
Roles & Permissions
Erik Hetzner & Zach Dennis

We hope it provides just enough information to provide basic understanding
of R&P and how its pieces fit together.

Disclaimer: It will provide realistic-ish examples, but they are meant to
showcase R&P, not to be representative of what production R&P data will

look like.

The goal of this slide deck is to introduce you to how the
updated Roles & Permissions will work.

Overarching Goal of R&P

• Support authorization on both the backend and
the front-end of Aperta in a consistent, generic,
and maintainable manner.

Backend Goal

• Allow the backend to be the authority on access
to behavior and information

• E.g. don’t let a user create a task on a paper
they can’t access

• E.g. don’t send information a user can’t see to
the client (browser).

Front-end Goal

• Present contextually relevant information and
functionality to the user

• E.g. Don’t render a section of content the user
can’t see

• E.g. Don’t show a user a button they can’t click.

Data Model @ 40,000 ft

• Role

• Permission

• State

• Assignment

Data Model Diagram

Role
• A Role is a name that represents a user’s part in the

publishing process

• A user may have multiple roles as they may play
multiple parts

• A role can be used to indicate at what a user is
interested in as opposed to what they have access to.

• E.g. PLOS Staff may have access to all papers on a
journal, but they likely don’t want to see all papers
on their dashboard

Permission

• A Permission is the most granular unit of
access that Aperta knows how to enforce

• It’s a combination of a action describing what
the permission is and what it applies to

• Aperta enforces permissions, not roles

State
• A State is a condition that must be met for a permission to

be applicable

• There is a default state that represents that a permission is
always applicable

• E.g. A reviewer cannot review a paper unless it is in the
state of “in review”.

• This could be applied to things beyond paper states (e.g.
task states), but we aren’t building that in, just noting that
is a direction where this could be extended if it becomes
necessary

Assignment
• An Assignment ties together a user, a role, and

a thing*

• thing is polymorphic and can represent any entity in the system
(e.g. Journal, Paper, Task, Discussion, etc)

• It is intended the single source of truth for how a
user obtains any kind of access in Aperta

*thing is subject to change as it is likely not the best name.

How Users Get
Access To Things

@
20,000 ft.

The Basics

• A user gets access by being assigned to
something (like a journal, a paper, a task, a
discussion, etc) with a specific role.

• Since a role is largely a collection of permissions
with a human-friendly name this is how a user
gets permissions to things

Examples

• a user is assigned to the PLOS BIO journal as an
Internal Editor

• a user is assigned to a paper as the Author when
they create it

• a user is assigned to their ReviewerReportTask
as a Reviewer when they accept the invitation to
review

Authorization
@

10,000 ft.

Keep in mind

• An assignment says how you got access

• A permission says what you can access

Examples
To keep this simple we’re going to only use one permission: view.

Assignments Roles Permissions
Lucy is assigned to PLOS BIO journal Internal Editor

view which applies to Journal
view which applies to Paper
view which applies to Task

Author

Karen is assigned to Reviewer Report Task
on Some Paper

view which applies to PaperBob is assigned to Some Paper

Reviewer view which applies to Task
view which applies to Paper

Assignments Roles Permissions
Lucy is assigned to PLOS BIO journal Internal Editor

view which applies to Journal
view which applies to Paper
view which applies to Task

Author

Karen is assigned to Reviewer Report Task
on Some Paper

view which applies to PaperBob is assigned to Some Paper

Reviewer view which applies to Task
view which applies to Paper

Lucy can view the PLOS Bio journal,
view any paper within the PLOS Bio journal,
and view any task within the PLOS Bio journal.

Assignments Roles Permissions
Lucy is assigned to PLOS BIO journal Internal Editor

view which applies to Journal
view which applies to Paper
view which applies to Task

Author

Karen is assigned to Reviewer Report Task
on Some Paper

view which applies to PaperBob is assigned to Some Paper

Reviewer view which applies to Task
view which applies to Paper

Bob can only view “Some Paper”.

Assignments Roles Permissions
Lucy is assigned to PLOS BIO journal Internal Editor

view which applies to Journal
view which applies to Paper
view which applies to Task

Author

Karen is assigned to Reviewer Report Task
on Some Paper

view which applies to PaperBob is assigned to Some Paper

Reviewer view which applies to Task
view which applies to Paper

Karen can view the Reviewer Report Task she is
assigned to.

She can also view the paper that is related to
the Reviewer Report Task.

Karen can view the paper that is related to
the Reviewer Report Task?

Assignments Roles Permissions

Karen is assigned to Reviewer Report Task
on Some Paper Reviewer view which applies to Task

view which applies to Paper

This provides the context, the
“how” you get permissions.

This provides “what” you
have to permission to in

that context

Assignments Roles Permissions

Karen is assigned to Reviewer Report Task
on Some Paper Reviewer view which applies to Task

view which applies to Paper

This provides the context, the
“how” you get permissions.

This provides “what” you
have to permission to in

that context

How does the “applies to”
know how to match up w/

the “thing” in the
assignment context?

There’s a configuration file that
spells out how things relate to

one another.

What you’re assigned to.

What that assignment gives
you access to.

What method/association/
scope to use to get access.*

* this is currently expected to be (or return) an ActiveRecord association/scope and not just a
Ruby method. May change later.

This file lives on its own so we can:

• Further decouple authorization logic from model logic

• Raise visibility and discoverability of how access is
granted (or not) to developers

• Not bury this deep inside some complex method or SQL
query too never be found or understood again

• Allow “how” authorization is wired up to be tested in
isolation on its own

• Let models change independently of authorization and
vise-versa

So back to Karen.

Can view the paper that is related to the
Reviewer Report Task? Yes, yes she can.

Assignments Roles Permissions

Gary is assigned to Foo Paper Unfortunate One view which applies to Task

Gary cannot view the paper even though he’s assigned to it.
He doesn’t have the right permission.

He only has the permission to view Tasks.

An Absurd Example

Assignments Roles Permissions

Grace is assigned to Genetics journal Internal Editor view which applies to Paper

Grace can view all the papers in the Genetics Journal.
She can also view her paper on the PLOS One journal.

She cannot view any other papers in the PLOS One journal.
She cannot view any tasks on either journal.

Grace is assigned to the Hopper Files
Paper on the PLOS One journal Author view which applies to Paper

A Plausible Example

What about roles like
Billing Staff?

Billing Staff Primer
• Billing Staff are assigned at the journal level

• They can view all billing tasks/cards for their
journal

• They cannot view any other tasks

• They may be able to do other things like view the
paper, but the tricky thing is how to limit them to
just the billing task

We can introduce the concept of a required permission
that points to a specific permission

Assignments Roles Permissions
Andrew is assigned to PLOS BIO journal Billing Staff view which applies to BillingTask

Task
required_permission

A required permission is optional but when it’s
set it can be used to enforce filtering to a
particular a thing (in this case BillingTask).

Assignments Roles Permissions
Andrew is assigned to PLOS BIO journal Billing Staff view_billing_info which applies to Task

Task
required_permission

Example #1: use same view permission

Example #2: OR make new permission

required permission cont.
• Where does the required_permission comes from? It likely

comes from the task template or whatever factory is responsible for
creating things that have specific requirements.

• Can it be NULL? Currently, yes.

• What does NULL indicate? That there’s no specific permission
requirement.

• Why not just create a permission that “applies_to” BillingTask
and omit the required permission? There needs to be a way to
exclude specific kinds of Task(s) or even specific Tasks (maybe ad-
hoc tasks). E.g. if someone has a “view” permission that applies to
“Task” we don’t want that to grant permission on a BillingTask. By
having a required permission on BillingTask we can exclude it.

Using Authorization
@

0 ft.

Back-end Usage

• Minimal API

• If you’ve used CanCan the API will feel familiar

• Doesn’t use CanCan

• Is data driven

Checking Permission

user.can?(:view, paper)

Permission
Object you’re checking

permissions on

Retrieving a list of things you
can access

user.filter_authorized(:view, Paper.all)

The filter.

The objects you’re
filtering against.

Permission

• filter_authorized has some smarts

• It will not *load* all Papers in memory even
though you said Paper.all

• It is smart enough to build queries based on
what you give it

• E.g. an Array of objects, an
ActiveRecord::Relation, a chained set of
ActiveRecord::Relation(s), etc.

user.filter_authorized(:view, Paper.all)

• user.filter_authorized(:view, journal.papers)

• user.filter_authorized(:view, paper.tasks)

• user.filter_authorized(:view, paper.tasks.where(foo: true))

It’s more likely that you’ll have specific
objects in mind, not “<Model>.all”

Front-end Usage Examples

• Uses ember-can for API (basically free ember
integration).

• Replaces ember-can’s default lookup-strategy

• Expects the server to give it a lookup table of
permissions for a user

ember-can in a view

{{#if (can “participate_in_discussion”, paper)}}
 <button {{action “new”}}>Add Reply</button>
{{else}}
 You can't talk in this discussion!
{{/if}}

“can expectations in Aperta

(can “participate_in_discussion”, paper)

The object you’re
checking permission for.

(required)

Permission (required)

Use the CanMixin to use
permissions elsewhere

import Ember from 'ember';
import { CanMixin } from 'ember-can';

export default Ember.Route.extend(CanMixin, {
 beforeModel: function() {
 if (!this.can(‘view’, paper)) {
 this.transitionTo('index');
 }
 }
});

can(…) has some smarts

• Only persisted objects (with an id) actually do a
permission lookup

• Objects without ids are assumed to be
something the user is creating so they can(…)
will always return true

• These are Aperta defined smarts, not ember-can
smarts

How the client &
server communicate

Server sends a permission table
(below is one entry)

Server sends a permission table
(below is one entry)

The object

Permission “read”
Any state

Permission “write”
Must be in state “in_progress”

Permission “view”
Any state

Permission “talk”
Must be in state “in_progress”
OR “in_review”

Client reads look up table
• Client knows how to use the look up table

• Look-up table may be side loaded with requests

• Side-loaded requests will likely only include part
of the permission table (for things you’re looking
at)

• If client cannot find the permission in a lookup
table it falls back to asking the server

Trade-offs

Being data-driven

• Adds a level of structure and consistency to how
authorization is modeled. :)

• Some ramp-up to understanding the model
required. :|

• Makes it possible to send authorization tables to
the client (didn’t exist prior) :)

Being data-driven

• A certain level of complexity will exist around
building SQL queries :(

• Balancing SQL performance and Ruby/
ActiveRecord performance adds interesting
code :|

• Isolates complexity exposes a clean API. :)

Performance
• Asking the server to tell you all of the permissions

for every thing that a user has access to can be
expensive.

• Asking the server to tell you the permissions for
specific kinds of objects given a starting point is
much more performant (e.g. what are all the
tasks for this paper I can access)

• It’s bullet point #2 that we believe is the normal
use-case for Aperta.

Side loading

• We think side loading permissions for things being
returned in the response may be a good start

• It avoids umpteen requests to the server

• It avoids asking the server to compute
permissions for every possible thing the user may
touch

Negative Permissions
• We’re planning to omit negative permissions

• E.g. what happens when a user has both a “can
access” and a “cannot access” permission?

• Our current plan is to express more narrowly
scoped “positive” permissions and to not assign
them to roles.

• Trade-off: More permissions, but less complex
system and likely more readable code.

Coupling
• We expect some roles to be coupled to the various

parts of the system initially.

• E.g. Knowing that creating a paper assigns the Author
role for the current journal.

• E.g. Knowing that the user who accepts a reviewer
invitation gets the Reviewer role

• Adding even more configurability and flexibility comes
at a cognitive cost. We think this is a piece to punt on
for now.

What about ad-hoc tasks?
• Good question

• Maybe task templates have a default permission associated
with them. Possibly by using the required_permission.

• Perhaps in the ad-hoc task UI a user can select what the
permission is required to par-take in the task

• Or perhaps something else? Depends on what the PLOS
ends up needing.

• We need more info, but we don’t think this will be a show
stopper.

Closing Thoughts
• More confident than not: These ideas have been implemented, iterated on, and

tested in a playground app (which pulled Aperta models). We’ve gone from 15%
confident to probably 80 ~ 85%. we won’t get that last 15% - 20% until we start putting
it in place in Aperta.

• Things to keep an eye on: Performance on real data, edge cases we didn’t think of,
other ways of organizing information.

• Encourage implementation evolution: A minimal API, a non-leaky (or minimally leaky)
R&P abstraction, a contract between client and server, and a solid test suite should
support conversation tweaks and radical ideas to improve the underlying
implementation while at the same time having minimal surface area affected by those
changes.

• Change is necessary: We think we’ve got a really good starting point, but we expect
change and iteration over time.

• Feedback: Ask questions and poke holes. We want you to grok this as we move
forward and want to fill in holes as early as we can.

The End.

