greyed out, with the text
box User name automatically displaying your Windows login name. You do not need to
edit the contents.

Tip
If your windows user account belongs to more then one DB3 group, a dialog appears, asking you
to select a DB3 group. In this case, select the DB3 group of your choice, and click [OK].

• DB3 Authentication:

a. Select [DB3 Authentication] from the [Authentication] drop-down list.

b. Enter your user name and password.

If you are logging in for the first time after a new installation of DB3, you can use one
of the following default user accounts. Log in using the ADMINISTRATOR account
if you require a full set of read and write permissions for all features.

Type "edit" after the command line prompt and press Enter. The following editing interface
will be displayed.

 File Edit Search View Options Help
 +--------------------------------- UNTITLED1 ----------------------------------+
 ¦ ¦
 ¦ ¦
 ¦ ¦
 ¦ ¦
 ¦ Line:1 Col:1 F1=Help ¦
 +--+

 File Edit Search View Options Help
 +--------------------------------- UNTITLED1 ----------------------------------+
 ¦ ¦
 ¦ ¦
 ¦ ¦
 ¦ ¦
 ¦ Line:1 Col:1 F1=Help ¦
 +--+

Chapter 3 Logging in to DB3 Client 36

3

Logging in to D
B3 Client

If DB3 Client is configured to use multiple server sets, the dialog box shows an additional
Server set list. In this case, select the server set you want to connect to from the list.

3. Click [OK]

For example, OK

Tip
If the number of history records stored in DB3 Server exceeds 9999999, a dialog box appears, asking
you to optimize the database on DB3 server. Click [OK] to close the dialog box. If you do not have
adminstrative rights, contact the DB3 administrator.

DB3 Client opens.

4. Then this

a. which is done by doing this

b. and then this.

Do something Or Else this
Do this and this will happen
Do that and that will happen
Option Description

Do this and this will happen

Do that and that will happen

Do something Or Else this

Do this and this will happen

Do that and that will happen

Do something Or Else this

Do this and this will happen

Do that and that will happen

Do something Or Else this

Do this and this will happen

Do that and that will happen

Do something Or Else this

Do this and this will happen

Do that and that will happen

Chapter 3 Logging in to DB3 Client 37

3

Logging in to D
B3 Client

Do something Or Else this

Do this and this will happen

Do that and that will happen

Do something Or Else this

Do this and this will happen

Do that and that will happen

Do something Or Else this

Do this and this will happen

Do that and that will happen

Do something Or Else this

Do this and this will happen

Do that and that will happen

Do something Or Else this

Do this and this will happen

Do that and that will happen

Do something Or Else this

Do this and this will happen

Do that and that will happen

5. Choose a server.

• If you have a remote server you want to test on, type the IP address or hostname of the
server here.

• If you want to do local testing, just type localhost.

6. Do this

In your editor, open the first element and click on the dialog.

7. Do that

Move the framulator into the foobar box.

The SQLJ file is successfully created when the SQLJ server displays the "File Created" dialog.

Notify the proctor upon completing this self-test.

Chapter 3 Logging in to DB3 Client 38

3

Logging in to D
B3 Client

Chapter 4 DITA 1.2 element test
The Darwin Information Typing Architecture (DITA) 1.2 specification defines a set of document
types for authoring and organizing topic-oriented information, as well as a set of mechanisms for
combining, extending, and constraining document types.

The DITA 1.2 specification consists of the following components:

Document Type Definitions (DTDs) and XML Schemas (XSDs)
The DTDs and XSDs – along with the catalog files – define DITA markup for the DITA vo‐
cabulary modules and DITA document types. While the DTDs and XSDs should define the
same DITA elements, the DTDs are normative if there is a discrepancy. If there is a discrepancy
between the written specification (this document) and the DTDs, the written specification takes
precedence.

DITA 1.2 written specification
While the DITA 1.2 documentation does contain some introductory information, it is intended
neither as an introduction to DITA nor as a users guide. The intended audience of this docu‐
mentation consists of implementers of the DITA standard, including tool developers and XML
architects who develop specializations. The documentation contains several parts:

• Architectural specification

• Language reference

• Conformance statement

• Appendices
The DITA 1.2 written specification is available in the following formats: XHTML, CHM, PDF,
and DITA source. The XHTML version is authoritative.

4.1 Longdescref testing
The <longdescref> element supports a reference to a text description of the graphic or object. This
element replaces the deprecated longdescref attribute on image and object elements.

PDF output does not generate any results for <longdescref>.

Chapter 4 DITA 1.2 element test 39

4

D
ITA

 1.2 elem
ent test

● Image example (1)

● Image example (2)

4.2 Sectiondiv testing
The <sectiondiv> element allows logical grouping of content within a section. There is no addition‐
al meaning associated with the sectiondiv element, aside from its function as a container for other
content. The sectiondiv element does not contain a title; the lowest level of titled content within a
topic is the section itself. If additional hierarchy is required, nested topics should be used in place of
the section.

PDF output will generate fo:wrapper for <sectiondiv>.

● Nice pets
Cats are nice.

Dogs are nice.

Friends of mine really love their hedgehogs.

Lots of people want ponies when they grow up.

Llamas are also popular.

4.2 Sectiondiv testing 40

4

D
ITA

 1.2 elem
ent test

Chapter 5 Test: Link to removed topic
5.1 Topic title
This topic refrences the topic who's topicref has @print="no" via reltable.

Topic paragraph

 RELATED LINKS

Chapter 5 Test: Link to removed topic 41

5

Test: Link to rem
oved topic

Chapter 6 Complecated index example
6.1 Complecated indexterm example
This topic contains complecated index example.

Topic paragraph

Chapter 6 Complecated index example 42

6

Com
plecated index exam

ple

Appendix A XSL Transformations
XSL Transformations (XSLT) is a declarative XML-based language used for the transformation of
XML documents into other XML documents. The original document is not changed; rather, a new
document is created based on the content of an existing one. The new document may be serialized
(output) by the processor in standard XML syntax or in another format, such as HTML or plain text.
XSLT is often used to convert XML data into HTML or XHTML documents for display as a web
page: the transformation may happen dynamically either on the client or on the server, or it may be
done as part of the publishing process. It is also used to create output for printing or direct video
display, typically by transforming the original XML into XSL Formatting Objects to create format‐
ted output which can then be converted to a variety of formats, a few of which are PDF, PostScript,
AWT and PNG. XSLT is also used to translate XML messages between different XML schemas, or
to make changes to documents within the scope of a single schema, for example by removing the
parts of a message that are not needed.

■ Origins
XSLT is developed by the World Wide Web Consortium (W3C). The most recent version is XSLT
2.0, which reached W3C recommendation status on 23 January 2007. As of 2008, however, XSLT
1.0 is still more widely used and implemented.

Originally, XSLT was part of the W3C's Extensible Stylesheet Language (XSL) development effort
of 1998–1999, a project that also produced XSL Formatting Objects and the XML Path Language,
XPath. The editor of the first version was James Clark. XSLT 1.0 was published as a Recommenda‐
tion by the W3C on 16 November 1999. After an abortive attempt to create a version 1.1 in 2001,
the XSL working group joined forces with the XQuery working group to create XPath 2.0, with a
richer data model and type system based on XML Schema. XSLT 2.0, developed under the editor‐
ship of Michael Kay, was built on this foundation in 2002–2006.

As a language, XSLT is influenced by functional languages, and by text-based pattern matching lan‐
guages like SNOBOL and awk. Its most direct predecessor was ISO DSSSL, a language that per‐
formed the same function for full SGML that XSLT performs for XML. Many of the standards
committee that developed XSLT had previously worked on DSSSL, including James Clark. XSLT
can also be considered Turing-complete template processor.

Most of this article is applicable to both XSLT versions; any differences are noted in the text.

■ Overview
The XSLT processing model involves:

• one or more XML source documents;

• one or more XSLT stylesheet modules;

• the XSLT template processing engine (the processor); and

• one or more result documents.

The XSLT processor ordinarily takes two input documents—an XML source document, and an
XSLT stylesheet—and produces an output document. The XSLT stylesheet contains a collection of
template rules: instructions and other directives that guide the processor in the production of the
output document.

Appendix A XSL Transformations 43

A

X
SL Transform

ations

● Template rule processing
The XSLT language is declarative—rather than listing an imperative sequence of actions to perform
in a stateful environment, template rules only define how to handle a node matching a particular
XPath-like pattern, if the processor should happen to encounter one, and the contents of the tem‐
plates effectively comprise functional expressions that directly represent their evaluated form: the
result tree, which is the basis of the processor's output.

The processor follows a fixed algorithm: Assuming a stylesheet has already been read and prepared,
the processor builds a source tree from the input XML document. It then starts by processing the
source tree's root node, finding in the stylesheet the best-matching template for that node, and eval‐
uating the template's contents. Instructions in each template generally direct the processor to either
create nodes in the result tree, or process more nodes in the source tree in the same way as the root
node. Output is derived from the result tree.

■ Processor implementations
XSLT processor implementations fall into two main categories: server-side, and client-side.

Although client-side XSLT processing has been available in Microsoft's Internet Explorer since
1999 (or even earlier, but in a form that was incompatible with the W3C specifications), adoption
has been slower because of the widespread deployment of older and alternative browsers without
XSLT support. For similar reasons, adoption of XSLT 2.0 in such environments remains limited.

XSLT processors may be delivered as standalone products, or as components of other software in‐
cluding web browsers, application servers, frameworks such as Java and .NET, or even operating
systems. For example, Windows XP comes with the MSXML3 library, which includes an XSLT 1.0
processor. Earlier versions may be upgraded and there are many alternatives. See the external links
section.

■ Performance
The performance of XSLT processors has steadily improved as the technology has become more
mature, although the very first processor, James Clark's xt, was unbeaten for several years.

Most of the earlier XSLT processors were interpreters; in more recent products, code generation is
increasingly common, using portable intermediate languages such as Java bytecode or .NET Com‐
mon Intermediate Language as the target. However, even the interpretive products generally offer
separate analysis and execution phases, allowing an optimized expression tree to be created in
memory and reused to perform multiple transformations: this gives substantial performance benefits
in online publishing applications where the same transformation is applied many times per second
to different source documents. This separation is reflected in the design of XSLT processing APIs
such as JAXP (Java API for XML Processing).

Early XSLT processors had very few optimizations; stylesheet documents were read into Document
Object Models and the processor would act on them directly. XPath engines were also not opti‐
mized. Increasingly, however, XSLT processors use the kind of optimization techniques found in
functional programming languages and database query languages, notably static rewriting of the ex‐
pression tree for example to move calculations out of loops, and lazy pipelined evaluation to reduce
the use of memory for intermediate results and allow "early exit" when the processor can evaluate
an expression such as following-sibling::*[1] without a complete evaluation of all

Appendix A XSL Transformations 44

A

X
SL Transform

ations

subexpressions. Many processors also use tree representations that are much more efficient (in both
space and time) than general purpose DOM implementations.

The performance of XSLT processors has steadily improved as the technology has become more
mature, although the very first processor, James Clark's xt, was unbeaten for several years.

Most of the earlier XSLT processors were interpreters; in more recent products, code generation is
increasingly common, using portable intermediate languages such as Java bytecode or .NET Com‐
mon Intermediate Language as the target. However, even the interpretive products generally offer
separate analysis and execution phases, allowing an optimized expression tree to be created in
memory and reused to perform multiple transformations: this gives substantial performance benefits
in online publishing applications where the same transformation is applied many times per second
to different source documents. This separation is reflected in the design of XSLT processing APIs
such as JAXP (Java API for XML Processing).

Early XSLT processors had very few optimizations; stylesheet documents were read into Document
Object Models and the processor would act on them directly. XPath engines were also not opti‐
mized. Increasingly, however, XSLT processors use the kind of optimization techniques found in
functional programming languages and database query languages, notably static rewriting of the ex‐
pression tree for example to move calculations out of loops, and lazy pipelined evaluation to reduce
the use of memory for intermediate results and allow "early exit" when the processor can evaluate
an expression such as following-sibling::*[1] without a complete evaluation of all subex‐
pressions. Many processors also use tree representations that are much more efficient (in both space
and time) than general purpose DOM implementations.

The performance of XSLT processors has steadily improved as the technology has become more
mature, although the very first processor, James Clark's xt, was unbeaten for several years.

Most of the earlier XSLT processors were interpreters; in more recent products, code generation is
increasingly common, using portable intermediate languages such as Java bytecode or .NET Com‐
mon Intermediate Language as the target. However, even the interpretive products generally offer
separate analysis and execution phases, allowing an optimized expression tree to be created in
memory and reused to perform multiple transformations: this gives substantial performance benefits
in online publishing applications where the same transformation is applied many times per second
to different source documents. This separation is reflected in the design of XSLT processing APIs
such as JAXP (Java API for XML Processing).

Early XSLT processors had very few optimizations; stylesheet documents were read into Document
Object Models and the processor would act on them directly. XPath engines were also not opti‐
mized. Increasingly, however, XSLT processors use the kind of optimization techniques found in
functional programming languages and database query languages, notably static rewriting of the ex‐
pression tree for example to move calculations out of loops, and lazy pipelined evaluation to reduce
the use of memory for intermediate results and allow "early exit" when the processor can evaluate
an expression such as following-sibling::*[1] without a complete evaluation of all subex‐
pressions. Many processors also use tree representations that are much more efficient (in both space
and time) than general purpose DOM implementations.

The performance of XSLT processors has steadily improved as the technology has become more
mature, although the very first processor, James Clark's xt, was unbeaten for several years.

Most of the earlier XSLT processors were interpreters; in more recent products, code generation is
increasingly common, using portable intermediate languages such as Java bytecode or .NET Com‐
mon Intermediate Language as the target. However, even the interpretive products generally offer

Appendix A XSL Transformations 45

A

X
SL Transform

ations

separate analysis and execution phases, allowing an optimized expression tree to be created in
memory and reused to perform multiple transformations: this gives substantial performance benefits
in online publishing applications where the same transformation is applied many times per second
to different source documents. This separation is reflected in the design of XSLT processing APIs
such as JAXP (Java API for XML Processing).

Early XSLT processors had very few optimizations; stylesheet documents were read into Document
Object Models and the processor would act on them directly. XPath engines were also not opti‐
mized. Increasingly, however, XSLT processors use the kind of optimization techniques found in
functional programming languages and database query languages, notably static rewriting of the ex‐
pression tree for example to move calculations out of loops, and lazy pipelined evaluation to reduce
the use of memory for intermediate results and allow "early exit" when the processor can evaluate
an expression such as following-sibling::*[1] without a complete evaluation of all subex‐
pressions. Many processors also use tree representations that are much more efficient (in both space
and time) than general purpose DOM implementations.

■ XSLT and XPath
XSLT relies upon the W3C's XPath language for identifying subsets of the source document tree, as
well as for performing calculations. XPath also provides a range of functions, which XSLT itself
further augments. This reliance upon XPath adds a great deal of power and flexibility to XSLT.

XSLT 1.0 uses XPath 1.0. Similarly, XSLT 2.0 relies on XPath 2.0; both specifications were pub‐
lished on the same date.

■ XSLT and XQuery compared
XSLT capabilities overlap with XQuery, which was initially conceived as a query language for large
collections of XML documents.

The XSLT 2.0 and XQuery 1.0 standards were developed by separate working groups within W3C,
working together to ensure a common approach where appropriate. They share the same data mod‐
el, type system, and function library, and both include XPath 2.0 as a sublanguage.

The two languages, however, are rooted in different traditions and serve the needs of different com‐
munities. XSLT was primarily conceived as a stylesheet language whose primary goal was to render
XML for the human reader on screen, on the web (as web template language), or on paper. XQuery
was primarily conceived as a database query language in the tradition of SQL.

Because the two languages originate in different communities, XSLT is stronger in its handling of
narrative documents with more flexible structure, while XQuery is stronger in its data handling, for
example when performing relational joins.

■ XSLT media types
As of 2009, there is no MIME/Internet media type registered for XSLT.

The XSLT 1.0 Recommendation (1999) says "The MIME media types text/xml and application/xml
should be used for XSLT stylesheets. It is possible that a media type will be registered specifically
for XSLT stylesheets; if and when it is, that media type may also be used." It goes on to use
text/xml in an example of how to embed a stylesheet with the xml-stylesheet processing instruction.

Appendix A XSL Transformations 46

A

X
SL Transform

ations

RFC 3023 points out potential technical problems with text/* types in general, and proposes appli‐
cation/xslt+xml as an ideal media type for XSLT. The XSLT 2.0 Recommendation (January 2007)
includes a formal application to register this media type. However, at the time of writing (January
2009) the process of registration has not yet been completed, and RFC 3023 warns that "... this me‐
dia type should not be used until such registration has been completed."

Pre-1.0 working drafts of XSLT used text/xsl in their embedding examples, and this type was imple‐
mented and continues to be promoted by Microsoft in Internet Explorer and MSXML. It is also
widely recognized in the xml-stylesheet processing instruction by other browsers. In practice, there‐
fore, users wanting to control transformation in the browser using this processing instruction are ob‐
liged to use this unregistered media type.

Above contents are the excerpts from Wikipedia to test range indexterm. (http://en.wikipedia.org/
wiki/XSLT)

Appendix A XSL Transformations 47

A

X
SL Transform

ations

http://en.wikipedia.org/wiki/XSLT
http://en.wikipedia.org/wiki/XSLT

Appendix B Dir attribute example (level 1)
B.1 Dir attribute example (level 2)

B.1.1 @dir attribute

dir="ltr":
Extensible Markup Language XML is a markup language that defines a set of rules for encod‐
ing documents in a format that is both human-readable and machine-readable.

dir="rtl":
Extensible Markup Language XML is a markup language that defines a set of rules for encod‐
ing documents in a format that is both human-readable and machine-readable.

dir="rlo":
‐docne rof selur fo tes a senifed taht egaugnal pukram a si LMX egaugnaL pukraM elbisnetxE
.elbadaer-enihcam dna elbadaer-namuh htob si taht tamrof a ni stnemucod gni

The dir attribute is explained as follows:

Table B-1 dir attribute in DITA

Value Relevant CSS notation

ltr direction: ltr; unicode-bidi: embed;

rtl direction: rtl; unicode-bidi: embed;

lro direction: ltr; unicode-bidi: bidi-override;

rlo direction: rtl; unicode-bidi: bidi-override;

The dir attribute in HTML is explained as follows:

Table B-2 dir attribute and HTML element

Selector pattern Relevant CSS notation

*[dir="ltr"] direction: ltr; unicode-bidi: embed;

*[dir="rtl"] direction: rtl; unicode-bidi: embed;

bdo[dir="ltr"] direction: ltr; unicode-bidi: bidi-override;

bdo[dir="rtl"] direction: rtl; unicode-bidi: bidi-override;

Value Relevant CSS notation

ltr direction: ltr; unicode-bidi: embed;

rtl direction: rtl; unicode-bidi: embed;

lro direction: ltr; unicode-bidi: bidi-override;

rlo direction: rtl; unicode-bidi: bidi-override;

Figure B-1 dir attribute in DITA

Appendix B Dir attribute example (level 1) 48

B

D
ir attribute exam

ple (level 1)

Selector pattern Relevant CSS notation

*[dir="ltr"] direction: ltr; unicode-bidi: embed;

*[dir="rtl"] direction: rtl; unicode-bidi: embed;

bdo[dir="ltr"] direction: ltr; unicode-bidi: bidi-override;

bdo[dir="rtl"] direction: rtl; unicode-bidi: bidi-override;

Figure B-2 dir attribute and HTML element

Appendix B Dir attribute example (level 1) 49

B

D
ir attribute exam

ple (level 1)

Backmatter testing
The <backmatter> element contains the material that follows the main body of a document and any
appendices. It may include items such as a colophon, legal notices, and various types of book lists
such as a glossary or an index.

The backmatter has following content model

(amendments or booklists or colophon or dedication or notices or topicref
 or anchorref or keydef or mapref or topicgroup or topichead or topicset
or topicsetref) (any number)

50

Glossary map
 Document Object Model The Document Object
Model (DOM) is a cross-platform and language-in‐
dependent convention for representing and interact‐
ing with objects in HTML, XHTML and XML
documents. Aspects of the DOM (such as its "Ele‐
ments") may be addressed and manipulated within
the syntax of the programming language in use. The
public interface of a DOM is specified in its applica‐
tion programming interface (API).

Document Type Definition Document Type Defi‐
nition (DTD) is a set of markup declarations that de‐
fine a document type for SGML-family markup lan‐
guages (SGML, XML, HTML). DTDs were a pre‐
cursor to XML schema and have a similar function,
although different capabilities. DTDs use a terse for‐
mal syntax that declares precisely which elements
and references may appear where in the document
of the particular type, and what the elements’ con‐
tents and attributes are. DTDs also declare entities
which may be used in the instance document. XML
uses a subset of SGML DTD.

HTML Hypertext Markup Language (HTML) is
the predominant markup language for web pages.
HTML elements are the basic building-blocks of
webpages.
HTML is written in the form of HTML elements
consisting of tags, enclosed in angle brackets (like
<html>), within the web page content. HTML tags
most commonly come in pairs like <h1> and </h1>,
although some tags, known as empty elements, are
unpaired, for example . The first tag in a pair
is the start tag, the second tag is the end tag (they
are also called opening tags and closing tags). In be‐
tween these tags web designers can add text, tags,
comments, and other types of text-based content.

Simple API for XML SAX (Simple API for XML)
is an event-based sequential access parser API de‐
veloped by the XML-DEV mailing list for XML
documents. SAX provides a mechanism for reading
data from an XML document that is an alternative to
that provided by the Document Object Model
(DOM). Where the DOM operates on the document
as a whole, SAX parsers operate on each piece of
the XML document sequentially.

XML Extensible Markup Language (XML) is a set
of rules for encoding documents in machine-reada‐
ble form. It is defined in the XML 1.0 Specifica‐
tion*1 produced by the W3C, and several other relat‐
ed specifications, all gratis open standards.*2

*1 "XML 1.0 Specification". W3.org. Retrieved
2010-08-22.

*2 "W3C DOCUMENT LICENSE".

XML Schema (W3C) XML Schema, published as
a W3C recommendation in May 2001, is one of sev‐
eral XML schema languages. It was the first sepa‐
rate schema language for XML to achieve Recom‐
mendation status by the W3C. Because of confusion
between XML Schema as a specific W3C specifica‐
tion, and the use of the same term to describe sche‐
ma languages in general, some parts of the user
community referred to this language as WXS, an in‐
itialism for W3C XML Schema, while others refer‐
red to it as XSD, an initialism for XML Schema
Document—a document written in the XML Sche‐
ma language, typically containing the "xsd" XML
namespace prefix and stored with the ".xsd" file‐
name extension. In Version 1.1 (currently in July
2011 a Candidate Recommendation), the W3C has
chosen to adopt XSD as the preferred name, and that
is the name used in this article.

XSL Formatting Objects XSL Formatting Ob‐
jects, or XSL-FO, is a markup language for XML
document formatting which is most often used to
generate PDFs. XSL-FO is part of XSL (Extensible
Stylesheet Language), a set of W3C technologies
designed for the transformation and formatting of
XML data. The other parts of XSL are XSLT and
XPath. As of December 12, 2006, the current ver‐
sion of XSL-FO is v1.1

XSLT XSLT (Extensible Stylesheet Language
Transformations) is a declarative, XML-based lan‐
guage used for the transformation of XML docu‐
ments. The original document is not changed; rather,
a new document is created based on the content of
an existing one.*1 The new document may be serial‐
ized (output) by the processor in standard XML syn‐
tax or in another format, such as HTML or plain

Glossary map 51

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.w3.org/Consortium/Legal/2002/copyright-documents-20021231

text.*2 XSLT is most often used to convert data be‐
tween different XML schemas or to convert XML
data into web pages or PDF documents.

*1 XSL Transformations (XSLT)
*2 See e. g., http://www.w3.org/TR/xslt#output,

specifying alternate output methods.

Glossary map 52

Index
Symbols
#all.. 3
#default .. 3

see also Mode parameter (template)
<data>... 3
<dita> sample indexterm in <metadata>........... i
<dita> sample range indexterm in <metadata>..

...i,ii
<dita> sample range indexterm in <metadata>

that have @end..i,ii
<index-base>.. 10

C
Carp ... 3

see also Goldfish
Change the license.. 3
cheese ...3

goats milk ... 3
chevre... 3

see also cheese , sheeps milk , pe‐
corino

see also Cheese maker
sheeps milk

pecorino..3
see also cheese , goats milk , che‐

vre
Cheese maker ...3

D
data..3
<data>... 3
DITA 1.2 Testing in <metadata>............... 39,40
DITA 1.2 Testing in <topicmeta>..............39-50
DITA sample indexterm <topicmeta>............... i
DITA sample range indexterm <topicmeta>i-50
DITA sample range indexterm <topicmeta>

that has @end.. i,ii

E
error1

error2
error3

error4
error5 3

F
Feeding .. 3

see also Goldfish , feeding
Feeding goldfish

see Carp
see Goldfish , feeding

G
Goldfish ... 3

feeding... 3

I
Indexterm of Note Section Title....................... 4
Indexterm of Note Shortdesc............................4
Indexterm of Note Title.................................... 4

J
Java API for XML Processing........................46

L
license... 3
License..3

Developer license...................................... 3
For Java.. 3
For Visual C++...................................3

Server license.. 3
Standalone license..................................... 3

License control PC..3
License Control PC...3
License control software...................................3
Load.. 42

Bond Paper.. 42
see also Load, Recycled Paper

Plain Paper...42
Recycled Paper.. 42
Thin Paper... 42

Index 53

Index

M
Manual

Feed
Slot... 42

see Load
see Load, Plain Paper
see also Plain Paper

Manual Feed Slot..42
see Load
see Load, Plain Paper
see also Plain Paper

Mode parameter (template).............................. 3

P
Plain Paper..42

R
Range indexterm of Note Section Title......... 4-6
Range indexterm of Note Shortdesc..............4-6
Range indexterm of Note title....................... 4-6

T
Test data, see data
Testing Examples 3-35
Title

testing.. 1
between page...................................1,2

Title testing... 1
Title testing(2).. 1

W
W3C

World Wide Web Consortium..................43

X
XSLT... 43-47

Performance....................................... 44-46
XSL Transformations (in title)....................... 43
XSLT testing in appendix <topicmeta>.....43-50

Index 54

Index

	Test data title
	Preface

	Contents
	Figures
	Tables
	Chapter 1 Title testing
	1.1 Weird title testing (R) (1)
	1.2 Weird title testing (TM) (2)

	Chapter 2 Testing examples
	2.1 Abstract testing
	2.2 Xref testing
	2.3 Note testing
	2.4 Bodyelements testing
	2.5 Miscellaneous elements testing
	2.6 Specialization elements testing
	2.7 Typographic elements testing
	2.8 Programming elements testing
	2.9 Software elements testing
	2.10 Utility elements testing
	2.11 Fig and table testing
	2.11.1 Fig testing
	2.11.2 Table testing
	2.11.3 Properties

	Chapter 3 Logging in to DB3 Client
	Chapter 4 DITA 1.2 element test
	4.1 Longdescref testing
	4.2 Sectiondiv testing

	Chapter 5 Test: Link to removed topic
	5.1 Topic title

	Chapter 6 Complecated index example
	6.1 Complecated indexterm example

	Appendix A XSL Transformations
	Appendix B Dir attribute example (level 1)
	B.1 Dir attribute example (level 2)
	B.1.1 @dir attribute

	Backmatter testing
	Glossary map
	Document Object Model
	Document Type Definition
	HTML
	Simple API for XML
	XML
	XML Schema (W3C)
	XSL Formatting Objects
	XSLT

	Index

