
The task is to implement a compression/decompression
algorithm, say ALG-C

Compression

ALG-C iterates sequentially through the input string and stores any

new match into a search buffer. The process of compression can be

divided in 3 steps:

1. Find the longest match of a string that starts at the current

position with a pattern available in the search buffer.

2. Output a triple (o, l, c) where,

● o: offset, represents the number of positions that we would

need to move backwards in order to find the start of the

matching string.

● l: length, represents the length of the match.

● c: character, represents the character that is found after

the match.

1. Move the cursor l+1 positions to the right.

Let’s get a deeper insight with an example:

a b a b c b a b a b a a

Initially, our search buffer is empty and we start from the left, where

we find an ‘a’. Given that there are not any matching patterns in our

search buffer, we output the triple (0, 0, a), since we are not moving

backwards (o = 0) and there is not a matching pattern in the search

buffer (hence “matching” an empty string: l = 0). After this

(non-)match, we find the character ‘a’, so c = a. We move l+1 positions

to the right and find ourselves in the second position. We’ll be

indicating the position of the cursor using the square brackets [].

a [b] a b c b a b a b a a

ALG-C encoding: (0,0,a)

So far, we do not have any pattern in our search buffer that starts with

‘b’. Therefore, the encoding process is similar to the previous step:

(0,0,b). At this point, things start to get interesting:

a b [a] b c b a b a b a a

ALG-C encoding: (0,0,a), (0,0,b)

We’ve previously found an ‘a’ and even ‘ab’, but not ‘abc’ so we need to

move 2 positions to the left (o = 2) and read 2 characters (l = 2). The

next character that we can find is a ‘c’, therefore the output triple

would be (2,2,c). We move our cursor l+1 positions to the right and

find ourselves in the character ‘b’.

a b a b c [b] a b a b a a

ALG-C encoding: (0,0,a), (0,0,b), (2,2,c)

We’ve already found a ‘b’, even ‘ba’ and even ‘bab’ but not ‘baba’, so

we’ll be moving 4 positions to the left (o = 4) and read 3 characters (l

= 3). The next character that we can find is an ‘a’, and hence the

output triple would be (4,3,a). We move our cursor l+1 positions to

the right and find ourselves in the character ‘b’.

a b a b c b a b a [b] a a

ALG-C encoding: (0,0,a), (0,0,b), (2,2,c), (4,3,a)

We’re almost done! We’ve already seen a ‘b’ and a ba’, but not a ‘baa’.

We need to move 2 positions to the left (o = 2) and read 2 characters (l

= 2). After this match, we find an ‘a’, so the last output triple would be

(2,2,a).

a b a b c b a b a b a a

ALG-C encoding: (0,0,a), (0,0,b), (2,2,c), (4,3,a),
(2,2,a)

You may have noticed that the time complexity in the compression

phase does not seem to be too good considering that, in the worst

case, we need to go back to the beginning of the input string to find a

matching pattern (if any). This means that, in a 0-index position p, we

need to move p positions to the left in the worst case. Thinking of an

edge case in which every character of the string is different (and hence

we do not take advantage of data compression), we would need to

process 0 characters for the first position + 1 for the second + 2 for the

third… + n-1 for the last position = n(n-1) / 2 = O(n2) time

complexity. This is one of the reasons why it is common to predefine a

limit on the size of the search buffer, allowing us to reuse the content

of up to, for instance, 6 positions to the left of the cursor. The

following example may help you illustrate this concept, where the

parentheses indicate the content inside the search buffer.

a b a b c (b a b a b a) [c] b a a a

In this case, we would not find the ‘c’ in the search buffer and, hence,

the output triple would be (0,0,c) instead of (7,3,a). However, we

would not have to potentially pay the price in every processed

character to find a match, in the worst case, at the beginning of the

string. All in all, selecting the size of the search buffer becomes a

tradeoff between the compression time and the required memory: a

small search buffer will generally allow us to complete the

compression phase faster, but the resulting encoding will require

more memory; on the opposite side, a large search buffer will

generally take longer to compress our data, but it will be more

effective in terms of memory usage.

It is also common to limit the size of the lookahead buffer, which is

the substring that starts at the cursor. Let’s illustrate this concept with

an example, where the lookahead buffer is represented between two *

symbols.

a b a b c (b a b a c a) *[b] a b a* c a a

In this case, we have a search buffer of size 6 and a lookahead buffer

of size 4. Given that the content of our lookahead buffer is ‘baba’ and

it is contained in the search buffer, the ALG-C encoding at this

position would be (6,4,c). Note that, in this example, if our lookahead

buffer was bigger, the output triple in this position would be different.

For instance, if our lookahead buffer also had a size of 6 it would

contain the string ‘babaca’, which is fully contained in the search

buffer and, hence, the output triple would be (6,6,a).

It is worth mentioning that this algorithm is also known as the

“sliding windows” algorithm, given that both the search buffer and the

lookahead buffer get updated as the cursor “slides” through the input

text.

Decompression

Let’s see how ALG-C uses its encoded form to reproduce the original

string. ALG-C is categorized as a lossless data-compression algorithm,

which means that we should be able to fully recover the original

string. It is also worth mentioning that, in the case of ALG-C, we

cannot start decompressing from a random ALG-C triple: instead, we

need to start decompressing from the initial triple. The reason is,

simply, that the encoded triples are based on the search buffer.

In order to illustrate the decompression process, let’s attempt to

decompress the obtained encoding in the previous section, aiming to

obtain the original string. Therefore, our encoding in this example

would be the following:

(0,0,a), (0,0,b), (2,2,c), (4,3,a), (2,2,a)

Starting with (0,0,a), we need to move o = 0 positions to the left and

read l = 0 characters (that is just an empty string). After that, write c =

‘a’. Hence, the decompressed value of this triple is ‘a’. At this point,

our decompression string looks like this:

Current string: a

Remaining ALG-C encoding: (0,0,b), (2,2,c),
(4,3,a), (2,2,a)

The next triple that we find is (0,0,b) which means the following:

move o = 0 positions to the left and read l = 0 characters (empty

string). After that, write c = ‘b’. Hence, the decompressed value of this

triple is ‘b’. Our decompression string now looks like this:

Current string: a b

Remaining ALG-C encoding: (2,2,c), (4,3,a), (2,2,a)

The next triple that we find is (2,2,c), which is a bit more interesting.

Now it means the following: move o = 2 positions to the left and read l

= 2 characters (‘ab’). After that, write c = ‘c’. Hence, the decompressed

value of this triple is ‘abc’. Our decompression string now looks like

this:

Current string: a b a b c

Remaining ALG-C encoding: (4,3,a), (2,2,a)

The next triple that we find is (4,3,a), which means the following:

move o = 4 positions to the left and read l = 3 characters (‘bab’). After

that, write c = ‘a’. Hence, the decompressed value of this triple is

‘baba’. Our decompression string now looks like this:

Current string: a b a b c b a b a

Remaining ALG-C encoding: (2,2,a)

The last triple that we find is (2,2,a), which means the following: move

o = 2 positions to the left and read l = 2 characters (‘ba’). After that,

write c = ‘a’. Hence, the decompressed value of this triple is ‘baa’. Our

decompression string now looks like this:

Fully decompressed string: a b a b c b a b a b a a

If you check the original to-be-compressed string in the previous

section, you will see that they are the same!

Tasks:

1. Design your own encoding format in Rust

2. Implement an encode function that encodes arbitrary

strings to the encoding format.

3. Implement a decode function that decodes encoded data

back to string.

4. Design a series of unit tests, for smaller data and big

data, test both the correctness and efficiency of your

code.

